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Abstract

The design of gridshells is subject to strong mechanical and fabrication constraints, which remain largely unexplored for
non-regular patterns. The aim of this article is to compare the structural performance of two kind of gridshells. The
first one is the kagome gridshell and it is derived from a non-regular pattern constituted of triangles and hexagons. The
second one results from a regular pattern of quadrangles unbraced by diagonal elements. A method is proposed to cover
kagome gridshells with planar facets, which reduces considerably the cost of fabrication of the cladding.

The sensitivity of kagome gridshells to geometrical imperfections is discussed. The linearised buckling load of kagome
gridshells is then compared to the one of quadrilateral gridshells. The most relevant design variables are considered in
the parametric study. Two building typologies are studied for symmetrical and non-symmetrical load cases: dome and
barrel vault. It reveals that the kagome gridshell outperforms quadrilateral gridshell for a very similar construction cost.

Keywords: grid shell, conceptual design, fabrication-aware design, kagome grid pattern, quadrangular grid pattern,
imperfection, buckling analysis, performance assessment

1. Introduction

Grid-shells are structures made of beam elements that
act as continuous shells structures. The choice of a
grid pattern influences both fabrication and structural be-
haviour. For example, triangulated structures are known
to be stiffer than quadrangular meshes. Quadrangular gr-
ishells rely on the bending stiffness of connections, whereas
triangulated gridshells benefit from a shell-like behaviour
without the need for rigid connections. The better struc-
tural performance of triangular gridshells is however at
the cost of an increased node complexity due to higher
node valence. In quadrangular meshes, panels are however
not necessarily planar, and only specific curve networks on
surfaces or shape-generation strategies guarantee meshing
with planar quadrilaterals [1, 2, 3, 4]. There is thus a nec-
essary trade-off between design freedom and fabrication
constraints.

This article focuses on a lesser known family of pattern,
called kagome grid pattern, composed from triangles and
hexagons and represented in Figure 1. The kagome pattern
can be found in Japanese basketry, where the members
are woven. We focus here on applications to structural
engineering and consider non-woven pattern, where all the
neutral axes of the beams are concomitant, and the beams
are rigorously straight. Like quadrilateral grids, kagome
grids present a node valence of four, which indicates a
reasonable cost of fabrication. Among other usage, kagome
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grids have been used in the architecture of Shigeru Ban and
for ornamentation purpose. Their structural possibilities
remain however largely unexplored, and little is known on
the planarity of the facets, a key element to the economy
of the envelope.

Figure 1: A kagome grid pattern covered with planar facets generated
with the method described in this paper.

Kagome grid pattern and quadrilateral grid pattern
have the same node valence, and their structural behaviour
can be compared qualitatively. Rigid connections are nec-
essary to guarantee in-plane shear stiffness of these pat-
terns. However, their relatively low node valence assures
the existence of a large families of torsion-free beam offsets
compatible with the use of deep beams [5]. Kagome and
quadrilateral grid patterns can thus be built with very sim-
ilar technological solutions. Their relative structural per-
formances is however not quantified and will be studied in
this paper, whose main contributions are:
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• a strategy for the covering of kagome meshes with
planar facets, demonstrating that they could be
a viable alternative to triangular or quadrilateral
meshes;

• a parametric study comparing the linear buckling
load of kagome gridshells with quadrangular grid-
shells for shapes covered with planar facets;

• design guidelines for kagome gridshells.

The article is organised as follows: the first section
presents the motivations for this work as well as relevant
literature in the field of mechanics of gridshells. The sec-
ond section introduces the methodology chosen to assess
the structural behaviour of kagome gridshells. The third
section gathers the results of the conducted parametric
study. A brief discussion and conclusion sum up the con-
tributions of the present work.

1.1. Previous work on the mechanics of single-layered lat-
tice shells

The structural behaviour of gridshells is usually gov-
erned by non-linear effects, most noticeably buckling [6].
Four buckling configurations can be observed in gridshells:

• Global buckling in the manner of a shell;

• Member buckling;

• Snap-through of one node;

• In-plane rotation of one node.

Some design recommendations, often emphasizing simple
shapes, like spherical cupolas have been published. Gioncu
published a state of the art on the buckling of reticulated
structures in 1995 [7]. A report produced by the Work-
ing Group of the International Association for Shells and
Spatial Structures (IASS) in 2005 completes this review
with analytical and numerical results, demonstrating the
important advances made in that field [8]. A novel issue
is to be published in 2016. A design guide for the stability
of reticulated shells with a thorough literature review is
proposed in [9], showing a great mastery of this topic.

These guidelines identify two approaches to evaluate
the structural behaviour of a grid structure: homogeni-
sation methods and numerical experiments. This article
establishes a parametric numerical study, and uses previ-
ous work on homogenisation of grid structures to comment
the numerical results.

1.1.1. Homogenisation and equivalent shell thickness

Homogenisation techniques aim to formulate an equiv-
alent continuous behaviour of a heterogeneous structure
with a cell repeated periodically. These methods use the
superposition principle and usually work well for struc-
tures with a linear behaviour [10]. They have been suc-
cessfully used for planar grids [11], but a rigorous extension

to gridshells is difficult because of the loss of periodicity,
due to the variations of curvature. A discussion on this
topic is proposed by Gioncu and Balut [12].

