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FINITE ELEMENT APPROXIMATION OF THE FENE-P MODEL

JOHN W. BARRETT AND SEBASTIEN BOYAVAL

ABSTRACT. We extend our analysis on the Oldroyd-B model in Barrett and Boyaval [1] to con-
sider the finite element approximation of the FENE-P system of equations, which models a
dilute polymeric fluid, in a bounded domain D C R%, d = 2 or 3, subject to no flow boundary
conditions. Our schemes are based on approximating the pressure and the symmetric conforma-
tion tensor by either (a) piecewise constants or (b) continuous piecewise linears. In case (a) the
velocity field is approximated by continuous piecewise quadratics (d = 2) or a reduced version,
where the tangential component on each simplicial edge (d = 2) or face (d = 3) is linear. In case
(b) the velocity field is approximated by continuous piecewise quadratics or the mini-element.
We show that both of these types of schemes, based on the backward Euler type time discretiza-
tion, satisfy a free energy bound, which involves the logarithm of both the conformation tensor
and a linear function of its trace, without any constraint on the time step. Furthermore, for our
approximation (b) in the presence of an additional dissipative term in the stress equation, the
so-called FENE-P model with stress diffusion, we show (subsequence) convergence in the case
d = 2, as the spatial and temporal discretization parameters tend to zero, towards global-in-
time weak solutions of this FENE-P system. Hence, we prove existence of global-in-time weak
solutions to the FENE-P model with stress diffusion in two spatial dimensions.

Keywords: FENE-P model, entropy, finite element method, convergence analysis, stress diffusion,
existence of weak solutions

AMS Subject Classification: 35Q30, 65M12, 65M60, T6A10, T6M10, 82D60

1. INTRODUCTION

1.1. The FENE-P model. We consider the standard FENE-P model for a dilute polymeric fluid.
The fluid, confined to an open bounded domain D C R? (d = 2 or 3) with a Lipschitz boundary
0D, is governed by the following non-dimensionalized system for a given b € R ¢:

(P) Find u: (t,z) € [0,T) x D u(t,z) € R p: (t,x) € Dy := (0,T) x D~ p(t,x) € R and
o:(t,x) €0, T)xDw—o(t,x) € Rgéd()’b such that

(I.1a) Re <8_u + (u- V)u> =-Vp+({1—-e)Au+ % div(A(o)o)+ f on Dr,

ot
(1.1b) divu =0 on Dr,
(1.1c) %—: +(u-V)o = (Vu)o + a(Vu)" - A(\;za on Dr,
(1.1d) u(0,z) = u’(x) Va € D,
(1.1e) o(0,z) = o(x) Ve €D,
(1.1f) u=0 n (0,7) x 9D;

-1
(1.2) A(p) = (1 — “(T@) I-¢~" VpeRYY, = {¢ eRYY, : tr(y) < b} .

Here Rng denotes the set of symmetric R**? matrices, and Rgédo the set of symmetric positive
definite R?*¢ matrices. In addition, I € Rgx>d0 is the identity, and tr(-) denotes trace. The

unknowns in (P) are the velocity of the fluid, u, the hydrostatic pressure, p, and the symmetric

conformation tensor of the polymer molecules, o. The latter is linked to the symmetric polymeric

extra-stress tensor T through the relation T = 5 A(o) o. In addition, f : (t,x) € Dr — f(t,x) €
1
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R? is the given density of body forces acting on the fluid; and the following given parameters are
dimensionless: the Reynolds number Re € R+, the Weissenberg number Wi € R+, the elastic-
to-viscous viscosity fraction € € (0,1), and the FENE-P parameter b > 0 (related to a maximal
admissible extensibility of the polymer molecules within the fluid). For the sake of simplicity, we
will limit ourselves to the no flow boundary conditions (1.1f). Finally, we denote Vu(t,z) € R*¥9
the velocity gradient tensor field with [Vu];; = 2% and (dive)(t,z) € R? the vector field with

Far
. d Do
[dive]; = ijl 6::; .

For data f = 0, divergence free u’ € [L%(D)]¢, and o, which is symmetric positive def-

inite for a.e. & € D, satisfying In(1 — @) € LY(D), then the existence of a global-in-time
weak solution uw € L>(0,T;[L?(D)]%) N L2(0, T, [H}(D)]?), o € L>(0,T;[L>(D)]™*9) and T €
L2(0,T; [L*(D)]**?) to (P), (1.1a—f), was proved in Masmoudi [20].

In this work, we consider finite element approximations of the FENE-P system (P) and the
corresponding model with stress diffusion, (P, ), which is obtained by adding the dissipative term
aAc for a given a € Rs to the right-hand side of (1.1¢) with an additional no flux boundary
condition for o on dD. This paper extends the results in Barrett and Boyaval [1], where finite
element approximations of the corresponding Oldroyd-B models, where A(o) = I — o=, were
introduced and analysed. In fact, the convergence proof of the finite element approximation of
the Oldroyd-B model with stress diffusion for d = 2 in [1] provided the first existence proof of
global-in-time weak solutions for this system. Note that A(o) = I — o~! is the formal limit of
(1.2) for infinite extensibility; that is, b — oc.

The model (P,) has been considered computationally in Sureshkumar and Beris [24]. We
recall also that El-Kareh and Leal [14] showed the existence of a weak solution to a modified
stationary FENE-P system of equations, which included stress diffusion, but there an additional
regularization was also present in their modified system and played an essential role in their proof.
We stress that the dissipative term a Ao in (P,) is not a regularization, but can be physically
motivated through the centre-of-mass diffusion in the related microscopic-macroscopic polymer
model, though with a positive a < 1, see Barrett and Siili [3], [5], Schieber [23] and Degond and
Liu [13].

Barrett and Siili have introduced, and proved the existence of global-in-time weak solutions for
d = 2 and 3 to, microscopic-macroscopic dumbbell models of dilute polymers with center-of-mass
diffusion in the corresponding Fokker—Planck equation for a finitely extensible nonlinear elastic
(FENE) spring law or a Hookean-type spring law, see [4] and [6]. Recently, Barrett and Siili [8]
have proved rigorously that the macroscopic Oldroyd-B model with stress diffusion is the exact
closure of the microscopic-macroscopic Hookean dumbbell model with center-of-mass diffusion for
d = 2, when the existence of global-in-time weak solutions to both models can be proved. In
addition, Barrett and Siili [7] have introduced and analysed a finite element approximation for the
FENE microscopic-macroscopic dumbbell model with center-of-mass diffusion.

From a physical viewpoint, the FENE-P model is more realistic than the Oldroyd-B model
because it accounts for the finite-extensibility of the polymer molecules in the fluid through the
non-dimensional parameter b > 0. From a mathematical viewpoint, compared to the Oldroyd-B
model where the nonlinear terms are only the material derivative terms (like (Vu)o), the FENE-

-1
P model has an additional singular nonlinearity due to the factor (1 — trlg')) in the definition

of A(-), which necessitates a careful mathematical treatment. Hence, this paper is not a trivial
extension of [1]. In fact, the latter additional nonlinearity is exactly what makes the FENE-
P model closer to the physics of polymers than the Oldroyd-B model, and thus also to many
other macroscopic models based on different constitutive relations that have been developed by
physicists for polymers. We note the FENE-P system is the approximate macroscopic closure
of the FENE microscopic-macroscopic dumbbell model, whereas the Oldroyd-B system is the
exact macroscopic closure of the Hookean microscopic-macroscopic dumbbell model. Hence, the
microscopic-macroscopic dumbbell models corresponding to Oldroyd-B and FENE-P, only the
spring laws differ; see e.g. Bird et al. [9] and Renardy [22] for a more complete review of the
differences between the Oldroyd-B and the FENE-P models from the physical viewpoint, and for
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other macroscopic models with more nonlinear effects than the Oldroyd-B model, e.g. the Giesekus
model and the Phan—Thien Tanner model.

Similarly to [1], our analysis in the present paper exploits the underlying free energy of the
system, see Wapperom and Hulsen [26] and Hu and Lelievre [19]. In particular, the finite element
approximation of (P,) has to be constructed extremely carefully to inherit this free energy struc-
ture, and requires the approximation of tr(o) as a new unknown. It is definitely not our goal to
review all the macroscopic models used in rheology, although similar studies could probably be
pursued for other macroscopic models endowed with a free energy. We will point out the main dif-
ferences with Barrett and Boyaval [1], and we thus hope to sufficiently suggest how our technique
could be adapted to any nonlinear model with a free energy. We believe that our approach con-
tributes to a better understanding of the numerical stability of the models used in computational
rheology, where numerical instabilities sometimes termed “High-Weissenberg Number Problems”,
see HWNP in Owens and Phillips [21], still persist. Indeed, as exposed in Boyaval et al. [11],
our point is that to make progress in this area one should identify sufficiently general rules for
the derivation of good discretizations of macroscopic models such that they retain the dissipative
structure of weak solutions to the system, at least in some benchmark flows.

The outline of this paper is as follows. First, we end this section by introducing our notation
and some auxiliary results. In Section 2 we review the formal free energy bound for the FENE-P
system (P). In Section 3 we introduce our regularization G5 of of G = In, which appears in the
definition of the free energy of the FENE-P system (P). We then introduce a regularized problem
(Ps), and show a formal free energy bound for it. In Section 4, on assuming that D is a polytope
for ease of exposition, we introduce our finite element approximation of (Ps), namely (P54), based
on approximating the pressure and the symmetric conformation tensor by piecewise constants; and
the velocity field with continuous piecewise quadratics or a reduced version, where the tangential
component on each simplicial edge (d = 2) or face (d = 3) is linear. Using the Brouwer fixed point
theorem, we prove existence of a solution to (Pﬁﬁ) and show that it satisfies a discrete regularized
free energy bound for any choice of time step; see Theorem 4.1. We conclude by showing that, in
the limit § — 04, these solutions of (P§}]) converge to a solution of (P4") with the approximation
of the conformation tensor being positive definite and having a trace strictly less than b. Moreover,
this solution of (Pft) satisfies a discrete free energy bound; see Theorem 4.2. Next, in Section
5 we introduce the FENE-P system with stress diffusion, (P,), where the dissipative term a Ao
has been added to the right-hand side of (1.1c). We then introduce the corresponding regularized
version (Pgs), and show a formal free energy bound for it. In Section 6 we introduce our finite
element approximation of (P, s), namely (Pﬁ%, 1), based on approximating the velocity field with
continuous piecewise quadratics or the mini element, and the pressure, the symmetric conformation
tensor and its trace by continuous piecewise linears. Here we assume that D is a convex polytope
and that the finite element mesh consists of quasi-uniform non-obtuse simplices. Using the Brouwer
fixed point theorem, we prove existence of a solution to (PaA’& ») and show that it satisfies a discrete
regularized free energy bound for any choice of time step; see Theorem 6.1. In Section 7 we prove,
in the case d = 2, (subsequence) convergence of the solutions of (Pﬁ%, n), as the regularization
parameter, §, and the spatial, h, and temporal, At, discretization parameters tend to zero, to
global-in-time weak solutions of (P); see Theorem 7.3. This existence result for (P,) is new to
the literature.

