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The microbranching instability occurring for rapidly propagating cracks in brittle materials has
been described in various experiments as an intrinsically three-dimensional phenomenon. Using
a variational phase-field model, we show that the microbranching process is, indeed, a three-
dimensional instability which exhibits a strong dependence on the sample width and can be sup-
pressed for very thin samples. We show that the phase-field internal length scale is the decisive
variable governing the branching pattern, which can be either localized in the transverse direction
as observed in glass for example, or, on the contrary, almost translational invariant with quasi-
periodic structures, as observed in PMMA.

Linear elastic fracture mechanics has been shown to
describe accurately the dynamics of a single propagating
crack at low velocities i.e. below 0.3 − 0.4cR with cR
being the Rayleigh wave speed [1–3]. However, for
higher velocities, various experiments demonstrated that
cracks stop being simple [4, 5] and exhibit dynamic
instabilities characterized by crack velocity oscillations
and frustrated branching attempts called microbranches
[6]. This microbranching instability has been observed in
different materials such as PMMA [6], Homalite [7], glass
[8] or neo-Hookean brittle gels [9] and present universal
features such as the existence of a critical velocity below
which branching cannot occur. However, the crack
surface patterns can be quite different depending on the
material. In glass or gels for instance, microbranches
tend to repeat themselves along lines parallel to the
crack propagation direction and are highly localized
along the width direction of the sample [9]. Conversely
in PMMA, at the onset of the microbranching instability,
microbranches also localize along the width direction
but rapidly merge, forming an almost invariant pattern
and showing a periodic alternance of up and down
microbranches with a well-defined length scale. This
typical length scale does not seem to exist for glass
or gels [10]. It is now clear that the microbranching
instability is a three-dimensional phenomenon but many
aspects such as the origin of the difference in terms of
crack surface patterns or the influence of the sample
geometry are not fully understood. Our aim is to
show through fully three-dimensional simulations that
the crack-tip dissipation length scale is the key param-
eter controlling the different observed branching regimes.

Although microbranching instability has been repro-
duced numerically using discrete lattice models [11, 12],
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its occurence seems to be highly dependent on the type
of lattice and on the form and intensity of the chosen
potential. Similarly, cohesive models are only able to
reproduce part of the observed experimental features of
dynamic fracture. In particular, cracks do not seem to
exhibit a limiting speed below the Rayleigh wave speed
despite branching [13]. Besides, the inherent mesh de-
pendency of such an approach makes it ill-suited to an
accurate study of the microbranching instability. Other
strategies for simulating crack propagation in brittle me-
dia consist of non-local continuum models which aim at
regularizing the crack topology by a continuous scalar
field.

Sharing strong similarities with damage gradient ap-
proaches [14], phase-field modelling is a promising
method which relies on basic ingredients such as damage-
dependent elastic moduli, a fracture energy Gc and an in-
ternal length scale l0 (see the Supplemental Materials for
more details). The modelling of the I+III mixed-mode in-
stability using such an approach has, for instance, shown
very promising results [15, 16]. Regarding the branch-
ing process, a large majority of works concentrated on
two-dimensional simulations and, usually, were only able
to reproduce macroscopic branching [17–19]. In [20], mi-
crobranching has been obtained in 3D computations us-
ing a Ginzburg-Landau phase-field model after perturb-
ing the initial crack front and relatively good agreement
of the fractographic patterns with experimental obser-
vations has been obtained. Although the distinction
between macro- and microbranching may be somehow
arbitrary, we will consider microbranching as situations
where branched crack deviations remain of the order of
magnitude of the crack tip dissipation length scale l0.

A recent study on the crack branching phenomenon
in a two-dimensional pre-strained plate configuration
[19] has revealed that single crack propagation is char-
acterized by a progressive widening of the damaged
band associated to an increase of the energy release
rate. Macroscopic branching has been observed to occur
when the energy release rate exceeds a critical value
close to 2Gc, as initially argued by Eshelby [21]. In
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FIG. 1. Crack surface patterns for different loading levels
∆U for the same plate width (W = 1 mm). The crack prop-
agates as a single straight crack (with a slightly curved crack
front) for low loading levels (top), the microbranching insta-
bility appears for higher loading with longer branches and
shorter distance between successive branches for increasing
loading (middle). For even higher loading (bottom), macro-
scopic branches are formed and are very close to 2D simulation
patterns. Inset: sample dimensions and side view of a typical
crack pattern in 2D simulations.

particular, no microbranching phase has been identified
in such simulations for homogeneous media. We aim
here at investigating how three-dimensional simulations
are able to reproduce this particular instability in the
same pre-strained plate configuration.