The advantage of equivalent thickness model is that
they provide structural engineers with simpler formulas
and can be of practical interest for conceptual structural
design. Some attempts to provide equivalent shell thick-
ness have been used in previous studies [13, 14, 15, 16].
However, these models do not allow for the modelling of
localised buckling and the study of the influence of imper-
fections for shell structures remains tedious for non-trivial
shapes. Nowadays, the ever-growing computational power
makes the use of finite element modelling and non-linear
analysis ubiquitous in practice, and numerical simulations
are often preferred to homogenisation formulæ.

1.1.2. Numerical experiments

Numerical methods are used for the practical design of
gridshells, because they allow for integration of complex
issues, like material nonlinearities or geometrical imperfec-
tions. Some guidelines for the analysis of reticulated domes
have been proposed by Kato et al. [17, 18]: these stud-
ies introduced geometrical imperfections and semi-rigid
nodes. Bulenda and Knippers [6] performed parametric
studies on domes and barrels vaults and evaluated the in-
fluence of imperfections on the stability of gridshells. A
more complete study using finite element analysis to eval-
uate local node stiffness of patented connections has been
performed by Huang et al. [19]. Bruno et al. assessed
the influence of nodal imperfection and of Eigenmode Im-
perfection Method (EIM) more recently [20]. Malek et al.
[15] performed numerical investigations on the buckling
of spherical cap domes and considered geometrical values,
like grid spacing, or height over span ratio, as parameters.
This approach lead to recommendations for the design of
gridshells with triangular or quadrangular layout.

Other studies have evaluated the influence of residual
stresses in elastic gridshells [16, 21]. A more complete
analysis was performed on the elastic gridshell built for the
Soliday’s festival in Paris, considering accidental ruin of
some members [22]. These studies show that high bending
stresses due to the form-finding process of elastic gridshells
have little influence on the buckling capacity of domes.
Such procedures could be extended to steel structures, in
order to assess the influence of other residual stress fields
on the stability of gridshells.

1.2. Imperfections

There are many differences between the ideal numerical
shell models and the built structures. These differences, or
imperfections can be of different nature: loads, geometry,
material, residual stresses in the members. Thin shells are
known to be sensitive to imperfections [23]. These param-
eters are often set as a global geometrical imperfections.
Gioncu and Balut also point out that geometrical imper-
fection tend to govern over material nonlinearities for large
span structures [12].
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Typically, the difference between the built geometry
and the computed model is of a few centimeters at most
[24]. It is therefore necessary to introduce a norm, in or-
der to asses realistic imperfections. In the following, the
norm ‖ · ‖∞ defined as the maximal displacement is used.
Bulenda and Knippers propose a higher bound of L/500
for the imperfection with the infinity norm [6]. Based on
data on the precision requirements for built project [25],
Malek et al. studied an imperfection of 3mm [15].

The choice of the shape function is discussed in Section
2.4. The first buckling mode is recommended by design
codes, and was used for example for the design of the roof
of the British Museum and the Palacio de Comunicaciones
[26, 25]. However, different studies show that other imper-
fections shapes should be considered, as they result in a
bigger reduction of the buckling capacity of gridshells. Ex-
amples of such shapes can be found in [6] with the use of
dynamic eigenmodes, and a discussion on the choice of ap-
propriate imperfections is proposed in [20]. It has to be no-
ticed that there is no closed-form solution on the worst im-
perfection possible, some studies even demonstrated that
higher order eigenmodes can have a more critical effect
on the reduction of buckling capacity [27]. The purpose
of this paper being to compare relative performance be-
tween kagome grid pattern and quadrilateral pattern, we
will consider the imperfections most commonly used in
current practice and limit the sensitivity analysis of section
2.4 to imperfection shapes following the first eigenmode.

2. Methodology

2.1. Numerical experiment and choice of the parameters

Two typical free-form structures are barrel-vaults and
domes. Theses shapes are easily generated using transla-
tion or scale-trans surfaces surfaces, which have the advan-
tage of generating planar quadrilateral facets. A method
to convert such meshes to planar kagome meshes is de-
scribed in 3.1.

The dome is a surface of translation defined with two
parabolæ.
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Figure 2: Geometrical parameters describing the dome.

The barrel vault is a scale-trans surface. The curves on
the ground are sine curves, and the elevation is a parabola.
We write f (x) = d sin 2πx

L1
, the equation of the surface

follows:
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Figure 3: Geometrical parameters describing the barrel vault.

The geometrical parameters describing the two models
are displayed in Figures 2 and 3. The number of geo-
metrical parameters is quite important, we decrease their
numbers by introducing non-dimensional parameters. The
physical meaning of these ratios is explained and detailed
below. The main span L of the structures is set to 30
meters. Three ratios Π1, Π2 and Π3 correspond to geo-
metrical parameters. The two ratios Π4 and Π5 are the
performance metrics studied in this article.

Aspect ratio

The geometry has a main span L and another charac-
teristic length d. The first ratio is called aspect ratio and is
defined by equation (3). For the domes, the ratio Π1 cor-
respond to the ratio of curvatures, whereas for the barell
vault, higher values of Π1 correspond to higher gaussian
curvature (the case Π1 = 0 is a cylinder).

Π1 =
d

L
(3)

Notice that different aspect ratios could be constructed
from the barrel vault. For the simplicity of the demon-
stration, it was decided to set the ratio L0/L to 4 and
the ratio L1/L0 to 2.5. These values are similar to the
configuration of the gridshell roof covering the museum of
Downland [28].

Rise-over-span ratio

The name is self-explanatory: the second non-
dimensional parameter is the ratio of the characteristic
height h with respect to the main span L. Common for-
mulas indicate that structural performance should increase
with this number.