1.2. Notation and auxiliary results. The absolute value and the negative part of a real number
s € R are denoted by |s| := max{s, —s} and [s]- = min{s, 0}, respectively. We adopt the following
notation for inner products

d
(1.3a) v-w = Zviwi =vTw=w"v Vo, w € RY,
zzl ;
(1.3b) bi =3 > by, =t (070) =tr (vT0) e,y R,

i=1 j=1
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d d
(1.3c) Vo :Vip:=Y Y Vo, - Vip,; Ve, 1 € RI*4,

i=1 j=1
where -7 and tr (-) denote transposition and trace, respectively. The corresponding norms are
(1.4a) o] = (v-v)2, Vo[ := (Vv : Vv)2 Yo € R
(1.4b) I6ll:=(@: 9)F, Vel :=(Vo:Ve)?  véeR™.

We will use on several occasions that tr(¢) = tr(¢”) and tr(¢pep) = tr(v¢) for all ¢,1p € R*?,
and

(1.5a) ox" i =xP: Y =x:v¢ Vo9 € RFY x e R,
(1.5b) el <Il¥ll el Ve, € R,
(1.5¢) l@vl <[l@ll vl V¢ € R, v e RY.

For any ¢ € Rgx‘i, there exists a decomposition

(1.6) ¢ =0"DO = tr (¢) = tr (D),
where O € R is an orthogonal matrix and D € R4x4

g : R — R, one can define g(¢) € Rng as

(1.7) g(¢) :=0"g(D)O =  tr(g(¢)) =tr(9(D)),

where g(D) € R&*? is the diagonal matrix with entries [g(D)];; = g(Di;), i = 1,...,d. Although
the diagonal decomposition (1.6) is not unique, (1.7) uniquely defines g(¢p). We note for later
purposes that

(1.8) d(tr(19))” < o]” < (x(]))* Ve € RE*.

One can show via diagonalization, see e.g. [1] for details, that for all concave function g € C*(R),
it holds

(1.9) (0—v):g' (%) > tr(g(@) —g(¥)) > (9 — %) : g'(#) Vo, € RTY,

where ¢’ denotes the first derivative of g. If g € C'(R) is convex, the inequalities in (1.9) are
reversed. It follows from (1.9) and (1.3b) that for any ¢ € C*([0,7];R&*%) and any concave or
convex g € C'(R)

(1.10) Gu@) = (Po0) =T wen

a diagonal matrix. Hence, for any

Of course, a similar result holds for spatial derivatives. Furthermore, the results (1.9) and (1.10)
hold true when C*(R) and RZ*? are replaced by C*(Rs) and Rngo or C*(0,b) and RELY .
Finally, one can show that if g € C%!(R) with Lipschitz constant gri,, then

(1.11) lg(#) — g(W)| < guip Il — | Ve, 9 € RE™.

We adopt the standard notation for Sobolev spaces, e.g. H'(D) := {n : D — R : [ [[n]* +
[Vn||?] de < oo} with Hg (D) being the closure of C§°(D) for the corresponding norm || - || g1 (p).
We denote the associated semi-norm as | - |g1(py. The topological dual of the Hilbert space
H}(D), with pivot space L?(D), will be denoted by H~!(D). Such function spaces are naturally
extended when the range R is replaced by R¢, R4*? and Rng; e.g. H'(D) becomes [H'(D)],
[H'(D)]%*¢ and [H'(D)]&*¢ | respectively. For ease of notation, we write the corresponding
norms and semi-norms as || - || g1(py and |- |g1(p), respectively, as opposed to e.g. || - [|(z1(p)« and
||z (py)a, respectively. We denote the duality pairing between H~'(D) and Hg(D) as (-, ) g1 (p)»
and we similarly write (-, ) g1 (py for the duality pairing between e.g. [H~*(D)]¢ and [H; (D)]¢. For
notational convenience, we introduce also convex sets such as [H'(D)]§<% = {¢ € [H'(D)]¢** :

¢ € RGY, ae. in D}, and [HY(D)ELY , = {p € [H(D)]$*?: ¢ € REL, , ace. in D},
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In order to analyse (P), we adopt the notation

(1.12)
W= [H}(D)¢, Q:=L*D), V:= {v ceW : / gdivede =0 Vge Q} ,
D
S :=[L®(D))4?, Sso:=[L®(D)IL, and Ssop:={¢p €Sso : tr(¢p) <b ae. in D}.

Throughout the paper C' will denote a generic positive constant independent of the regularization
parameter & and the mesh parameters h and At. Finally, we recall the Poincaré inequality

(1.13) / [v]|? dee < Cp/ |[Vol|?dz Vo €W,
D D

where Cp € R+ depends only on D.

2. FORMAL FREE ENERGY BOUND FOR THE PROBLEM (P)

In this section we recall from Hu and Leliévre [19] the free energy structure of problem (P).
Let F(u,o0) denote the free energy associated with a solution (u, p, o) to problem (P), where we
define

2.1)  F(v,): Re/ ]2 dm—ﬁ [bln (1—@) +tr(In(¢) + I)| da

Y(v,9) € [L*(D)]¢ x S*

with S* C S-, such that F(-,-) is well-defined. Here the first term &¢ [ [|v]|? corresponds to the
usual kinetic energy term, and the second term, which is nonnegatlve 1s a relative entropy term.
Moreover, on noting that In is a concave function on Rs, we observe

(22) F(o,d) > 2 / ol 4z + o [ 06~ n(g) - D) dw V(v §) € [2D) x5,

where the right-hand side is the free energy of the Oldroyd-B model under the same no flow
boundary conditions, see e.g. [19] and [1]. Clearly, diagonalization yields that the relative entropy
term of this Oldroyd-B model is nonnegative. Of course, the I term in the relative entropy for
FENE-P and Oldroyd-B plays no real role, and just means that the minimum relative entropy
for Oldroyd-B is zero and is obtained by ¢ = I. Finally, we note that tr (In(¢)) is rewritten as
In (det(¢p)) in [19], which once again is easily deduced from diagonalization.

Proposition 2.1. With f € L%(0,T; [HY(D)]%) let (u,p, ) be a sufficiently smooth solution to
problem (P), (1.1a—f), such that o (t,-) € S* fort € (0,T). Then the free energy F(u, o) satisfies
for a.a. t € (0,T)

23) R+ -2 [ Vel det o [ ((A0)20) dz = (f.u) o)

where the third term on the left-hand side is positive, via diagonalization, on recalling (1.2).

Proof. Multiplying the Navier-Stokes equation (1.1a) with w and the stress equation (1.1¢) with
5w A(0), summing and integrating over D yields, after using integrations by parts, the boundary
condition (1.1f) and the incompressibility property (1.1b) in the standard way, that

(2.4) /D

Re 0| u|? 5 £ tr(o)\
b | IS RRPRTR V4 (1= v
5 5t + (1 —¢)||Vul*+ . ; o:Vu|dx

€ do Alo)o
+2—VV1/D (E-F(U'V)O')‘i‘ Wi
5

- /D ((Vuyo+o(vu)") : A@)dz = (£, )y o).

: Alo) dx
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It follows from the chain rule and (1.10) that

(2.5) (%—Z + (- V)0'> cAo) = (% + (- V)) (bln (1 - ?) —tr (111(0'))) .

On integrating (2.5) over D, the (u - V) term on the right-hand side vanishes as u(¢,-) € V. On
noting (1.2), (1.5a), (1.3b) and (1.1b), we obtain that

-1
t
(2.6) (a (Vu)" + (Vu) a) cA(o) =2 (1 - %) o:Vu.
Hence, on combining (2.4)—(2.6) and noting a trace property, we obtain the desired free energy
equality (2.3). O

For later purposes, we note the following.

Remark 2.1. The step in the above proof of testing (1.1c) with oz A(o) is equivalent to testing

(1.1c¢) with 725\”0"1 and testing the corresponding trace equation

dtr(o) tr (A(o) o)
ot Wi

-1
with 54 (1 - “(ba)) , and adding.

(2.7) +(u-V)tr(o) =2Vu:o on Dr

Recall that in the limit b — oo the FENE-P model formally converges to the Oldroyd-B model.
It is thus interesting to note that when b — oo, the free energy equality (2.3) formally converges
to the corresponding free energy equality for the Oldroyd-B model, on recalling (2.2). Finally, we
note the following result.

Corollary 2.1. Under the assumptions of Proposition 2.1 it follows that

1—
. € / Hqu?ngdHQWLi2 /tr((A(o-))2a) de dt
DT DT

1+Cp 2
<2 (P o) + 555 Ul o))

Proof. One can bound the term (f,u) mi(p) in (2.3), using the Cauchy-Schwarz and Young in-
equalities for v € R, and the Poincaré inequality (1.13), by

(2.8) sup F(u(t,-),o(t,:)) +
te(0,T)

1 2 1/2 2
(2.9) <f,u>Hg(D) < ||.f||H*1(D) HuHHl(D) < 9,2 HfHH*l(D) + b} HuHHl(D)
1 2 1/2 2
S5,2 £ 12 (py + 7(1 +Cp) VUl 72(p) -
Combining (2.9) and (2.3) with v? = (1 —€)/(1 + Cp), and integrating in time yields the result
(2.8). O

3. FORMAL FREE ENERGY BOUND FOR A REGULARIZED PROBLEM (Pj)

3.1. A regularization. Let G : s € Ry +— Ins € R denote the logarithm function, whose domain
of definition can be straightforwardly extended to the set of symmetric positive definite matrices
using (1.6) and (1.7). We define the following concave C11(R) regularization of G based on a
given parameter 6 € (0,1):

G(s) Vs > 4,
S+GO0)—1 Vs<4

We define also the following scalar functions

(32) Ba(s) == (G5(s))
Hence, we have that
(3.3) Bs : s € R — max{s,d} and B:seRso—s.

(3.1) Gs:seR— { Gs(s) > G(s) Vs e Rso.

VseR  and  B(s):= (G'(s)”" Vs € Ryo.
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For later purposes, we note the following results concerning these functions.

Lemma 3.1. For any ¢, € Rng, n € R and for any ¢ € (0,1) we have that

(3.4a) Bs(9)Gs(¢) = G5()Bs(¢) = I,
(3.4) tr (0 = G5(@))° Bs(@) ) > 0,
(3.4c) tr (¢ — Gs(¢) —I) =0,
(3.4d) (¢ — ) : [G5(¥)] > tr (Gs(p) — Gs(¥)),
(3.4¢) — (¢~ ) : [G5(¢) - G5(w)] = 0 G5(9) - G5
In addition, if 6 € (0,1] we have that
sl , )
(3.5) tr(¢—Gs(9) 2§ ¢: (I -Gs(9)) = 5lloll —d.
35 l1@]- |l
Proof. All the results are proved in Lemma 2.1 in [1], except (3.4b) and this can be easily proved
via diagonalization. O

We introduce the following regularization of A, (1.2), for any § € (0, 3]:

n
(3.6) As(m) =Gy (1= 1) I = G5(@) V(o) € RE xR,
In addition to Lemma 3.1 we will also make use of the following result, which is similar to (3.5).

Lemma 3.2. For any s € R, b € Ry and § € (0, %], we have that

s 1
. - 2 s> s —
(3.7a) bGs (1 b) s > 5 [ls] = 3b], .
s
(3.7h) (G (1=3) =1)s=lIs|—bl, -
Proof. On recalling (3.1), we first note from the concavity of G5 that
(3.8) ~bGj (k%) > bGs(1)+sGs(1)=s VseR.
From the scalar version of (3.5), we have that
s s 1 S S b S
. 1-3)—as(1-2)y>zh -2 - 1= s> =2 -
Go)  (1-3)-G(-5) =35 = bGs (1-3) =525 [t-5| -
We note that
1 .
b =(|s| — 3b) if s > b,
(3.10) 5’1%1;{21 ) .
—5(s4+b) > 5(|s| —3b) if s <.