We considered a finite-element discretization of a rect-
angular domain of dimensions L×H ×W in the (Oxyz)
frame with L = 2H = 32 mm (see Fig. 1) and the width
dimension W ranging from 0.2 to 5 mm, a prenotch of
4 mm in the x-direction is located on the left boundary
along the middle plane y = H/2. The internal length
scale l0 characterizing the phase-field model has also
been varied between 0.02 to 0.1 mm, the mesh size being
smaller than l0 near the main propagation plane to avoid
any mesh-dependency. The pre-strain loading consists in
fixed vertical displacements of intensity ±∆U on the top
and bottom boundaries, both horizontal displacements
are free and all other boundaries are stress-free. Un-
less stated otherwise, the default values are W = 1 mm,
l0 = 0.04 mm and ∆U = 0.06 mm, default material prop-
erties are close to PMMA (see [19]). For this specific pre-
strained plate setting, the initially stored elastic energy
per unit length along the x-direction is Ψ = 2(∆U)2E/H.
We can then define a critical loading ∆Uc below which
crack propagation is not possible i.e. when Ψ = Gc or
equivalently ∆Uc =

√
GcH/2E ≈ 0.028 mm.

The first striking result is that microbranching pat-
terns appear as a transition between single straight crack

FIG. 2. Crack surface patterns for different plate widths W
for the same loading level (∆U = 0.06 mm). The micro-
branching instability is clearly suppressed for the thin plate
(top), the macrobranching crack pattern being reminiscent of
2D simulations. The up-and-down quasi-periodic regime of
small microbranching is obtained for the intermediate width
(middle) whereas more localization in the z-direction is ob-
tained for the larger width (bottom) without exhibiting any
well-structured feature. See movies in the Supplemental Ma-
terials.

propagation and macroscopic branching patterns (Fig.
1) for three-dimensional simulations with higher stored
energy. The patterns obtained for the higher loading
∆U = 0.08 mm = 2.9∆Uc are close to those obtained
in 2D simulations whereas for ∆U = 0.05 or 0.06 mm
(1.8∆Uc or 2.1∆Uc), we observe patterns exhibiting an
up-and-down alternance of microbranching attempts
which are not seen in 2D simulations but are very
similar to periodic striation patterns appearing in
PMMA (see Fig. 4(c) in [6] and [22]). The crack surface
for the case ∆U = 0.06 mm exhibits more translational
invariance along the z-direction than the lower loading
case ∆U = 0.05 mm. The increase of symmetry along
the z−direction with the loading is consistent with
experimental observations on PMMA [6] and other
simulations using lattice models [12]. In such cases, the
crack-tip splitting occurs simultaneously along the whole
crack front.

The transition from straight crack propagation,
localized events along the z-direction and increasing
z-invariance leading to macroscopic branching seems
to be a continuous process with respect to the loading
amplitude in which the branch lengths progressively
increase. This progressive transition is further con-
firmed by varying the specimen width W for the same
loading (Fig. 2). The microbranching instability can
be suppressed by decreasing the plate width up to
W = 0.2 mm for this loading. The suppression of the
microbranching instability for very thin plates has also
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been reported experimentally for brittle gels [23]. In
these experiments, a crack-tip oscillatory instability
has been observed for velocities higher than 0.9cs (cs
being the shear wave speed), which we do not obtain
here and observe macrobranches instead. The question
remains to know if this difference can be attributed to
nonlinear geometric effects due to the large prestrain
level for such gels. Conversely, when increasing the
plate width up to 5 mm, the crack surface exhibits
much more z-localized events without any well defined
quasi-periodic patterns as those for W = 1 mm. By in-
creasing the loading for W = 5 mm, we confirm that the
crack surface becomes increasingly z-invariant with the
same quasi-periodic microbranching regime. Contrary
to [20], we did not observe a strong difference in terms
of critical speed associated with branching compared
to the 2D simulations of [19]. Interestingly, the crack
branching speeds have always been observed to be higher
than the theoretical minimal speed of 0.52cR neces-
sary for the propagation of branched cracks found in [24].