Π2 =
h

L
(4)
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Structural density ratio

We consider here the grids to have a mean member
length of l. The comparison of this number to the main
span, as done in equation (5) gives indications on the grid
coarseness.

Π3 =
l

L
(5)

Buckling ratio

The last parameter compares the buckling pressure pcr
found by linear buckling analysis to the member bending
stiffness EI/L4. The number described by equation (6) is
the value that is compared between kagome and quadri-
lateral meshes. The ratio I/L4 being kept constant in this
study, the buckling ratio will be a measure of the stiffness
due to the form and mesh topology independently of the
section properties.

Π4 =
pcrL

4

EI
(6)

Notice that only the quadratic moment of inertia I is
considered. A comparable non-dimensional number could
be constructed with the span L, the axial stiffness EA and
the critical pressure pcr. However, it is a well-known fact
that member shortening has more impact on very shallow
structures which won’t be considered in our study.

Structural efficiency

We introduce finally a variable, later called structural
efficiency, in order to compare the performance of kagome
and quadrilateral grid pattern. The parameter is defined
as:

Π5 =
pcr.A

m · g
(7)

where A is the horizontal surface covered, m the mass of
the structure and g the acceleration due to gravitational
forces on Earth. The number defined by equation (7) com-
pares the total resultant of vertical forces to the resul-
tant of gravity forces. It must be noticed that for a same
structural density, i.e. individual member length, the total
length of members differs between the kagome and quadri-
lateral grid. For a square grid with edge length l, the total
beam length per unit area is 2

l . For a kagome grid made
of regular hexagons and triangles and edge length l, the

total beam length per unit area is
√

3
l . From this simple

case, an estimation of the ratio of the masses is given by:

mKagome

mQuad
∼
√

3

2
' 86% (8)

In other terms, for a same structural density, the kagome
grid is slightly lighter than the quadrilateral grid. This dif-
ference justifies the fact to look more closely at the struc-
tural efficiency, and not only at the buckling load.

Table 1 sums up the range of variations of each pa-
rameter. It is chosen to fit existing designs: for exam-
ple the rise-over-span ratio remain in general superior to

0.1 to avoid high bending stresses or snap-through. The
structural density are chosen so that the minimal mem-
ber length is 1.253, a reasonable value compared to built
projects. Each set of geometrical parameters generates a
geometry for a quadrilateral and a kagome grid. Two load
cases are considered, as discussed in Section 2.2. The para-
metric study proposed in this paper consists thus of 500
linear buckling analysis and several fully nonlinear analysis
for the study on imperfections sensitivity.

2.2. Material, loads and boundary conditions

The material used is steel, and we restrict our study to
a linear elastic material law. Detailed studies with plas-
ticity have been made previously and are reviewed in [8].
These studies are necessary to evaluate with high fidelity
the post-buckling behaviour of gridshells, at the cost of
high computational effort. In the first steps of the design
process, engineers need to perform many analyses, often
with simplified assumptions and a linearised buckling load
is already a good indicator of the structural performance.
It was already chosen as design criterion in [15] and [21].
The modelling hypothesis follow:

• the supports are pin joints with full translational re-
straint;

• the joints are assumed to be fully rigid;

• in the barrel vault, the arches are simply-supported;

• distributed loads are replaced by concentrated loads
at connections.

The members are made of circular hollow section, with
a wall thickness of 10mm and a diameter of 200mm for the
dome and the barrel vault. With these geometries, there
is no difference between Iy, Iz, and torsional buckling of
members is not possible, which simplifies the parametric
study. In the followings, we use beam elements with three
elements per member. This subdivision allows to capture
eventual localised buckling modes, which can arise in grid-
shells.

Two load cases are considered: a uniform projected
vertical load of 1kPa and a non-symmetrical load of 1kPa
applied following the normal of the surfaces with the pat-
tern of Figure 4.

+

- -

+

Figure 4: Areas of positive and negative pressure for the non-
symmetrical load case, top view of Figure 2.

Current literature focuses more on uniform symmetri-
cal load cases [15]. Koiter has shown than spherical caps
are subject to geometrical imperfections for such load case,
but not for concentrated load. Therefore, it is meaningful
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Π1 Π2 Π3

Barrel Vault [0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15] [0.1, 0.2, 0.3, 0.4, 0.5] [
1

24
,

1

16
,

1

12
]

Dome [1, 1.33, 1.67, 2] [0.1, 0.2, 0.3, 0.4, 0.5] [
1

32
,

1

24
,

1

16
]

Table 1: Variations of the parameters in the present study.

to consider this kind of load case in our sensitivity analysis.
Furthermore, non-symmetrical load cases are known to be
more critical than symmetrical ones for buckling and of-
ten govern the sizing of gridshells. The asymmetrical load
case is thus also considered in order to provide guidance on
situations closer to the engineering practice. The chosen
asymmetrical load represents here a wind load, which usu-
ally features areas of positive and negative pressure. Wind
loads computed from the Eurocode can usually be decom-
posed between a symmetrical and asymmetrical compo-
nent. Since we already study a symmetrical load case, we
focus only on the non-symmetrical component of this load.