Combining (3.8)—(3.10) yields the desired result (3.7a).
We now consider (3.7b). If 1 — 7 <4, i.e. s > b(1 —9), then

(3.11) (Gg (k%) fl)s: (%1)52 1s].

If1—-2>0,ie s <b(1—9J),then
(3.12) (G’(l—f)—l) LA a2 > 15| — b
. s 5 sjb—s_ an b—s_s .

Combining (3.11) and (3.12) yields the desired result (3.7b). O
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3.2. The regularized problem (P;). Using the regularizations Gs, 85 and A introduced above,
we consider the following regularization of (P) for a given § € (0, 1]:
(Ps) Find us : (t,xz) € [0,T) x D — us(t,xz) € RY, ps : (t,x) € Dr — ps(t,z) € R and

o5 (t,x) €[0,T) x D o5(t,x) € R such that

(3.13a)
Re (% (s - V)u,;) = —Vps + (1 — &) Aus + 1= div (4505, tr(05)) Bs(05) + £ on Dr,
(3.13b) divus =0 on Dr,
(3.13¢)

% + (us - V)as = (Vus)s(0s) + Bs(0s)(Vus) " — Aé(aé’tr(\;\’/f)) 2o oy,
(3.13d) us(0, ) = u’(x) Va € D,
(3.13e) 05(0,z) = o%(x) Vx € D,
(3.13f) us =0 on (0,T) x D.

3.3. Formal free energy bound for (P;). In this section, we extend the formal energy results
(2.3) and (2.8) for (P) to problem (Ps). We will assume throughout that

(3.14)

fel?0,7;H YD), u’ el :={we[L*(D)]*:divw=0ae. inD, w-ngp=0ondD},
o' e Soo with 0%, |I€° <€To%(x) € <o, |I€]|* VEER? for a.e. xin D

and tr (UO(:B)) <b* for a.e. ¢ in D;

where ngp is normal to 9D, b*, 00, 00, € Rog with b* < b. Let Fs(us, 0s,tr(0s)) denote the

min’ Y max

free energy associated with a solution (us, ps, os) to problem (Ps), where we define
Re €
(3.15)  Fs(v,,n) := —/ [ s P p—— [b Gs (1 - Q) +tr (Gs(¢) + I)] da
2 D 2Wi D b
(v, ¢,n) € [L*(D))* x S x L (D).
Note that the second term in Fj has been regularized in comparison with F' in (2.1). Similarly

to (2.2), we have, on noting (3.8), the inequality
(3.16)

Fo(w.00(9) = 5 [ JolPdr+ o

W Dtr (¢ —Gs(p) —I)dx  VY(v,¢) € [L*(D)]¢ xS,

where the right-hand side in (3.16) is the free energy of the corresponding regularized Oldroyd-B
model, see [1] and note (3.4c). It also follows from (3.1) and (3.14) that

(3.17) F5(u®, 0% tr(a?)) < F(u’, o?).

Proposition 3.1. Let § € (0, %] and (us, ps, os) be a sufficiently smooth solution to problem (Ps),
(3.13a—f). Then the free energy Fs(us, os,tr(os)) satisfies for a.a. t € (0,T)

d
(3:18) 5 Fa(us,as.tios)) + (1-2) [ [Vl da
D

+

5 2
iz [ (st tr(09)? Bs() da = (o) o)
where the third term on the left-hand side is nonnegative from (3.6) and (3.4b).

Proof. Similarly to the proof of Proposition 2.1, we multiply the regularized Navier-Stokes equa-
tion (3.13a) by us and the regularized stress equation (3.13c) with 537 As(os,tr(es)), sum and
integrate over D, use integrations by parts, the boundary condition (3.13f) and the incompress-
ibility property (3.13b). This yields the desired result (3.18) on noting the following analogues of
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(2.5) and (2.6)

(3.19) (% + (us - V)a,;) t As(os, tr(os))

= (5 + @ w) (00 (1- 292) ~asion)

and

(320) (85 (05) (Vus)” + (Vug) Bs(0)) : As(ors. tr(ors)) = 2 (1 _ “(T‘”)> B5(0s) : Vg,

Here we have recalled (3.6) and (1.10) for (3.19), and (1.5a), (1.3b), (3.4a) and (3.13b) for (3.20).
([

Similarly to Remark 2.1, we note the following.

Remark 3.1. The step in the above proof of testing the reqularized stress equation (3.13c) with

—wi As (05, tr(05)) is equivalent to testing (3.13c) with — 5357 G5(0s) and testing the corresponding

reqularized trace equation

dtr(os)
ot

with 57 Gs (1 — %), and adding.

tr(As(os, tr(U.a)) Bs(as))

(3.21) Wi

+ (us - V) tr(os) = 2Vus : Bs(os) — on Dr

Corollary 3.1. Under the assumptions of Proposition 3.1 it follows that

1—
(3.22) sup Fs(us(t,-),o5(t, ), tr(os(t,-))) + c / | Vus||? dee dt
te(0,T) 2 Dr

13
2Wi2

N /D tr ((As(os.10(05)))° Bi(o) ) de

1+Cp 2
0 0
<2 (F(u ,o°) + m |f|L2(0,T;H1(D))) )

Proof. The proof of (3.22) follows from (3.18) in the same way as (2.8) follows from (2.3), and in
addition noting (3.17). O

4. FINITE ELEMENT APPROXIMATION OF (Ps) AND (P)

4.1. Finite element discretization. We now introduce a finite element discretization of the
problem (Ps), which satisfies a discrete analogue of (3.18).

The time interval [0,7T) is split into intervals [t"~1 #*) with At, =" —t""! n=1,..., Np.
We set At := maxp—1 .. n; At,. We will assume throughout that the domain D is a polytope.
We define a regular family of meshes {7, }r>0 with discretization parameter h > 0, which is built
from partitionings of the domain D into regular open simplices so that

Ng — h
D="T,:= k!i K with max — < C.

Here pj is the diameter of the largest inscribed ball contained in the simplex K} and hy is the
diameter of K}, so that h = maxy—1,... N, hi. For each element Ky, k =1,..., Nk, of the mesh
Tr let {PF}L, denotes its vertices, and {n¥}%_ the outward unit normals of the edges (d = 2) or
faces (d = 3) with n¥ being that of the edge/face opposite vertex P¥, i = 0,...,d. In addition,
let {n¥(x)}%¢_, denote the barycentric coordinates of € K}, with respect to the vertices { PF}% ;
that is, nf € Py and nf (Pf) =0;;,1,j=0,...,d. Here P,, denote polynomials of maximal degree
m in x, and §;; the Kronecker delta notation. Finally, we introduce 07} := {Ej}j-vfl as the set
of internal edges E; of triangles in the mesh 7, when d = 2, or the set of internal faces E; of
tetrahedra when d = 3.
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We approximate the problem (Ps) by the problem (P?fl) based on the finite element spaces

W) x QY xS As is standard, we require the discrete velocity-pressure spaces W9 x Q) € W x Q
satisfy the discrete Ladyshenskaya-Babuska-Brezzi (LBB) inf-sup condition

q divvdx
(4.1) inf sup > e >0,
€Q) wew? 4l 2oy 101l g1 (p)
see e.g. [16, p114]. In the following, we set
4.2a W) =W2CcWifd=2 or W~ CcWifd=2or 3,
h h h
(4.2b) Qh=1{4€Q:qlxe€Py k=1,....Nxk}CQ
(4.2¢) and  S):={p€S: ¢|k. [P k=1,...,Ng}CS;
where
(4.3a) Wi :={vec[CD)NW :v|g, [P k=1,...,Ng},
(4.3Db) Wr ={ve[CD))NW : v|ge [P @span{sF}i, k=1,...,Ng}.
Here, for k=1,...,Nx andi=0,...,d
d
(4.4) ¢F(x) =nk H nf(:c) for € K.
Jj=0,j#i
We introduce also
(4.5) V9= {veW2 : /qdivvdm:O vqug},
D

which approximates V. It is well-known that the choices (4.2a,b) satisfy (4.1), see e.g. [12, p221] for
W9 = W? and d = 2, and Chapter II, Sections 2.1 (d = 2) and 2.3 (d = 3) in [16] for W) = W}~

Moreover, these particular choices of S9 and QY have the desirable property that

(4.6) peS) = As(p,tr(¢) €SV and bGs (1 - “(T@) +tr (Gs(¢p)) € QY,

which makes it a straightforward matter to mimic the free energy inequality (3.18) at a discrete
level. Since S?L is discontinuous, we will use the discontinuous Galerkin method to approximate
the advection term (us-V)os in the following. Then, for the boundary integrals, we will make use
of the following definitions (see e.g. [15, p267]). Given v € WY, then for any ¢ € S) (or QY) and
for any point « that is in the interior of some E; € 07y, we define the downstream and upstream
values of ¢ at x by

(A7) ¢7@ = lm g@+pv) ad  $V(2) = lim ¢z +pv(@));

P

p—0—

respectively. In addition, we denote by

» — ¢ (x) + ¢ (=
(18  [Blosl@)=¢"@) - 6@  and  (9)° (@)= LT TETD

the jump and mean value, respectively, of ¢ at the point @ of boundary E;. From (4.7), it is clear
that the values of ¢™”|g, and ¢~ "|g, can change along E; € 97,. Finally, it is easily deduced
that

NE NK
(4.9) Z/ wen|p]owg P ds == (v-nr)qpg’ds  Yve Wy, g, g2 € Qp;
j=1"E; k=1 0Kk

where n = n(E;) is a unit normal to E;, whose sign is of no importance, and ng, is the outward
unit normal vector of boundary 0Ky of K. We note that similar ideas appear in upwind schemes;
e.g. see Chapter IV, Section 5 in [16] for the Navier-Stokes equations.
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4.2. A free energy preserving approximation (P?fl) of (Ps). For any source term f €
L?(0,T;[H~(D)]%), we define the following piecewise constant function with respect to the time
variable

(4.10) FANT( ) = () / f(t te ), n=1,...,Nr.
It is easily deduced that for n = 1,.
n tn
(4.11a) D At £ -1 0y < /O £ ) z-1pydt for any r € [1,2],
m=1
(4.11b) and FAYY o f strongly in L2(0,T; [H Y (D)]%) as At — 0.

Throughout this section we choose u,g € V?L to be the L? projection of u° onto V?L and 02 € S?L
to be the L? projection of o onto S?. Hence, we have that

1
(4.12&) ||U2HL2(D) < Hu0||L2(D), 0‘2 |Kk: T 0‘0 da:, k= 1, .. .,NK,
Kkl Jx,

where |K}| is the measure of Kj; and it immediately follows from (3.14) that
(4.12D) Omin €17 < €700 i € < o €7 VE € R,

1
(4.12¢) tr(o?) |x,.=

— tr(a?) dz < || tr(a®)|| < b* < b.
21 [ (") de < o) <

We are now ready to introduce our approximation (Pg}) of (Ps) for 6 € (0, 3]:
(P(;Ah) Setting (ug ), 09 ,) = (up, o)) € V) x (S} NSsop) as defined in (4.12a), then for n =
L,...,Nr find (u},,0%,) € V) x S} such that for any test functions (v, ¢) € V}) x S

(4.13a)

e (5o o (i ) ot (i o)

n

n € n n n n
+ (1 —¢)Vug, : Vo + Wi As(osp,tr(asy)) Bs(osy) : Vo de = (", v) gy (p),

(4.13b)
n 1 n n n .
/ KLJ“ ) - 2((Vahy) Ba(ok,)) 6+ A‘S("évh’“("m?)ﬂ‘S("W"b] do
D

n Wl
NEg
o/

In deriving (P§}), we have noted (1.5a) and that

n—1 n L otult _
uy, n‘ [[Ué,h]]auj;y;l tpTen ds = 0.