By looking closely at the initiation of the instability
for the largest width W = 5 mm, the initial propagation
phase corresponds to a single flat crack surface with a
slightly curved crack front due to 3D effects. The fully
damaged zone increases with crack advance, as in 2D
simulations, which can be associated to an increasing
local damage dissipation rate Γ, identified with an
apparent fracture energy (see [19]). We computed this
quantity for different two-dimensional slices along the
z-direction and at different propagation times. We
obtained the local variation of Γ by mapping these
values to the current position of the main crack front
along the middle plane Y = H/2. The evolution of
Γ(x, z) along with the crack front position at different
time intervals are represented in Fig. 3-top. The initial
flat propagation phase corresponds to a uniform increase
of Γ with respect to z until approximately 6 mm from
the prenotch. Between 6 and 8 mm, slight variations of Γ
along z appear and the first microbranching events take
place at locations where Γ(x, z) exceeds 2Gc, splitting
the front into two different parts. Between the branching
events, Γ is smaller and the single crack front continues
its propagation. The coexistence of these two different
states along the z-direction leads to a strong curvature
of the crack front and generates complex dynamics with
important variations of crack velocity and energy release
rate (Fig. 3-bottom). It is worth noting that Γ shows a
non-monotonic behavior with respect to the crack front
velocity prior to branching. This can be explained by the
fact that the increasing damage dissipation (although
the crack front has not branched yet) is compensated by
a slowdown of the crack front. This slight slowdown of
the crack front prior to branching has also been observed
in [20]. As described in [25], the release of the crack
front from the branch arrest leads to an increase of crack
velocity and apparent fracture energy ahead of the first
event and eventually forms a new branching event along

FIG. 3. Top: Evolution of local damage dissipation rate
Γ(x, z) with crack front advance for W = 5 mm (∆U = 0.06
mm), the thin lines correspond to the crack front position
at successive identical time intervals. The first microbranch-
ing events occur at localized regions along the z-direction
where Γ exceeds 2Gc and result in large local deceleration
and a distorted crack front along the main plane. The second
branching events occur along the same lines as the first ones
associated to an increase of damage dissipation along these
preferential directions. Bottom: Evolution of average crack
velocity v and damage dissipation rate Γ along the crack front
during propagation. For the single crack propagation phase,
the standard deviation along the crack front is small whereas
large variations occur during the microbranching phase due
to non-uniformity of v and Γ along the front.

the same direction.

The robustness of the previous results has been as-
sessed by introducing some randomness on the local
Young’s modulus or on the local fracture energy Gc in
the sample (the standard deviation was about 10%).
The quasi-periodic regime and, in particular, the micro-
branches length Lbranch and their typical spacing along
the x-direction ∆x did not change. However, the ran-
domness triggers the first branching event at different
time and location. It also modifies the dynamics for the
z-localized patterns (for W = 5 mm in particular), result-
ing in a different fracture surface. These results confirm
that the quasi-periodic regime and, in particular, Lbranch

and ∆x, are weakly coupled to 3D dynamics in the z-
direction, which differs when adding randomness. In [10],
these quantities have been shown to scale with a material-
dependent length l1 = Gc(v)/E or l2 = Gc(v)E/σ2

c where
E is Young’s modulus and σc a critical stress. In our
phase-field framework, the material fracture energy is
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rate-independent Gc(v) = Gc and l0 can be related to

the following elastic limit stress σc =
√

3GcE/(8l0) [14],
so that l2 = 8l0/3. We then tested the previous scaling
laws by first varying the ratio l1 = Gc/E while keeping l0
constant and secondly by varying l0 while keeping l1 con-
stant. In the first case, we changed either Gc (resp. E)
while keeping l0 and E (resp. Gc) fixed. In order to com-
pare similar situations with the same crack driving force,
we also changed the loading level ∆U to keep the same
ratio between the initial stored energy per unit length Ψ
and Gc. The results in terms of crack patterns are exactly
the same suggesting that l1 is not the governing length
scale of the microbranching instability in the phase-field
model. On the contrary, when varying l0, we observed
a clear dependence of all the crack patterns for various
loadings and plate widths: in particular, Lbranch and ∆x
in the quasi-periodic regime increase with l0 (Fig. 4). By
recording these quantities for many patterns exhibiting
this quasi-periodic regime we show, first, that Lbranch and
∆x are positively correlated, suggesting that the nucle-
ation of the next branching event is directly related to the
death of the previous one as proposed in [25]. Moreover,
the plate width W seems to have no influence on selecting
the microbranch length scale contrary to l0. More pre-
cisely, we find that the mean values of branch length and
periodicity scale are given by 〈Lbranch〉 = (20.5 ± 2.5)l0
and 〈∆x〉 = (12.8± 1.7)l0 for the data of Fig. 4.

Increasing l0 for fixed geometry and loading progres-
sively leads to macroscopic branching as the branches
get longer and farther apart. On the contrary, reducing
l0 leads to smaller and closer microbranches but also
less z-invariance, as when increasing the plate width.
Quite interestingly, the total dissipated energy for the
three patterns illustrated in Fig. 4 is the same within
2%. Although a precise quantitative investigation is
difficult, our simulations indicate that the typical width
of a branching event ∆z is also positively correlated to
l0 and therefore explains that translational z-invariance
appears when l0/W ∝ ∆z/W becomes close to unity,
thus separating the two microbranching regimes.
revHowever, ∆z is much larger than l0 by at least one
order of magnitude so that the transition occurs at a
macroscopic width compared to l0. Unfortunately, larger
simulations are out-of-reach to further investigate the
influcence of W with respect to the extent of localized
events in the z-direction.