2.3. Buckling analysis

This study mainly adopts linear buckling analysis of
perfect gridshells. In addition, geometric non-linear anal-
ysis on structures with imperfections are carried out to
preliminary evaluate the effects of imperfections. In linear
buckling analysis, it is often considered that the stiffness
matrix of a structure can be written as the sum of KE the
elastic stiffness (independent of the applied load P) and
of KG the geometric stiffness (which decreases here with
P). The linear buckling analysis makes the assumption
that the coefficients of KG vary linearly with the ampli-
tude of P and finds thus couples of buckling factor and
displacement vector (λ,Φ) so that:

(KE + λKG) ·Φ = 0 (9)

The non-linear buckling problem becomes therefore
the eigenvalue problem shown in equation (9), the lowest
eigenvalue λ1 giving an estimate of the buckling capacity
of the structures. The linearisation hypothesis is in fact
a Taylor development, and it is valid if the displacements
before buckling are small. In structures subject to large
deformations, like gridshells, the linear buckling analysis
can overestimate largely the real buckling capacity. In
detailed design, fully non-linear analysis is thus required
to assess the bearing capacity of gridshells, but the lin-
ear buckling analysis can be quickly estimated and can be
helpful in conceptual design stage [15].

The analysis software used is Karamba, a plug-in in-
tegrated with parametric CAD tools RhinocerosTMand
GrasshopperTM[29, 30]. This software enables to perform
structural analysis within a 3D-modelling environment,
which considerably eases the design process for structural
engineers.

2.4. Influence of imperfections

This section focuses on the influence of imperfection
on kagome gridshells. The tested geometry is a dome sup-
ported on a circular plan (Π1 = 1, Π2 = 0.2, Π3 = 1/32),
and subject to a uniform vertical load. Figure 5 shows dif-
ferent plots of linear buckling load pcr normalised by the
linear buckling load of the structure without imperfection
pcr,0 computed with different imperfection amplitudes for
the infinity norm. The kagome pattern is more sensitive to
imperfections than the quadrangular pattern. For the am-
plitude of L/500, the reduction of the linearised buckling
load is approximately 10%.
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Figure 5: Influence of imperfection scale on the linear buckling load.

A second order analysis is thus performed on both per-
fect and imperfect geometry to evaluate more precisely
the influence of imperfections. The load/displacement dia-
grams for the kagome and quadrilateral gridshells obtained
are displayed in Figure 6 and 7 respectively. The four hor-
izontal lines represent the linearised buckling loads. Three
imperfection amplitudes are considered: the first one is a
small imperfection (L/1500) and can be compared to the
one used by Malek et al. [15], the second corresponds to
the (L/500), as proposed by Bulenda and Knippers [6],
the third one is of (L/200) as recommended in EC3.

The structures with imperfections do not reach their
linearised buckling loads, contrary to perfect structures.
The load/displacement graphs are less curved than the
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ones of the gridshells without imperfection. Consider for
example the imperfect geometry with a norm of 15cm
(L/200): the structure behaves in a fully non-linear man-
ner and it is hard to distinguish a linear domain. This
indicates that the linearised buckling load is not suited for
structures with high imperfection norm, as high stresses
are at stake before buckling. Considering the imperfection
amplitude of L/500 proposed by Bulenda and Knippers
[6], we notice that the bearing capacity of the imperfect
structure decreases by approximately 15%. With the norm
proposed by Malek et al. [15], the loss of bearing capacity
with imperfections is negligible for the considered geome-
try.
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Displacement (cm)
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o
a
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Perfect geometry

Mode 1, e∞ = 2cm (L/1500)
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Figure 6: Load/displacement diagram for a dome covered with a
kagome grid pattern.
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Figure 7: Load/displacement diagram for a dome covered with a
quadrilateral grid pattern.

The qualitative behaviour of kagome gridshells with re-
spect to imperfections is similar to what has been analysed
in previous research on quad pattern [6, 15], and Figure
6 and 7 are indeed similar. In the treated example, the
decrease of bearing capacity with respect to imperfection
amplitude is however less important than in previous lit-
erature, for example in [6] who considered cable braced
quadrilateral gridshells. It can however be compared to
the decrease observed in a previous study for quadrilat-
eral gridshells [15]. The explanation given by Malek et
al. is that quadrilateral (and kagome) gridshells rely on

in-plane bending stiffness of the members to withstand
loads, whereas triangulated gridshells can transfer out-of-
plane loads with axial forces in the members. Small im-
perfections can therefore introduce bending moments in
triangular gridshells and change their load transfer mech-
anism, from axial forces to axial and bending combined.

To go further, we propose to study the load where
the displacement reaches the service limit state. This dis-
placement is found with a second order analysis. We set
δSLS = L

200 and compare the influence of imperfection for
quad and kagome gridshells. Figure 8 shows the critical

non-dimensional service load defined as pSLSL
4

EI . Kagome
grids remain stiffer regardless of the imperfection. This
additional criterion shows also that the imperfection does
not change the relative performance of kagome and quadri-
lateral grids for simple performance metrics used in pre-
liminary design.
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Figure 8: Non-dimensional SLS load for Kagome and Quad grid-
shells

In summary, this section discussed the influence of im-
perfection on the structural performance of gridshells. The
study of sensitivity to imperfection suggests that kagome
and quadrilateral gridshells without cable-bracing have
qualitatively similar behaviours for linear buckling anal-
ysis. Even classical approaches, like Eigenmode imper-
fection, illustrate the limitations of linear buckling anal-
ysis for detailed stages of design. In the following, we
propose nonetheless to compare the bearing capacity of
kagome and quadrilateral gridshells by studying the lin-
earised buckling load without imperfections, because this
performance indicator is commonly used in conceptual de-
sign stages. In detailed design, geometrical and material
non-linear analysis will be required to assess the structural
response of gridshells with full accuracy.