(4.14) /D (z-V)w /w z-V)v VzeV, VYv,we [H (D),

and we refer to [15, p267] and [11] for the consistency of our approximation of the stress advection
term. We note that on replacing As(o,, tr(oy,,)) with I — Gs(og,,) then (Pﬁ,ﬁ), (4.13a,b), col-
lapses to the corresponding finite element approximation of Oldroyd-B studied in [1], see (3.12a,b)
there.

Before proving existence of a solution to (P?h) we first derive a discrete analogue of the energy

bound (3.18) for (P5}), which uses the elementary equality

(4.15) 251(s1 — 89) = 55 — 53 + (51 — 82)? Vs1,s2 € R.



12 JOHN W. BARRETT AND SEBASTIEN BOYAVAL
4.3. Energy bound for (P$}

Proposition 4.1. Forn = 1,..., Nr, a solution (ugh,agh) € V9 xSY to (P2L), (4.13a,b), if

it exists, satisfies

Fs(uiy, 08, t0(08,)) = Fs(ug, ' o5, tr("'?hl
(4.16) - + oA [ It — iy de
+(1=) [ 1Vuzlae K (<A5<a§,h,tr<a§,h>>> Bi(o%)) da
non 1+Cp
< (f" usn) (o) S / [Vug,|* de + 212 £ 11 (-
Proof. Similarly to (3.20), we have that
(4.17)

. [(Vuyy,) Bs(0s,) : As(as . tr(as,))] de = . Gs|1- b Bs(a§ ) : Vug,, dz,
where we have noted (3.6), (1.3b), (3.4a) and (4 5). Then, similarly to the proof of Proposition 3.1,
we choose v = u};, € V) in (4.13a) and ¢ = 557 45(05,, tr(05,)) € S}, in (4.13b) and obtain, on
noting (4.15), (3. da), (4.5) and (4.17), that
(4.18)

(f" us ) mipy 2 /
D

Re H gh”Q H 1H2 H gh (5h1H2
u , LL u , u 1 V n 2
> ( AT, + AL + (1 -¢) u’&,h” de

n n—1
€ Osh —Osn n N
Wi /D ( Aty ) F As (o5 tr(os ) de

+ ﬁ / tr ((A5(0§7h,tr(a§h)))2 56(0'3h)) dx

s [,

It follows from (3.6), (3.4d) and the concavity of Gs that
(4.19)

Lo g s (sl (o) | s

(osn = oint) + sl tr(o)

> (tr(agh) - tr(aggl)) G5 (1 - ) + tr(G(;(aggl) —tr(Gs(oy )

> <bG(5 (1 — %) +tr <G5(06h ))) - <bG5 <1 - @) + tr (Gg(o{{h))) .

Similarly to (4.19), we have, on recalling (3.6), (4.7) and (4.8), that
(4.20)

n—1 tr(o¥,)
n n n +u d,h n
[[057,1]]_”‘;;1 : (A(;(a&h,tr(a&h))) h > —[bGs (1 — 7 ) + tr (G(;(a&h))]]_m;;l.

tr(oy )

Finally, we note from (4.9) and as uj L€ VY that for all ¢ € QY
(4.21)

>l

lal_, nldS— Z/@ nKk gds = — Z/K qdivugﬁldm:O.
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Combining (4.18)—(4.21) yields the first desired inequality in (4.16). The second inequality in
(4.16) follows immediately from (2.9) with v? = (1 —¢)/(1 + Cp). O

4.4. Existence of a solution to (P5}).

n—1

Proposition 4.2. Let § € (0,3], then, given (u5h 05, ) € Vi X S) and for any time step
At,, > 0, there exists at least one solution (u&h,a&h) e V) x S) to (P5t), (4.13a,0).

Proof. We introduce the following inner product on the Hilbert space V9§ x S%
42) (@)@ )p= [[wovrvidlde  Vww)(o.6)e VExS,
Given (u?ﬁl, aggl) € VY xSY let F: VY xSY = VY xS% be such that for any (w, ) € V) x S9
(4.23)
(F(w, %), (v,9))p
n—1
B I ——
+(1-e)Vw: Vo + % As(, tr(1)) Bs () : Vo

" (%) 52T ) 6+ AT ) ﬂ N

— (") mio) + Z /
We note that a solution (u:{h, o{{h) to (4.13a,b), if it exists, corresponds to a zero of F; that is,

(4.24) (F(ugp,051),(0,0)), =0  Y(v,¢) € V) xSj.

In addition, it is easily deduced that the mapping F is continuous. For any (w, %) € V9 x S%, on
choosing (v, ¢) = (w, 75 As(1, tr(2))), we obtain analogously to (4.16) that

(4.25)

(Flw, ). (w, o= As(w, 1)) )
Fy(w, . tr(¥)) = Fy(uyy " opy ' (057! .
> 2 - AR R

tr (s tr06))” B(06)) o = 5 1 s

[0 - ptUn ds  V(v,¢) € V) x 8.

Let us now assume that for any v € R~ (, the continuous mapping F has no zero (ugfh, agh)
satisfying (4.24), which lies in the ball

(4.26) By = {(v,) € V) xS - (0, )]lp <7}
where
(4.27) 10, )l = (v, ), (v, )] = </D [||v|2+||¢||2]dm>2

Then for such v, we can define the continuous mapping G, : By — B, such that for all (v, ¢) € B

F (v, #)
OIS

~

(4.28) Gy(v,9) =
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By the Brouwer fixed point theorem, G, has at least one fixed point (w.,.) in B,. Hence it
satisfies

(429) H(w’h’l:b'y)HD: Hgv(w%¢—y)HD:’Y
On noting (4.2¢) and (4.29), we have that

(4.30) 17y < / ll., ||2dm*,“h/ 1,117 dze < g, 7%,

mingen, | Kkl
where pp, = [1/(minge ny |Kk|)]% Then (3.15), (3.16), (3.5), (4.30) and (4.29) yield that
4 Bl

- /wal\ do + o [—bG(; (1—“(?”)) —tr (Gs(¢p,) +T) | da
> —/ |\ww|\2dm+—. [ (0, ~ Gslap,) - 1) do
AR [ [ 1,11~ 2arp]

> B [ s o+ e oy [ e - S

Y

Re € 5 5 ed|D|
d _
mm(2 4W1W) ( / [, 2+ 9] a2 ) - 5
(Re € ) 5 &d|D|
= min v — .

2 AWi iy Wi
Hence for all v sufficiently large, it follows from (4.25), (4.31) and (3.4b) that
5
— > 0.
(4.32) (Flw ), (s 5o As(W, tr(w,))) ) 20

On the other hand as (w.,.,) is a fixed point of G, we have that
€
(433) (Flwy,9,), (wy, o s, 00(8,))) )
||‘F(w7’¢'y)HD 2 19
- e [ [l + e ¢ As(, 0(8,)] da
It follows from (3.6), (3.7b), (3.5) and similarly to (4.31), on noting (4.30) and (4.29), that

O | A5(¢wtr(¢7))}dﬂ?
D 2Wi
:/ [ (G, ( tr(@bbw)) _1) () + = ¢ (1= Ghlw,) |da

> [ wnlaw s g | [ e - 2]

> min (1 € 5 &dD|
min — .
= CAWigny )T 2wWi

Therefore on combining (4.33) and (4.34), we have for all 4 sufficiently large that

(4:35) (Flws, .. (won gy Astee r(w,)) ) ) <0,

which obviously contradicts (4.32). Hence the mapping F has a zero in B, for v sufficiently large,
and so there exists a solution (uj,, 0%, ) to (4.13a,b). O
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Theorem 4.1. For any § € (0, 3], Nr > 1 and any partitioning of [0,T)] into Ny time steps, there
exists a solution {(ugh,agh)}ﬁgl € [V x S9NT to (Pﬁfl), (4.13a,b). In addition, it follows for
n=1,...,Nr that

(4.36)  Fs(ugp, o8, tr(05),)) Z/ Relluiy, —uiy '|° + (1 — €) Aty Vg, ||?

oWiZ Z Aty / ( As(o5hy, tr(oy) h)))2 ﬁg(ag’fh)) dz

1+Cp m
< Fé(u(l)ma-(l)wtr(o'?z)) + 2(1 — E) Z Atm”f H%{*l(D)
m=1

1+Cp

SF(u2702)+2(1 )HfHL2 o1 (D)) = s

which yields that

(437 max /D [l 7 + Nl + 6 o]+ 67" b — te(og))-|] de < C.

.....

Moreover, for some C(h,At) € Rs, but independent of 0, it follows that for k = 1,..., Nk
andn=1,...,Nr

A , tr(o{{h) .
(4.38a) Gs|1- 7 ||65(057h)|\ < C(h, At) on Ky,

(4.38b) 11Bs(e )71l < C(h, At) [1 + G <1 - @)} on Kj.

Proof. Existence of a solution to (P(;Ah) and the first inequality in (4.36) follow immediately from
Propositions 4.2 and 4.1, respectively. Similarly to (3.17), the second inequality in (4.36) is a
direct consequence of (3.15), (3.1), (4.12b,c) and (4.11a). Finally, the third inequality in (4.36)
follows from (4.12a—c) and (3.14).

It follows from (4.36) and (3.16) that

R
(4.39) e/ [ dm+2w tr (o}, — Gs(ol,) —I) de <C,  n=1,...,Nrp.

The first three bounds in (4.37) then follow immediately from (4.39) and (3.5). Next we note that
(3.4c), (3.15) and (4.36) yield that

wan o [ Y g, ()],
< 7/7; {b Gs (1 - tr(c;g’h)) +tr (Gsloy,) +I) —bldz < C.

The last bound in (4.37) is then simply obtained by using a scalar version of (3.5).
Next, we deduce from (4.36), (3.6) and (3.4b) that for n =1,..., Ny

(441)  0<tr ((A(;(a}h,tr(a:{h)))Qﬁg(agh)) <C(h,At) on Ky, k=1,...,Ng.

For any § > 0, Bs(0,) € R <4 and so it follows from (1.3b), (1.4b), (3.6), (3.4a), (1.5b), (4.41),
(1.8), (3.3) and (4. 37) that

(4.42) HGg(1 tr("“))@;( -1

1 2 1
= Aste tr(@5)) Bs(oin)|* < |[As(an trles ) BstoianlF || ||8s(as 1t

= tr ((As(03, t1(05)))” Bs(05)) ) tr(Bs(rin)) < Clh A [|Bs(05)]
< C(h,At) ([log,ll+0) < C(h,At) on Ky, k=1,...,Ng, n=1,...,Np.