These different results therefore suggest that the mi-
crobranching instability patterns are highly dependent
on an intrinsic material length scale characterizing the
dissipation processes at the crack tip. In the phase-
field framework, this length scale is given by l0 and
can be interpreted as a cohesive zone length over which
the LEFM singularity is regularized. Consequently, as a
crack front accelerates, the apparent fracture energy in-
creases through a thickening of the fully damaged band
which we associate with a velocity-toughening mecha-
nism. When reaching locally a critical value of 2Gc, crack

FIG. 4. Correlation between microbranch spacing ∆x and
microbranch length Lbranch in quasi-periodic regime for dif-
ferent W (4 : 0.5 mm, ◦ : 1 mm, � : 2 mm) and different
l0 (blue : 0.02 mm, green : 0.04 mm, red : 0.06 mm). Inset:
side view of z-invariant patterns for W = 1 mm and different
l0.

tip splitting occurs over a width ∆z. If ∆z/W ≤ 1,
splitted and single crack tips can coexist simultaneously
along the crack front. This results in complex dynam-
ics in the (x, z)-plane due to crack front curving and
release of energy when the microbranch dies. This sit-
uation typically occurs in glass for which the critical
length scale is very small compared to the typical sam-
ple size. Reproducing such localized chains of micro-
branching is unfortunately too computationally expen-
sive as it would require an extremely fine mesh to resolve
the small length scale l0 but our results in the extreme
cases with the smallest l0/W confirm this scenario. Con-
versely, if ∆z/W ≥ 1, crack tip splitting occurs along
the whole front and the crack tip dynamics enter a new
stable regime of alternating up-and-down microbranches
with well defined geometric characteristics related to l0.
This situation typically occurs in PMMA for which the
characteristic length scale is much higher than for glass.
When ∆z/W � 1, this regime translates into macro-
scopic branching as branched crack tips are now suffi-
ciently well separated and are less influenced by each
other.

Obviously, the previous analysis also depends on the
value of the loading or crack velocity although the main
ideas still hold. A different crack velocity changes the
fracture energy in PMMA for instance and, therefore,
influences the length scale. Here, we used a rate-
independent phase-field model which does not account
for a material dependence of Gc on the velocity. Most
certainly, the very simple damage model used in the
phase-field approach misses some complex mechanisms
taking place inside the crack tip process zone, explaining
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why the obtained crack front velocities are relatively
high (around 0.7cR) compared to critical velocities
measured experimentally. However, the results of Fig. 3
show that the onset of branching is well discribed by a
local energetic criterion on Γ. Hence, for high loading or
crack velocity, there is a higher probability that random
perturbations will surpass this critical value, yielding
a larger width ∆z of the microbranching event, until
eventually reaching a full localization across the sample
width. Similarly, at higher loading level, branched crack
tips release more energy and may survive longer than for
configurations with less energy, resulting in a transition
to macroscopic branching.

In conclusion, our simulations reveal a clear 2D-
3D-2D transition from a straight crack propagation
to z-localized microbranching, further evolving into a
z-invariant quasi-periodic regime and eventually into
macrobranching, in good agreement with the well-known
mirror-mist-hackle transition observed on post-mortem
fracture surfaces. We have shown how the material
length scale l0 governs the different branching regimes
with respect to the specimen width and the loading
level. In particular, the microbranching regime cannot

be obtained for very thin samples or 2D simulations due
to its intrinsic three-dimensional nature. The onset of
this dynamic instability is noise-triggered and occurs
when the local energy release rate exceeds a critical value
of 2Gc, already associated to the onset of branching in
2D simulations. Depending on the size of the typical
branching width with respect to the sample width,
branching patterns are either translationally invariant
and weakly coupled to 3D dynamics as observed in
PMMA or localized along the z-direction and highly
dependent on complex dynamics, which is close to
what is observed in glass and brittle gels. The present
work illustrates that phase-field models are a relevant
approach for modelling complex crack propagation
dynamics, relying on simple well-defined energetic
principles. More quantitative results (especially con-
cerning crack velocities) can be expected by modelling
rate-dependency in PMMA. Finally, better insight on
the branch width selection could be gained from theoret-
ical perturbation analysis of crack-tip splitting processes.

Details regarding the phase-field model used for the
simulations are given in the supplemental material at-
tached with this paper.
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