3. Generation of planar kagome grid pattern

3.1. An algorithm for kagome pattern with planar facets

We present here an original method that converts pla-
nar quadrilateral (PQ) meshes to planar kagome (PK)
meshes. This method guarantees a control of the cost of
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the cladding, which is an important issue in free-form ar-
chitectural design.

The algorithm takes a PQ-mesh as an input, like il-
lustrated in Figure 9. Not all PQ-meshes are acceptable,
but only those which can be coloured as a chequerboard.
In the algorithm, the dark faces become hexagons and the
white one become triangles. Starting from a quad mesh
(left), one must determine intermediary points (middle)
which define new vertices of the kagome grid (right).

Figure 9: Conversion of a quadrilateral mesh to a kagome mesh

The choice of the intermediary point is restricted by
the fact that the two adjacent hexagons have to be pla-
nar. Consider three consecutive planar quads Qi−1, Qi
and Qi+1. The algorithm determining the new vertices
can be written as follows, and is detailed in Figure 10:

1. Compute the barycentre Gi of the quadrangle Qi;

2. Compute the intersection of the planes (Qi−1),
(Qi+1);

• If the intersection is a plane, create the node
Ni = Gi;

• If it is a line (L), create the node Ni as the
orthogonal projection of Gi on (L). Ni is the
closest point to Gi on (L).

3. Repeat steps 1 and 2 in a chequerboard pattern.

Other points on (L) could be chosen, but the choice pro-
posed in this algorithm yields satisfactory and regular re-
sults, as illustrated in Figure 1.

Finally, we noticed in our formal explorations that the
algorithm can encounter some difficulties if the curvature
of the surface is very low. With numerical imprecisions,
the binary choice of the second step of the proposed al-
gorithm can lead to instabilities. Therefore, we introduce
a number ε corresponding to the fabrication tolerance for
planarity. If the distance between G and each of the two
planes is inferior to ε, we set the point G as a vertex of
the kagome mesh.

3.2. Generality of the method

The previous algorithm gives a systematic method to
generate PK-meshes. Using the work by Liu et al. [31], we
can transcribe this result into notions of smooth differen-
tial geometry. They prove indeed that planar quadrilateral
meshes correspond to parametrisations (u, v) of surfaces
satisfying a simple equation:

det
(
∂u, ∂v, ∂

2
uv

)
= 0 (10)

The curves networks satisfying this equation are called
conjugate-curve networks. Notice that equation (10) is
satisfied by lines of curvatures as ∂2uv = 0. Therefore,
any surface admits conjugate curve networks. This means
that the method proposed in this article can be applied
on any shape. Practically, the post-rationalisation tech-
niques used in [32] or bottom-up techniques like [33] can be
used to find conjugate curve networks on free-form shapes.
Kagome meshes laid along these networks will therefore be
close to PK-meshes.

3.3. Applications to gridshells

Several strategies for shape generation of gridshells
with planar facets have been employed in the past. Among
them, surfaces of revolution, scale-trans surfaces [1] or
moulding surface, which generalise the notion of surface
of revolution [2]. They can be combined with our con-
version algorithm to generate kagome meshes with planar
facets.

It must be noticed here that the kagome mesh obtained
from a square grid in Figure 9 is irregular: the hexagons
seem a bit stretched. Simple trigonometric considerations
show that the regular kagome pattern in the plane is ob-
tained from a rectangular grid with an aspect ratio of

√
3.

The grids generated in this paper use the same rule, as we
aim for visually regular patterns, like the ones displayed
in Figure 1 and 18. Some simple geometrical properties of
these grids are discussed in Appendix A.

4. Stability of kagome gridshells

4.1. Buckling of barrel vaults

Linear buckling analyses were performed on barrel
vaults with different geometrical configurations under sym-
metrical loading, and the results are shown in Figure 12
in a non-dimensional form. In Figure 12a, Π1 = 0 and
there is no corrugation, while in Figure 12b Π1 = 0.15 and
the shape is ondulating like the one shown in Figure 11.
We notice that the corrugation is significantly improving
the structural behaviour. The case Π1 = 0.15 has a buck-
ling load almost four times higher than the cylinder (case
Π1 = 0). The best design is shown in Figure 11.

It appears that, in general, kagome grids have a higher
buckling load. In order to quantify this assertion, we intro-
duce the number r, later called ratio of efficiency, defined
by equation (11).The same parameters values are chosen
identical for both grids. A ratio superior to 1 indicates that
the kagome gridshell is more efficient than the quadrilat-
eral gridshell.

r (Π1,Π2,Π3) =
Π5,Kagome (Π1,Π2,Π3)

Π5,Quad (Π1,Π2,Π3)
(11)

In the following, Π1, Π2 and Π3 have been varied and
results are shown in Figure 13. We have chosen to repre-
sent the buckling load in terms of Π1 and to compare the
best design of both structures defined by equation (11).
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Figure 10: Details of the conversion to a Planar Kagome mesh.

Figure 11: Optimal barrel vault: Π1 = 0.15, Π2 = 0.3, Π3 = 1
24

.