2

2
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The desired result (4.38a) follows immediately from (4.42). Similarly to (4.42), we have from
(4.41), (1.8), (3.6) and (3.4a) that

(4.43) C(h,At) > [[As(a3 . t1(05 ) Bs(051) As(5 . tr(a5 ) |

tr(o?,) 2 N tr(o?,) ool
> (65 (1= 522)) sstos 265 (1= ) 14 sl
on Ky, k=1,...,Ng, n=1,...,Np.
The desired result (4.38b) follows immediately from (4.43) and (4.38a). O

4.5. Convergence of (P§}) to (P;"). We now consider the corresponding direct finite element

approximation of (P), i.e. (P4*) without the regularization &:
(P2Y) Given initial conditions (uf), %) € V9 x (S) N'Ss0,) as defined in (4.12a), then for n =
1,...,Nr find (ull,o}) € VY x S) such that for any test functions (v, ¢) € V) x S)

s [ Jre (M) o B (g v - (g 90)

n € n n n
+(1—¢e)Vuy : Vo + WA(Uh)Uh : V’U] de = (f",v) g1 (p),

) [ (5T o2 (wupon o+ AT o

Ng .
+ Z/ lup =" n| [oR] L ynr : ™™ ds=0.
j=1"Ei "

We note that (4.44a,b) and F(u},o7) are only well-defined if o7 € S N'S5¢;. We also note
that on replacing A(o?) with I — (o)~ then (P{?!), (4.44a,b), collapses to the corresponding
finite element approximation of Oldroyd-B studied in [1], see (3.35a,b) there.

Theorem 4.2. For all reqular partitionings Tn of D into simplices {Kk},ivzkl and all partitionings
{Atn}gil of [0,T], there exists a subsequence {{(ugﬁh,agh)}gil}g>o, where {(ug, agh)}ﬁgl €

VO x SOINT solves (Pﬁ}g), (4.13a,b), and {(u},o?)}NT € [V) x SUNT such that for the subse-
quence

(4.45) ugy, — uyp, o5, = oy as 6 = 04, for m=1,...,Nr.
In addition, for allt € [0,T] n = 1,...,Np, o} |k, € Rgé‘%ﬁw k =1,...,Ng,. Moreover,
{(u’,;,a’,;)}gil € [VY x SYINT solves (P2Y), (4.44a,b), and forn=1,..., Ny

Fup,o?) — F(u? ! ot R
Wi o) = B i ) R [ -y e+ (- ) [ [V de

At,
e n\\2 _n 1 nn2 1 +Cp nn2
A < — — VvV 4+ — _ .
2Wi2 /Dtr (( (Uh)) ah) de — 2(1 5) /D H uhH de 2(1 7 E) Hf HH (D)

Proof. For any integer n € [1, Ny], the desired subsequence convergence results (4.45) follow
immediately from (4.37), as (uy,,, 0%,) are finite dimensional for fixed V9 x S9. 1t also follows
from (4.37), (4.45) and (1.11) that [o}]— and [b — tr(o})]- vanish on D, so that o} must be
non-negative definite and tr(o}) < b a.e. on D. Moreover, on noting this, (4.45), (3.3) and (1.11),
we have the following subsequence convergence results

(4.46)

(4.47) Bs(op) — o, Bs(as,) = oy as 0 — 04.

If tr(o})|k, = b on some simplex K}, then for the subsequence of (4.45) we have that
(4.48) tr(og ), — b as 0 — 04.
In addition, it follows from (1.8), (3.3) and (4.48) for § sufficiently small that

(4.49) 18502 > —= tr (B5(@2)) > %tr (o7,) > %& on K.
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Hence, (4.38a) and (4.49) yield for the subsequence of (4.45) for all ¢ sufficiently small that
tr(oy
(4.50) G (1 - %) < C(h,At) on Ky,

but this contradicts (4.48) on recalling (3.2) and (3.3). Therefore, tr(o})|x, < b on all simplices
K}, and so it follows from (4.45), (3.2) and (3.3) that

(4.51)  Gs (1 — tr(?’h)) —In (1 - tr(‘b’ﬁ)) e (1 B tr(tzfih)) N (1 - tr(zg))—l

as d — 04.
The results (4.38b) and (4.51) yield for ¢ sufficiently small that
(4.52) 1[Bs(an)] ' < C(h,At) on Ky, k=1,...,Nk.

Furthermore, it follows from (4.52), (4.47), (3.2), (3.3) and as [8s(0% )] Bs(cy,) = I that the
following subsequence result

(4.53) Bs(o5 )] 7" = Gs(o5,) = [on]™h as 004
holds, and so o |k, € Rgéd&b’ k=1,..., Ng. Therefore, we have from (4.45) and (3.1) that
(4.54) Gs(os,) — In(ay) as 0 — 0.

Since ug, ', up~' € C(D), it follows from (4.45), (4.7) and (4.8) that for j =1,..., Ng and all
b €S
(4.55)

J,

J
Hence using (4.45), (4.47), (4.51) and (4.55), we can pass to the limit 6 — 0 for the subsequence
in (P§), (4.13a,b), to show that {(uj, a)INT € [V x SUINT solves (Pat), (4.44a,b). Similarly,
using (4.45), (4.47), (4.51), (4.53) and (4.54), and noting (3.15) and (2.1), we can pass to the limit
§ — 04 in (4.16) to obtain (4.46). O

_ n—1 _ n—1
ughl 'n,‘ [[o-g,h]]%uggl : ¢+u5”1 ds — /E "U,Z ' ’I’L‘ [[O'Z]]au’ﬁ’l : ¢+uh ds as 60— 0.
J

5. FENE-P MODEL WITH STRESS DIFFUSION

5.1. Model (P,), (P) with stress diffusion. In this section we consider the following modified
version of (P), (1.1a—f), with a stress diffusion term for a given constant a € Rx:

(Po) Find u, : (t,2) € [0,T) x D — uy(t,x) € RY p, : (t,x) € Dr = palt,xz) € R and
oo (t,x) €[0,T) X D= oot x) € R4 such that

$,>0,b
Ou, e ..
(5.1a) Re 5t + (ue - Vg | = =Vpo + (1 —e)Au, + Wi div(A(oa)oa) + f on Dr,
i
(5.1b) divu, =0 on Dr,
(03 A [e3 [e3
(5.1c) agt + (- VYo, = (Vuy)o, + aa(Vua)T — (o\'}v) g + alAo, on Dr,
i

(5.1d) (0, ) = u’(x) Va € D,

(5.1e) 0.(0,x) = o%(x) Ve €D,

(5.1f) Uy, =0 on (0,T) x 9D,
(5.1g) (nop - V), =0 on (0,T) x 9D.

Hence problem (P,) is the same as (P), but with the added diffusion term aAeo, for the
stress equation (5.1c), and the associated Neumann boundary condition (5.1g). Similarly to (Ps),
(3.13a-f), we introduce a regularization of (P4,s) of (P,) mimicking the free energy structure
of (P,). Moreover, we need to be able to construct a finite element approximation of (P, s)
that satisfies a discrete analogue of this free energy structure. Apart from the obvious addition
of the stress diffusion term, there are three other distinct differences. First, one has to deal with
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the advective term in the stress equation differently, see (5.11) below, to the approach used in
(3.19) for the stability bound, as the approach there cannot be mimicked at a discrete level using
continuous piecewise linear functions to approximate o, s, the regularization of o,. Note that
one cannot use S?L with the desirable property (4.6) to approximate o, 5 due to the additional
stress diffusion term. Second, as a consequence of this stress advective term, one has to introduce
another regularization of tr(ea), 0a,s, as well as the obvious candidate tr(85(cq,s)), and solve
for this directly, see Remark 5.1 below. Third, it is desirable for the convergence analysis, as
§ — 0, to have a uniform L?(Dr) bound on the extra stress term As(0a.s, 0a.5) B5(0a.s) in the
Navier—Stokes equation (5.5a) below. To achieve this we replace As(0 a5, 0a,s) Bs(0a,5) there by
K5(T a6, 00,6) As(T 0.5, 00.5) Bs(0w.s5), where we define, for § € (0, min{%, b},

b 3
(5.2) ko(ym) = [%} V(#,n) € R x R
with
(5.3) BY: s € R+ min{ps(s),b}.

It follows from (5.2), (5.3), (1.3b) and (1.4b) that
(54)  lrs(.m) As(d,n) Bs(D)II* < llks(,m) [Bs ()] 21| As (b, ) [Bs ()] % |12
< btr ((A5(¢,n))265(¢)) Y(¢,n) € R4 x R.

Hence a uniform L?*(Dr) bound on ks(Ga.s, 0a.6) As(Ta.5, 0a.5) Bs(Ta,s) follows from a uniform
LY (Dr) on tr ((A5(0a75, Qa75))2 ﬁ5(0a75)) , which will follow from the free energy bound. Although
Oa,s 7 tr(Bs5(0w,s)), we will show, in the limit § — 0, that B5(ca,s) = 0o and gas — tr(oq)
with o4(+,-) € Rgé‘%ﬁw and hence implying that £s(6 .5, 0a,5) — 1. In order to maintain the free
energy bound we need to include k5(0 4,5, 0a,s) on the right-hand sides of (5.5¢,d) below.
Therefore, we consider the following regularization of (P, ) for a given § € (0, min{3, b}]:

(Paﬁg) Find u, 5 : (t,.’l)) € [O,T) XD — uayg(t,.’lﬂ € Rd, Pa,s - (t,a:) € Dpr — payg(t,.’lﬂ € R,
0us:(t,x) €[0,T) XD o46(t,x) € Rng and ga,5: (t,) € [0,T) X D — ga,6(t,x) € R such
that

Oun
(5.5a) Re ( gt,a + (a5 - V)ua75> =—Vpas+ (1 —¢)Augs

£ ..
+ 3 div (ks(0 0,55 0a,5)As(T a8, 0a,s) B5(Ta,s))

+f  onDr,
(5.5b) divate,s =0 on Dr,
6aa,5 T
. A, a,d ’ 6\O«a,6) = Ré\O a,éy O, a,0 )Po\0 «,d 6\O a,0 «,0
(5.5¢) 5 + (W5 - V)B5(005) = K5(0 a5, 0a6) [(Va,5)B5(0as) + B5(0a,5)(Vitas)' ]
. A6 (Ua,& Qa,t?) ﬂ& (0'&15) + OAAO'Q 5 on DT,
Wi ’
000 o
(5.5d) 220 b (uas - V)Bs(1— 220) = 25(0 05, 0a,5) Vitass : B(07as)
b
. tr(AJ(Ua,Ja Qa.,&) ﬂ&(aa,é)) + OéAQa P on DT,
Wi ’
(5.5€) o 5(0,2) = u’(x) Vo € D,
(5.5f) 0050,2) =), 0a.5(0,2) =tr(c’(x)) Va € D,
(5.5g) Ugs =0 on (0,T) x 9D,
(5.5h) (nop - V)oas =0, (nagp-V)gas=0 on (0,T) x dD.

We note from (3.3) that —b VS5 (1 — 252) = Vg5 if (1 —232) > 4, ie. 0a,s < b(1 —0). We
remark again, due the required regularization of the advective terms in (5.5¢,d), that a5 #
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tr(oa,s). However, we note that on taking the trace of (5.5¢), subtracting (5.5d) and integrating
over D, yields, on noting (5.5b,f-h) and (1.3b), that for all ¢ € [0, T]

(5.6) [ (@ as(t.9) = 2t N de = [ [tr(005(0.) = 00500, ] do = 0.

5.2. Formal free energy bound for (P, ;). First, similarly to (3.1), we introduce, for ¢ € (0, 1),
the concave C1'1(R<() function

G(s) Vs € (0,671,
§s+GOE ) —1 Vs>t

We have the following analogue of Proposition 3.1.

(5.7) Hs:s€Rsg— { H§(G5(s)) = Bs(s) Vs eR.

Proposition 5.1. Let o € Ry, § € (0, min{Q,b}] and (Wa,5,Da,6: Ta,ss 0a,s) be a sufficiently
smooth solution to problem (Py.s), (5.5a-h). Then the free energy Fs(ta,5, 0.5, 0a,5) Satisfies for
a.a. t € (0,T)

d
(5.8) g Fo(vas, 0as cas) + (1 - 5)/ Va5 de
! D
aed? ) , / o
Lo [ [vesoani+o v (1- 22) 4

g 2
+ oW /Dtr ((Aa(aa,a, 0a,5)) ﬁa(aa,a)) dz < (f,ua,6)u1(D)-

Proof. Similarly to the proof of Proposition 3.18, on noting Remark 3.1, we multiply the Navier-
Stokes equation (5. 5a) with w,,s and the stress equation (5.5¢c) with —547G5(04,s), the trace
equation (5.5d) with 55 G (1 — Q‘Z"‘), sum and integrate over D. This yields, after performing

integration by parts and notmg (5.5b,g,h), (1.5a), (3.4a) and (3.6), that

(5.9) /D { .

1-— )||Vua5|2} dx

+(
f—/ do V)85(0as) ) ¢ Gs(oas)d
Wi > t ua5 50,8 cGsl0qs)dT
g Qa5 «
W/D( >55(17)> s (1-552) da
ac L VG _ va (1 - Qs
—Q—WI/D[V%(;..VG,S(%&) Voo VG (1 )}
2
+2Wi2 /Dtr ((Aé(o'a,éagoz,é)) ﬁa(da,é)) dz = (f, ua,s) 1 (D)-
Using (1.10), we have that
(5.10)
0005 . o _9 00as v (1 _ Las) _ 40 _ Qas
0L G(0as) = 5 1 (Gslas) and LG (1 - )7 b G (1 . )

As Bs(0as) = H5(G5(0a,s)), on recalling (5.7), we have, on noting u,s € V and the spatial
version of (1.10), that

5.11) - /D (s - V)B5(Farg) : Gh(0as) da = /D B5(Tars) : (tas - V)Ch(0ras) da

_ /D (s - V) tr (Hy (G (0 9))) da = 0.

Similarly to (5.11), we have that
(5.12)

- /D {(ua,(; V)G (1 - %” e (1 - %) de = /D(’U,mg V) H; (Gg (1 - %)) de = 0.
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Similarly to (3.4e), we have that

(5.13a) —Voas:VG5(0as) > 2|VGs(aas)? a.e. in Dr,
(108 _ (1 28w (1 e
(5.13b) Voos VG, (1 . ) — bV (1 . ) \ A (1 . )
zb(SQHVGg (17 M)H a.e. in Dr.
Combining (5.9)—(5.13a,b) yields the desired result (5.8). O

Remark 5.1. We note if we multiply the advection term in (5.5¢) by —GY5(1 — M)I and
integrate over D, then we obtain, on noting us € V and (5.12), that

- /D(Ua,a - V)Bs(das) : G (1 - tr(gba’&)) Idz

= [ s (s 9165 (1 252 ) o

_ *b/p (1 B tr(ﬁa(baa,a))> (ters - V)G, <1 _ @) da

” fb/Dﬁ,; <1 - WTM)> (s - V)G (1 - tr("b““)) dz = 0.

Hence, the need for the new variable pq.s in order to mimic the free energy structure of (Pg).

The following Corollary follows from (5.8) on noting the proof of Corollary 3.1.
Corollary 5.1. Under the assumptions of Proposition 5.1 it follows that

1—¢
(5.14) sup Fs(uas(t, ), 00,5t ), 00,6, ")) + 5 / HV'LLW;H2 dx dt
te(0,T) Dr

aed?
2Wi

£ 2
Wi /DT tr ((Aé(aa,a,ga,a)) 55(0a,5)) de dt

2
[|VGg(aa,a)|2 +b HVGg (1- %) H } da dt
Dr

+

1+Cp
<2 (F(uo,ao) + 2129 Hf”L?(OT H- 1(D)))

6. FINITE ELEMENT APPROXIMATION OF (P, )

6.1. Finite element discretization. We now introduce a conforming finite element discretiza-
tion of (Pg.s5), (5.5a-h), which satisfies a discrete analogue of (5.8). As noted in Section 5, we
cannot use S9 with the desirable property (4.6) to approximate o, s, as we now have the added
diffusion term. In the following, we choose

(6.1a) WL=W:cCcW or Wy"cw,

(6.1b) Qr={¢€eCD) : q|x,€P1 k=1,....Ng} CQ,

(6.1c) St ={pc[CDNI: ¢ |k, € P k=1,...,Ng}CS
(6.1d) and V%L:{'UGW}L : /quivvd:c:0 quQ,lL};

where W# is defined as in (4.3a) and, on recalling the barycentric coordinate notation used in
(4.4),

d
d
(6.2) Wyt ={velCDNW: vk |P @span]:[nf] k=1,...,Ng

=0
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The velocity-pressure choice, W7 x Q}, is the lowest order Taylor-Hood element. It satisfies
(4.1) with W9 and QY replaced by W2 and Qj, respectively, provided, in addition to {75 }r>0
being a regular family of meshes, that each simplex has at least one vertex in D, see pl77 in
Girault and Raviart [16] in the case d = 2 and Boffi [10] in the case d = 3. Of course, this is a very
mild restriction on {75 }n>0. The velocity-pressure choice, V\/,ll’Jr X Qf,, is called the mini-element.
It satisfies (4.1) with W9 and QY replaced by \?V,ll"Ir and Q7 respectively; see Chapter 11, Section
4.1 in Girault and Raviart [16] in the case d = 2 and Section 4.2.4 in Ern and Guermond [15] in
the case d = 3. Hence for both choices of W}, it follows that for all v € V there exists a sequence
{vn}h>0, with vj, € V}, such that

6.3 li — =0.
(6.3) hg& v ”h||H1(D)

We recall the well-known local inverse inequality for Q},

(6.4) lalivo < Ol [ lalde Ve Qh k=L Nk
Ky,
= Il SCIKAT [ Ixllde WxeSh k=L..Ne.
K
We recall a similar well-known local inverse inequality for S} and V}
(65&) HV(ﬁHLz(Kk) < Ch;ln(leg(Kk) V(bE S}ll, k= 1,...,NK,
(6.5b) Vol 2y < Ch 0l eeyy Yo €VE,  k=1,...,Ng.

We introduce the interpolation operator m, : C(D) — Q;, and extended naturally to m :
[C(D))&** — S}, such that for all € C(D) and ¢ € [C(D)]3*¢
(6.6) mn(Pp) =n(Pp)  and  m@(F)=¢(F)  p=1,...,Np,
where {Pp}évjl are the vertices of 75. As ¢ € S} and ¢ € Q} do not imply that Gj(¢) €
S;, and G% (1 — %) € Q}, we have to test the finite element approximation of (5.5¢,d) with
— s hlG5(o s,)] € S), and s&zm [Gg (1 - QZ'%)} € Qj, respectively, where o 5, € S},

and ¢" 5, € Q) are our finite element approximations to o, and gas at time level ¢,,. There-
fore the finite element approximation of (5.5¢,d) have to be constructed to mimic the results

(5.9)~(5.13a,b), when tested with —s577mn[G5(0 5,,)] € S}, and 55778 {Gg (1 - Qg‘b“’h)} € Q},

Wi Wi
respectively.

In order to mimic (5.10) and the (P, s) analogue of (3.20), we need to use numerical integration
(vertex sampling). We note the following results. As the basis functions associated with Qj and

S} are nonnegative and sum to unity everywhere, we have, on noting (1.5b), for k = 1,..., Ng
that
(6.72) [mn[p ]l < mnlllll [[4]l]
< [mullll™ 1775 [l 117 on Ky, Yo, ¢ € [C(KR)IE,
(6.7b) Imnll* < mnlllpll*] on Ki, V¢ e [C(Kp)g™,

where 71, 12 € (1,00) satisfy 77! +r5 ' = 1. In addition, we have for k = 1,..., Nx that

(6.8) / |\x|\2da:s/ wh[nxmdmsc/ Ix|?dz  vx €Sk
Kk Kk Kk

The first inequality in (6.8) follows immediately from (6.7b), and the second from applying (6.4)
and a Cauchy—Schwarz inequality. Of course, scalar versions of (6.7a,b) and (6.8) hold with
[C(K})]2*® and S}, replaced by C(Kj) and Q}, respectively.

Furthermore, for later use, we recall the following well-known results concerning the interpolant
mp for k=1,..., Nk:

(6.92) (I = 7n)qllwroe () < Chlglweee () Vg € W®(Ky),
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(6.9b) (I = mn)[q1 @2l L1 (i) < CRENVallLa ) IVl L2k,
< Che @il Va2l L2k Va1, ¢ € Qj.

In order to mimic (5.11) and (5.12), we have to carefully construct our finite element approxima-
tion of the advective terms in (5.5¢,d). Our construction is a non-trivial extension of an approach
that has been used in the finite element approximation of fourth-order degenerate nonlinear par-
abolic equations, such as the thin film equation; see e.g. Griin and Rumpf [17] and Barrett and
Niirnberg [2]. Let {e;}¢; be the orthonormal vectors in R?, such that the j** component of e;
is 045, 4,5 = 1,...,d. Let K be the standard open reference simplex in R¢ with vertices {131-}?:0,
where P, is the origin and P = e;,i=1,...,d. Given a simplex K}, € Tj, with vertices {PF}%,
then there exists a non-singular matrix Bj such that the linear mapping

(6.10) By :% € R~ P} + Bia € R?

maps vertex ]3Z to vertex Pik, 1=0,...,d. Hence By maps K to Kj. For all n € Q}L and Ky € Ty,
we define

(6.11) @) :=nBr@) VEecK = VnBr@)=BI""'Vi@) vVzeck,
where for all Z € K
~ 0 . o~ o~ )
(6.12) [Vii(@)]; = 5= i@) = i7(Py) = (o) = n(Pf) = n(Py)  j=1,....d.
J

Such notation is easily extended to ¢ € S}.
Given ¢ € Q}, and Ky, € Ty, then first, for j = 1,...,d, we find the unique Af%(@) € R, which
is continuous on ¢, such that

N U o . _
(6.13) AS ;@ %jﬁh[Gé(tI)] = %jﬁh[Ha(Gfs(Q))] on K,

where (Tp,1)(Z) = (mpn)(Brx) for all T € K andne C(K}). We set
Hs(G5(a(P))) — Hs(Gy(a(F))) :
- Tk (o Ahh R 0 if Bs(a(Pf)) # Bs(a(Py)),
(6.14) 0.4(@) = G5(q(P})) — Gs(a(Fy))
Bs(a(P)) = Bs(a(Fy)) if Bs(q(Pf)) = Bs(a(Fy)),
where we have noted that G5(8s5(s)) = G5(s) for all s € R and Gj(-) is strictly decreasing on
[0, 00). Clearly, A§7j(qA) €R,j=1,...,d, satisfies (6.13) and depends continuously on q |,
Next, we extend the construction (6.14) for a given ¢ € S}, and Ky, € Ty, to find for j = 1,...,d
the unique /A\’g ;(#) € RZ*? which is continuous on ¢, such that

(6.15) R,(@) s 5 lGyB)] = gl (G5 (@) on K.
To construct /A\gij () satisfying (6.15), we note the following. We have from (5.7) and (1.9) that
(6.16)  Bs(¢(Py)) : (G5(d(P)) = Gi((Fy))) < tr(Hs(G5(p(P))) — Hs(G5((Fy)))
< Bs(@(Fy) : (G5(o(P))) — Gi(o(Fy))).