This ratio remains above 1.5, with a peak at 2.6. The
most efficient designs correspond to moderate rise-over-
span ratio (Π2 = 0.3) and a dense grid.

rmin (Π1) = min
Π2,Π3

r (Π1,Π2,Π3)

rmax (Π1) = max
Π2,Π3

r (Π1,Π2,Π3)

rbest (Π1) =

max
Π2,Π3

Π5,Kagome (Π1,Π2,Π3)

max
Π2,Π3

Π5,Quad (Π1,Π2,Π3)

(12)

4.2. Barrel vaults under non-symmetrical loads

Non linear analysis with non-symmetrical loads were
then considered with the distribution shown in Figure 4.
The behaviour of the structure is then dominated by bend-
ing and becomes very different for both structures. Con-
sider Figure 14: the quadrilateral grid has a higher buck-
ling load, but the buckling occurs for a high level of dis-
placements, superior to 20% of the span. Of course, the
ruin of members will occurs before the structure buckles
and the results on linear buckling analysis would be sub-
ject to caution for the quadrilateral grid in this case.

This is a general situation: under non-symmetrical
loads, quad gridshells are considerably softer than kagome
gridshells. Considering the large displacements of the
quadrilateral gridshells under non-symmetrical loads, it

did not seem relevant to display the results on linear buck-
ling analysis for this load case. For the studied exam-
ple, the kagome grid is indeed 5 times stiffer. Using the
same SLS criterion than previously ( L

200 ), the kagome grid
clearly outperforms the quadrilateral grid.

4.3. Buckling of domes

The same parametric study is then reproduced for the
dome geometry. Figure 15 shows the non-dimensional
buckling loads computed for the symmetrical load case.
Kagome and quad grids have a similar behaviour: the
buckling load is a decreasing function of Π3. For slender
domes (smaller values of Π2), increasing the height also
increases the buckling load, but a maximum is reached
when Π2 is approximately 0.3 (this optimal value of Π2

depends on the cross-section used). The buckling becomes
then more localised, and a change of the shape has lower
impact on the buckling.

Figure 16 shows then rmin, rmax and rbest for different
values of Π1. It is noticed that the kagome gridshell is
more efficient than the quadrilateral gridshell in the sense
of equation 11 and this for all the configurations consid-
ered in the present study. The gain in structural efficiency
is very important, especially for domes with a moderate
aspect ratio, when the shell is the most efficient. It can be
concluded that kagome gridshells are more efficient than
quadrilateral gridshells when considering linear buckling
analysis. The most interesting geometrical configurations
(moderate rise-over-span, and small aspect-ratio) are also
the ones where the relative performances of the two meshes
typologies differ the most. The efficiency can be doubled
in those cases.

Finally, Figure 17 compares the performance of kagome
and quadrilateral gridshells for nonsymmetrical load cases
with linear buckling analysis. The kagome gridshell re-
mains more efficient in all cases, with a minimum gain
in structural efficiency of 23%. The tendency is inverted
compared to the symmetrical load cases: kagome grids are
more efficient when the ratio Π2 is higher.
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Figure 12: Comparison of the buckling capacity of kagome and quadrilateral grids for the barrel vault geometry.

0 5 · 10−2 0.1 0.15
0

1

2

3

Aspect ratio Π1

r
K

a
g
o
m

e

r
Q

u
a
d

rbest
rmin

rmax

Figure 13: Comparison of the best designs for different values of Π1.

0.1 0.2
0

1,000

2,000

3,000

4,000

Displacement δ
L

p
·L

4

E
I

Quad
Kagome
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Π1 = 0.075,Π2 = 0.3,Π3 = 1

24
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5. Discussion

5.1. Shape of buckled domes

A more detailed look at the parametric study shows
that the nature of buckling modes differs between kagome
and quadrilateral gridshells. Figure 18 illustrates the first
buckling modes for two domes with the same member
length, both for quadrilateral and kagome meshes. On
these images, darker colours indicate larger displacements.
Each dark spot corresponds to an ’anti-node’ on the buck-
led shape. Counting these spots, it can be noticed that
the number of anti-nodes is higher in the kagome grid,
and that the wavelength is shorter. This difference has
been observed for coarse and fine grids.

This difference illustrates the fact that kagome grid-
shells have a higher in-plane shear stiffness than quad-
rangular meshes. Their higher buckling capacity can be
explained by the fact that they activate buckling modes
with shorter wavelength. This remark also holds for barrel
vaults. Figure 19 shows the same kind of phenomenon for
the buckling modes of the most efficient designs of barrel
vaults of our study. There is the same number of anti-
nodes in Figure 19a and 19b, but the anti-nodes are more
concentrated in the kagome grid.

5.2. Influence of mesh refinement

The results of the previous section indicate that refin-
ing of meshes (diminishing Π3) improves the critical buck-
ling load of gridshells. We show a more detailed analysis
of this statement by studying a dome with Π1 = 1.33. The
convergence of the structural efficiency with respect to the
number of cells is interpreted with homogenisation princi-
ples and analytical formulæ from [11] and [34] and detailed
in Appendix B

Consider a unit cell with characteristic length l (defined
in Figure 2 and 3). If one builds an equivalent shell, it is
meaningful to consider that the bending and axial stiffness
D and A depend linearly on 1/l (doubling the number of
beams would double the bending stiffness). This is found
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Figure 15: Comparison of the buckling capacity of kagome and quadrangular gridshells for the dome geometry.
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Figure 17: Comparison of the structural performance of domes under
non-symmetrical load.

in homogenised models by Lebée and Sab for flat thick
quadrangular beams layouts [11].