Since G5(B5(s)) = Gj(s) for all s € R, it follows from (3.4e) that
(6.17)  — (Bs(o(P})) = Bs(o(FY)) + (G5(d(P))) = Gi((Fy)))

= —(Bs(p(P))) — Bs(¢(Fy))) : (G5(Bs(o(P)))) — G5(Bs(p(Fy))))

> 62||G5(55 ($(P)))) — G5 (Bs (S (PO
Therefore the left-hand side of (6.17) is zero if and only if G%(8s (gb(Pf))) = G%(Bs((PF))), which

is equivalent to B5(¢(Pf)) = Bs(¢(P§)) as Gj(-) is invertible on [6, 00), the range of 5(-). Hence,
on noting (6.12), (6.16), (6.17) and (1.3b), we have that

(6.18a) A (d) := (1 — A5 )Bs((PF)) + AL B5(d(PF))
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it (Bs(D(P))) = Bs(d(Fy))) : (G5((Pf)) — G5(p(Fy))) # 0,
(6.18b)  Af;(9) := Bs(d(P)) = Bs((F))

it (Bs(d(P;)) — Bs(d(Fy))) : (G5(d(P)) — G5(#(Fy)) =0
satisfies (6.15) for j = 1,...,d; where )\57]- [0,1] is defined as

tr(Hs (G5(o(Py)) — Hs(G5(d(Fy))) — Bs(d(Pf)) = (Gi((PF)) — G5((Fy)))
- :

e =
> (Bs(D(Fy)) — Bs(d(P)))) : (G5(d(Pf)) — G5(o(F)))
Furthermore, /A\’gj(:b) € ]Rgx‘i, j=1,...,d, depends continuously on ¢ |x, .
Therefore given ¢ € Q,lI and ¢ € S,ll, we introduce, for m,p=1,...,d,

d

(6.192)  Asmp(q) Z Mo A (@ (Bl € R, on Ky, k=1,...,Nkg,
d ~

(6.19b)  Asmp(@) = > [(BE) Mmj M (@) [BY1;p eRE? on Ky,  k=1,... Ng.
j=1

It follows from (6.19a,b), (6.13), (6.15) and (6.11) that

(6.20) Asm,p(q) = B5(q) Smps Asmp(@) = Bs(@) Omp m,p=1,...,d;

and form=1,...,d
5 / 9 /

(6218“) ZA6W7P [G ( )] 81' ﬂ-h[Hé(GS(q))] on Kka k: 1)"'7NK3

(6.21]2)) i/\ém (gb) : iﬂ'h[Gg(QZ))] = iﬂ'h[tr(Hg(Gg(d))))] on Kk k=1,... NK.

= b Oxyp 0T ’ R

For a more precise version of (6.20), see Lemma 6.4 below. Of course, for (6.19a) and (6.21a) we
can adopt the more compact notation on Ky, k=1,..., Nk,

(6.22)  As(q) = (BF) "' Ns(@) BY ~ Bs(a) I = As(q)Vmi[G5(q)] = Vma[Hs(G5(q))],

where A%(7) € RE* is diagonal with [A%(@)];; = A5 (), 5 =1,...,d, so that As(q) € RZ*? with

[As(Dlmp = Ns.mp(q), myp=1,...,d.
Finally, as the partitioning 7}, consists of regular simplices, we have that

(6.23) IBOHIBEI <G, k=1,...,Nk.

Hence, it follows from (6.19a,b), (6.23) and (6.18a,b) that for k =1,..., Nk
(6.24a) [As.mp(@l| =) < ClmnlBs(@llL=(xcr)  Va € Qi
(6.24b) s @) < C lmnlBs (@ 1) ¥ € S

In order to mimic (5.13a,b), we shall assume from now on that the family of meshes, {75 }r>0,
for the polytope D consists of non-obtuse simplices only, i.e. all dihedral angles of any simplex in
Tr are less than or equal to §. Let K}, have vertices {Pk}j _o, and let nj-c (z) be the basis functions
on K, associated with Q} and S}, ie. 77] |k, € P1 and n; k(pPF) = dij, 4,7 = 0,...,d. As K} is
non-obtuse it follows that
(6.25) Vi -V <0 on Ky, i,j=0,...,d, with i# j.

We then have the following result.

Lemma 6.1. Let g € C%'(R) be monotonically increasing with Lipschitz constant gri,. As Th
consists of only non-obtuse simplices, then we have for all ¢ € Q},, ¢ € S}, that

(6.26)  gLip Vrnlg(@)] - Vg > [Vanlg(@lI®  and  guip Vrnlg(@)] = Ve > [Vrnlg(9)]|?
onKk, kil,...,NK.
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Proof. See the proof of Lemma 5.1 in [1]. O

Of course, the construction of a non-obtuse mesh in the case d = 3 is not straightforward for a
general polytope D. However, we stress that our numerical method (PaA’t& ) see (6.34a—c) below,
does not require this constraint. It is only required to show that (Pﬁf& ,) mimics the free energy
structure of (Pq,s5)-

6.2. A free energy preserving approximation, (PaA’t&h , of (P,,5). In addition to the as-
sumptions on the finite element discretization stated in subsection 6.1, and our definition of At
in subsection 4.1, we shall assume for the convergence analysis, see Section 7, that there exists a
C € R+ such that

(6.27) At, <CAt,_1, n=2,...,N, as At—0,.

We note that this constraint is not required for the results in this section, in particular Theorem
6.1.

With At; and C as above, let Aty € Rs g be such that Aty < CAty. Given initial data satisfying
(3.14), we choose u)) € V} and o¥) € S} throughout the rest of this paper such that

(6.28a) / [uf) - v+ Aty Vu) : Vo] de = / u’ vdx Vv €V},
D D

(6.28b) / [Th[o) : x] + Aty Vo, = Vx| dz = / o’ :xdx Vxes;.
D D

It follows from (6.28a,b), (6.8) and (3.14) that
(6.29) /D [ubll® + lobl* + Ato [[[Vup|® +[IVay|*] ] de < C.

In addition, we note the following result.
Lemma 6.2. Forp=1,..., Np we have that
(6.30) Ttin [€11” < €7 0h(Py) € < o €17 VEERT  and  tr(af(Py)) < b*.

Proof. For the proof of the first result in (6.30), see the proof of Lemma 5.2 in [1].
We now prove the second result in (6.30). On choosing x = In, with n € Q},, in (6.28b) yields
that zj, := tr(a))) — b* € Qj, satisfies

(6.31) / [mhlzn ] + AtoV iz - V) da = / zndx vn € QY

D D
where z := tr(o?) — b* € L°°(D) and is non-positive on recalling (3.14). Choosing n = mp[2p]+ €
Q},, it follows, on noting the Q}, version of (6.8) and (6.26) with g(-) = [-]4, that

(632) /D [ﬂh[zh]Jr]Q + Aty HVW}L[Z}I]JFHQ} de < /d [7Th [[Zh]i} + AtgVzy, - Vﬂh[zh]Jr] dx

= / z7plzn)+ de < 0.
D

Hence 7 [21]+ = 0 and so the second result in (6.30) holds. O
Furthermore, it follows from (6.28a,b), (6.29), (3.14), (6.3) and (6.9a,b) that, as h, Atg — 0,
(6.33) u) — u’ weakly in [L*(D)]? and o) — o weakly in [L?(D)]4*%

Our approximation (P25 ) of (Pa,s) is then:
(Pﬁ,tzi,h) Setting (ug,&ha o-g,(s,h’ Qg,&h) = (u?m U?ﬂ tr(a%)) € Vllz X (Sllz mS>07b) X Qilw with u?z and

o) as defined in (6.28a,b), then for n = 1,..., Ny find (U 5.1 Tir 5.0 Cov5m) € Vi xS}, x Q} such
that for any test functions (v,¢,n) € V], x S} x Q},
(6.34a)

J,

U 5.h ~ Yoo Re n—1 n n n—1
Re | 20— )y =2 [((ugh Vol ) v =l (w5 - Vo)
n
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g
+ (1 —e)Vugs, : Vo + Wi [5(0h 510 O 5.1) As(Tr 5.0 Casn) Bs(0t50)] : Vo | da

= <f7l, /U>H(%(D)a
(6.34D)

n—1
ol —0 As(o™ <, 0" o :
/Wh o,6,h .8,h b+ s(Onsn Qoz,é,h)'ﬂ5( aon) b dae

4 / (VT 5 2 Veb— 2V 5 - w0 5 0% 5) 6 Ba(0™ 5.0)] dee
D

d d
n op
/ Z Z Uy, 6h A51m7p(‘7a,(5,h) : Dz dx =0,
P m=1p=1 »
(6.34c)
/ - On.6.h — QZ}}h N tr (Aa(dg,&h, 9275,;1) 65(03,&,}1)) .
D h At, n Wi n

+/ [QVQaM Vi — QVUaah mh[ks (o a,é,hvQg,é,h)nﬂ5(ag,6,h)” dx

ga d,h 677
+b/ le; s lm Agmp<1 . > Ba, =0

In deriving (Pmé,h)’ we have noted (4.14), (1.5a), (6.19a,b) and (6.20). We note that on replac-
ing As (o) 5 5, t1(0% 5.)) With I — Gi(oy 55) and k(0 54, 04 5.4) by 1 then (PR ), (6.34a,b),
collapses to the corresponding finite element approx1mat10n of Oldroyd-B with stress diffusion
studied in [1], see (5.34a,b) with no L cut-off there.

Before proving existence of a solution to (Pa 5.n), we first derive a discrete analogue of the
energy bound (5.8) for (Pg,s).

6.3. Energy bound. On setting
Re
(6.35)  Fyn(v, ) : / ol dz oo [ [bGs (1= 1) + 1r (Ga() + D)) da
D
V(v,¢,n) € Vi x S}, x Q},
we have the following discrete analogue of Proposition 5.1.