D =
EI

l

A =
EA

l

(13)

The buckling load of an isotropic spherical shell un-
der uniform pressure pcr is given by following the formula,
found for example in [35] or [34]:

pcr =
2
√
AD
R2

(14)

By combining equations (13) and (14), the critical buck-
ling load of an equivalent isotropic shell depends thus lin-
early on the number of cells. It is well-known that ho-
mogenised models describe accurately the actual model
when the number of cells is large enough. Having these
considerations in mind, we should expect the ratio Π5 to
be constant for sufficiently small values of Π2, because the
mass m varies linearly with 1/l and so does the homoge-
nized buckling load. Figure 20 shows the variations of the
structural efficiency with respect to Π3. It appears that
Π5 tends to a constant when 1

Π3
increases. The conver-

gence is reached for 1
Π3
' 25. This value is linked with the

chosen cross-section, here 200mm pipes. The slenderness
of the members at 1

Π3
' 25 is of 5, which is higher than

what is found in built projects.
The convergence of the structural efficiency to a con-

stant indicates that kagome grids tend to behave like
isotropic shells. On the contrary, the efficiency of the
quadrilateral grid does not converge to a constant when
the grid is refined. To better understand this, consider
that the buckling capacity of orthotropic shells depends
on the in-plane shear stiffness. An example of analytical
formula is given for shells of revolution in [34]. Still re-
ferring to the results of Lebée and Sab [11], we give an
estimate of the in-plane shear stiffness Gxy for quadran-
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(a) First mode, Π4 = 889 (b) First mode, Π4 = 6885

Figure 18: Comparison of the first buckling modes for quadrilateral and kagome meshes.

(a) First mode, Π4 = 6145 (b) First mode, Π4 = 9361

Figure 19: Comparison of buckling modes on the most performant barrel vaults in our study.
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Figure 20: Structural efficiency for different refinements of a kagome
grid (Π1 = 1.33).

gular grids (we make the assumption that the beams are
Euler-Bernoulli beams):

Gxy =
EI

l3
(15)

This term clearly increases faster than the bending stiff-
ness when the unit-cell becomes smaller. This non-
linearity explains why the graph of Figure 21 increases
with the number of cells 1

Π2
without reaching a plateau.

The convergence study is thus a good indicator of the fact
that kagome gridshells are isotropic, whereas quadrilateral
grids are orthotropic.

5.3. Design guidelines for kagome gridshells

Structural engineers can improve the efficiency of their
designs by using different strategies. We discuss here some
of these. In our study, the shape is an important fac-
tor of performance: changing a rise-over-span ratio from
10% to 20% doubles the structural efficiency. The opti-
mal rise-over-span ratio is around 30%. For larger values,
the gridshells become subject to localised buckling, and
overall curvature of the shape does not provide any help.
The change of geometry does not bring significant changes
in the cost of fabrication of the elements, as our method
guarantees meshing with flat panels.

Increasing the structural density also increases the
structural performance of quadrilateral and kagome grids.
For kagome grids, this strategy has a limit, as the struc-
tural efficiency tends to a constant when the number of
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Figure 21: Structural efficiency for different refinements of a quadri-
lateral grid (Π1 = 1.33).

cells tends to infinity. Even for very high structural den-
sity, this phenomenon does not occur for the quadrilateral
grids studied in this paper. This strategy has however
a practical limitation, as the number of connections in-
creases when increasing the density of the grid. Connec-
tions are very expensive and often govern the cost of the
structure in gridshells. Denser grids are also costly, and
the benefit in structural performance might be tempered
by an increased construction cost.

We note here that the conversion rule chosen implies
that, for a same value of Π2, kagome grids have less vertices
(and thus connections) than quadrilateral grids. Writing
NKagome and NQuad the number of nodes, we have follow-
ing simple relation proven in Appendix A:

NKagome

NQuad
=

√
3

2
' 86% (16)

Therefore, the kagome grids of the present study are struc-
turally more efficient than quadrilateral grids for gridshells
designed with a linear buckling criterion, and their cost of
connections is also significantly lower.

6. Conclusion

This article has introduced a method to cover kagome
meshes with planar facets. This simplifies the fabrication
of the cladding, a major concern in free-form architec-
tural design. The bearing capacity of kagome gridshells
was then studied and compared to the one of quadrilat-
eral gridshells. The results seem promising, as the kagome
gridshells has a significantly higher performance in our
case studies, both for symmetrical and non-symmetrical
load cases. The better performance of kagome grid pat-
tern seems to come from its higher in-plane shear stiffness.
The gain in structural efficiency compared to quadrilateral
gridshells is higher when biaxial stresses are at stake in the
structure.

The gridshells were not compared to other common so-
lutions, like cable-braced or triangular gridshells. While
these solutions are probably structurally more efficient
than kagome grid patterns (a comparison between kagome
and triangular pattern for a GFRP gridshell has been done
in [36], and shown that triangular pattern can be two or
three times stiffer than kagome grid pattern), they are also
more complex to build, due to high node valence or tun-
ing of cable tension. Steel contractors might prefer to build
moment connections rather than installing cables [4].

The study proposed in this paper considered mainly
linear buckling analysis, a tool suited for the exploration
of the design space in preliminary phases of design. The in-
fluence of imperfections was however discussed and showed
that, like triangular grids, kagome grids are sensitive to ge-
ometrical imperfections. Some parameters were not con-
sidered in our studies: introducing realistic node stiffness
and material non-linearities in the parametric study could
greatly improve the estimation of real collapse loads and
would provide in further work reliable values for detailed
design.
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tional des Ponts et Chaussées. Finally, the authors thank
Charis Gantes (NTUA) for fruitful discussions that led to
the introduction of the simplified SLS criterion used in this
paper.

This work was made during Mr. Mesnil doctorate
within the framework of an industrial agreement for train-
ing through research (CIFRE number 2013/1266) jointly
financed by the company Bouygues Construction SA, and
the National Association for Research and Technology
(ANRT) of France.

Appendix A. Basic properties of kagome grid pat-
tern

The kagome grids generated in our study tend to have
a uniform member length. We propose simple calculations
to estimate the number of connections or member length
per unit area for a planar kagome grid made out of regular
hexagons and triangles.

Appendix A.1. Description of the pattern

The regular kagome pattern is made out of regular
hexagons and triangles. The pattern is periodic, and can
thus be described by the study of a unit-cell shown in Fig-
ure A.22. In this image, all the edges have the same length
l, the dimensions of the unit cell are easily found based on
properties of equilateral triangles.
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Figure A.22: A basic cell of a kagome grid.

The pattern is compared to a square pattern, where
the unit cell is obviously a square with edge length l.

Appendix A.2. Structural density

We compute now the edge length per unit area. In the
unit cell, we count 10 edges and 4 half edges. The edge
length per unit area LA is thus:

LA =

(
10 + 4 · 1

2

)
· l

2
√

3l · 2l
=

√
3

l
(A.1)

We can compare this value with the edge length per unit
area for the square pattern, where LA = 2

l . For a same
edge length, the ratio of member lengths is thus equals

to
√

3
2 . This gives the estimation for the mass ratio of

equation (8).

Appendix A.3. Number of connections

The number of nodes per unit area is an important
question, as the cost of connections highly impacts the
cost of gridshells. For the unit cell depicted in Figure A.22,
there are 5 nodes that belong only to the cell (in white),
whereas 4 nodes belong to 4 adjacent cells (in black). The
number of connections per unit area is thus:

Nnodes =
5 + 4 · 1

4

2
√

3l · 2l
=

√
3

2l2
(A.2)

For a square grid, the number of nodes per unit area is
simply 1

l2 . The ratio of these two values is thus equals to
√

3
2 , which gives an estimate for the ratio used in equation

(16).

Appendix B. Homogenisation approach and
equivalent buckling loads

In this Section, we adapt the formula of an anistropic
spherical cap of radius R under uniform pressure found

by Crawford [34] to a quadrangular gridshell with equiva-
lent properties derived from [11]. The problem treated by
Crawford considers that the shell is isotropic with prin-
cipal axis along parallel and meridians. The geometry
is different from the domes studied in this paper, but it
one of the only analytical formulæ available in the litera-
ture for orthotropic shells. We take count of the fact that
our problem deals with circular hollow sections to simplify
Iy = Iz = I.

Appendix B.1. Equivalent shell stiffness of a quadrangular
gridshell

Let us construct the equivalent axial and bending stiff-
ness tensors from the homogenisation of a quadrilateral
grid. From [11], we have:

Axx = Ayy = A =
ES

l

Gxy =

(
l

GS
+

l3

12EI

)−1

νx = 0

νy = 0

(B.1)

and 
Dxx = Dyy = D =

EI

l

Dxy =
GJ

l

(B.2)

The grid relies only on bending of elements for the in-
plane shear stiffness, and on beam torsion for the torsional
stiffness of the equivalent shell. All terms depend linearly
on 1

l (equivalently the number of cells) except the in-plane
shear stiffness, which depends on 1

l3 .

Appendix B.2. Buckling of orthotropic spherical cap under
uniform pressure

We derive now the theoretical buckling load of an
anistropic shell from the work of Crawford [34]. The equa-
tions simplify greatly when Dxx = Dyy and Axx = Ayy.
Crawford introduces the quantities D3, G3 and Ψ defined
by: 

D3 = νx ·Dy +Dxy

G3 =
2Gxy

1− νxνy −
(

2νy
Gxy

Ayy

)
Ψ =

A
(
1− ν2

x

)
DR

(B.3)

With these notations, the buckling load of the isotropic
spherical shell is:

pcr =
4D
√

Ψ

R
(B.4)

13



Crawford computes then the ultimate buckling load of the
anistropic shell pcr given by:

pcr =


pcr if

D3

D
≥ A
G3

pcr

(
1 + D3

D
1 + A

G3

) 1
2

if
D3

D
<
A
G3

(B.5)

In the case of gridshells, the second inequality is verified,
and using equations (B.1) and (B.2), we obtain:

pcr =
4
√
AD
R2

√√√√ 1 +
Dxy

D
1 + A

2Gxy

(B.6)

So that finally:

pcr =
4E
√
SI

lR2

√√√√√ 1 + GJ
EI

1 + ES

(
1

2GS
+

l2

24EI

) (B.7)

The first term corresponds to the buckling capacity of an
istropic shell, it is proportional to 1

l . The second term
(under the square root) varies nonlinearly with 1

l because
of the term in l2, which comes from the equivalent in-
plane shear stiffness. The limit of structural efficiency for
a high number of cells is given by equation (B.8), as l tends
towards 0. We write ρ the volumic mass of steel (the mass
per unit of a quad grid being 2ρ

l ) and get:

Π∗5 = lim
N→∞

Π5 =
2E
√
SI

ρR2

√√√√√ 1 + GJ
EI

1 +
ES

2GS

(B.8)

Figure B.23 shows the application of equation (B.7)
with the cross-section used in our parametric study and
Π1 = 1, which is the closest configuration to a spherical
cap. The limit of the structural efficiency Π∗5 is also shown.
It is noticed that the orthotropic shell converges slowly to-
wards the limit, which explains why our convergence study
does not show a plateau for the quadrilateral gridshell.
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