Proposition 6.1. Forn=1,..., Ny, a solution ( 060 T o5 Qo s h) € VI xSt xQ} to (P4, s, n)s
(6.84a—c), if it exists, satisfies

n n 7 n—1 n—1 n—1
Fé,h(ua,a,ha a6,k Qa,a,h) - F57h(ua,6,h’ T 0,8,k Qa,a,h)
At,

ul g — s P dz o+ (1—¢) / Va1 dee

(6.36)

2At
" e /D“h (4085 €5.00)" B0t 5)) | do

aed?

n %05,
*owi Jy [Ith[G3<aa,5,h>]||2 +wah [G; <1 . Thﬂ

2

dx

—_

n ,n 1+ Cp
< sy < 30 -9) [ 1VuslPde + 5 e o)

l\’)

Proof. The proof is similar to that of Proposition 4.1, we choose as test functions v = uy, 5 € Vi,

& = 5 mnlG5(00 5.,)] €S and ) = [G’ (1 — fas, ’1)} € Q} in (6.34a—c), and obtain, on
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noting (4.15), (3.4a,d), (3.6), (6.26) with ¢ = —G% having Lipschitz constant 62, (6.21a,b) and
(6.35) that

(6.37)

—1 —1 —1
n o n > F57h(ug,6,h’o'g,6,h’ Qg,é,h) - Fé,h(ug,zs,haag,&ha Qos,h)
(f" ug 50 HL (D) = A
n

Re _
Fonr |t wig P e+ (o) [ Va0 de
n JD D

" ﬁ /D m [t ((As(0 50 0000))” Bo(050)) | da

aed? . ’
*towi ['V”h[GS(%,a,h)]IQwLbHth [Gg <1 _ bhﬂ

2

] dx
€ n— n %06,

b [ wiate Vo [ Gatot ) + ot (65 (1 522 ) ) aa.

The first desired inequality in (6.36) follows immediately from (6.37) on noting (6.1a,d), (1.12)
and that 7, : C(D) — Qj,. The second inequality in (6.36) follows immediately from (2.9) with
2= (1-¢)/(1+Cp). O

6.4. Existence of discrete solutions.

Proposition 6.2. Given (ugf&lh, O'Z;t,lha ng&lh) € V} xS}, x Q}, such that [, [tr(agf&lh) - ggg}h] da
= 0 and for any time step At,, > 0, then there exists at least one solution (“Z,é,ha o4 5.0 9276’,1) S
V] xS}, x Q} to (PaAﬁm), (6.34a—c), such that fD[tr(UZ@h) — o spldT=0.

Proof. The proof is similar to that of Proposition 4.2. We introduce the following inner product
on the Hilbert space V} x S} x Q},

(w, ,€), (v, 6,m)p :/D [w-v+mp:d+&n]de  V(w,,8),(v,¢,n) €V, xS) x Q.

Given (uf 3}, 003k, 0hsh) € Vi x S) x Qp, let F™ : Vi x S} x Q} — V} x S} x Q}, be such that
for any (w,,&) € Vi x S} x QF
(6.38)

(]-‘h(w,’l,b,f)v (’U, ®, 77))’];

v

w 7ug,76,1h €

Re AL v+ (1—¢e)Vw: Vo + ﬁﬂ'h [ks(2),€) As(p,€) Bs()] : Vv
R

+ 5 (5 Vw) o - w (@5 o)

+a[VY = Vo + V-V —2Vw : m [k5(4, €) [@ + nl] ﬂa(%b)]ldw

Yo L As(,€) Bs() £—ohsh tr (As(4,€) B5(¥))
+/D7Th|:<7>¢+T¢+ Atn 7]+ Wi ndx

d e 99 £\ 0 n
- /D Z Z[Ua,a,lh]m {Aé,m,p(d’) : oz, bAsm.p (1 - g) 8—;] dz — (f",v) g1 (p)

V(v, ¢,1) € Vj, X S}, x Qj.

A solution (ug,&h, T 51 Qo) 1O (4.13a-c), if it exists, corresponds to a zero of . On recalling
(6.19a,b), (6.18a,b) and (6.14), it is easily deduced that the mapping F” is continuous. For any
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(1,46.€) € V} x S}, x Q} on choosing (0, 8,1) = (.~ zizmlGy(W) i [G5 (1 5)] ). we
obtain analogously to (6.36) that

(6.39)

(press(o-siss o).

n—1 n—l n—
Féh(w P, E)_Féh( WU 5,n a,&,h’ga,ah ”w u” H da
2At a&h
1+CP

wlf de = 5| QW—Q/D [ ((40a8,€))% 85()) ] e
]dm.

10, oIl = [((v, o), (0, by m))l5] F = ( [ Lioi? + w167 + 1] dw)

If for any v € R, the continuous mapping F” has no zero (Up 5.1 Tt 5.1 O 6.n)» Which lies in
the ball

aed?

+ oW A [HVﬂ'h[G/&("/’)]lF “‘bHV“ [Gg (1 a %)}

Let

B = {(v,¢.m) € VE xS x Qb+ (v, ¢ m)llp <7}
then for such 7y, we can define the continuous mapping g,’; : B,}; — B,’Y‘ such that for all (v, ¢, n) € B,};

F(v, ¢,n) _
1F" (v, 1)1

By the Brouwer fixed point theorem, g,}; has at least one fixed point (w-,.,,&,) in B,’Y‘. Hence it
satisfies

(6.40) (s tp, |5 = (|G (w48, &) |1 = 5

In addition, ((w.,%,.&), (0,¢,1)0 = (G"(w,,%.,.&), (v, ¢,1))0 with (v,¢,1) = (0,1, 1)
yields that

(6.41) [lnw) ~€lde = [ filerh) - gzt e o
On noting (6.4), we have that there exists a p, € Rsq such that for all ¢ € S},
(6.42) 7l Il Mz ) = Imall@lP]ll oo p) < uh/ [ [ ¢)?] da

and an equivalent result holding for all n € Q}. It follows from (6.35), (6.41), (3.5), (3.7a), (6.42)
and (6.40) that

(643) F(S h(wva "/}'y? 5’)/

=B [l e oo [ [utw, - Gotw) -0 -6 (15 ) -] @z

gs(vv ¢a 77) =

> 5 [ iPae+ gz | [ il + g 1100 - a+ 3nip)
/||w7||2 (2d+3b)|D|

Wi

+ Wi [Im[l%l]llmm [l 1o + mlle Mooy [ mullel1ae]

" 2d + 3b)|D
= mm( 2e 4quh7) (/ [lwy )12+ 7a[ 1,12 + 16, 12]] dw) N E(Zivﬁ”'
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. {Re € 5 €(2d + 3b)|D|
=min | —, ——— -
2 " 4AWi upy 4Wi
Hence for all v sufficiently large, it follows from (6.39) and (6.43) that

h
€ 3
(6.44) (fh('w ., E), ('w , = oo TrlG5 ()], 5= Th [G’ ( ——V)})) > 0.
VTS T 2w e 2W b D
On the other hand as (w-,.,,&,) is a fixed point of gv, we have that

(6.45) <]:h(wvv¢'w§’7)’ (“’vvziwﬂh[(’%w ) g [G5( B %)D)};

fh ;/l)b 75 ; :
__H (w’Y v ’Y)HD/D[|wV|2_ﬁﬂh[¢ G5(¢) §7G6< _%)]]dw

v
It follows from (6.41), (3.5), (3.7b), and similarly to (6.43), on noting (6.42) and (6.40), that

616 [ [l = g, hw) - 6,65 (1- %) | ao

/D[nwvnﬂﬁm[w 1= +6 (6 (1-5) -1)]] ae

= /D [l 12 + oz [mal 18, ]+ 16,1] = 2(d + b)] | de
> min (1, ;> v - M

AWi ppy 2Wi
Therefore on combining (6.45) and (6.46), we have for all -y sufficiently large that
h
4 h __¢ / / _ 5_7
040 (Pl ) (w g Gl w6 (1-$)])) <o,

which obviously contradicts (6.44). Hence the mapping F” has a zero, (Up 5.1 Tov.o.h Qovon) € Bf;
for ~ sufficiently large. Finally, similarly to (6.41), it follows, on choosing (v, ¢,n) = (0,1, —1)

h
(]'—h( a,8,h aé,h?gg,é,h)v (”a‘ﬁﬂ?))p = 0, that fD[tr(ag,&h) - Qg,é,h] de = fD[tI‘(O'Z;S}h) -
o s, L]dz = 0. O
We now have the analogue of Theorem 4.1.

Theorem 6.1. For any 0 € (O,min{%,b}], Np > 1 and any partitioning of [0,T] into Np time
steps, there exists a solution {(uy, 5 1,, 0% 54 gg,é7h)}g§1 € [V} xS} x QpINT to (PaA’%ﬁ), (6.84a—c).
In addition, it follows for n=1,..., Ny that [} [tr(ag,57h) - QZ#M] dz =0 and

n n n 1 - m m— m
(6.48) Fon(wl g o sm0hsn) +5 0 /D [Relluflsy, — w52 + (1= &) Ao | Vuils ] da
m=1

2
]dm

+ 2\7\%2 mzzjl Aty /D Th {tr ((Aa(GZJ,ha QZa,h))Q ﬁ5(0$51h))} dz

aes? 1 m 2 , Qzéﬁ
 owi 2 Atm IV mlGs (el +b )| V| Gy (1 - =502

n

1+Cp m
< Fyn(up, o, tr(oh)) + 20 -2 Z Atoll £ -1 (py < C,
m=1

which yields that
(6.49)

max /D [lut snll® + lloa sull + 106 snl + 07" mn [llonsnl-ll + b= ohsnl-|]] dz < C;

n=0,...,Nr
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where C' is independent of a, as well as §, h and At.

Proof. Existence and the stability result (6.48) follow immediately from Propositions 6.2 and 6.1,
respectively, on noting (6.35), (3.1), (6.29), (6.30), (4.11a) and (3.14). The bounds (6.49) follow
immediately from (6.48), on noting (3.6), (3.4b), (6.35), (3.5) and that

(6.50) / h [b [(1 - gal’f’h) - Gs (1 - gal’f’h)} +tr(on s — G(;(agy&h))} dax
D
= / Th |:b |:1 - G§ <1 - gal;67h>:| — tr(Gg(O'Zy(;’h))] dx S C.
D

Remark 6.1. We recall that we have used S}, for the approzimation of o4 s in (Pi%’h , (6.84a-c),
due to the presence of the diffusion term in (5.5¢). Secondly, due to the advective term in (5.5¢),
one has to introduce the variable o 5, and its equation (6.34c) in (P% ) in order to obtain the
entropy bound (6.36). However, we now have a bound on wp[[b — o}, 5,]1-] in (6.49), as opposed
to [b—tr(oy,)]- in (4.87). Now, it does not seem possible to pass to the limit 6 — 0 in (Pﬁ%,h

to prove well-posedness of the corresponding direct approximation of (Py), i.e. (Pgth) without the

O

reqularization §, as we did for (P?fl) in subsection 4.5.
Finally, we note the following Lemmas for later purposes.

Lemma 6.3. For all Kj, € Tj, and ¢ € [O(Ky)|%*, we have, for r € [1,00), that
(6:51) [ m e+ m lighride <c [ |melr do
Ky Ky
Proof. Tt follows immediately from (6.4) that
19l + i 16111 de < 2150 bl sy < € [ Il
k k

and hence the desired result(6.51). O

Lemma 6.4. Let g € C*'(R) with Lipschitz constant grip. For all Ky € Ty, and for all ¢ € Qj,,
¢ € S}, we have that

©52) [ Imf3s(@)] - Ba(@Fdw | max [ snal6) = Ba(@) Sl de

.....

<ci [ |volaz,
Ky
©520) [ limlata)] - 9(a)|de < Ot i [ Vgl de
Ky, Ky,

and / Imnlo(@)] — g()|? dz < C g2y, 2 /K IVl da.

Ky

In addition, if g is monotonic then, for all Ky € Ty and for all q € Q}, we have that
(6.53) | Imls@) - gl de <t [ [Vmlgla)]|? de.
K. Ky

Proof. The results (6.52a) are proved in Lemma 5.3 of [1] for the case when s, A, p and Sj are
replaced by 3, Ay, p and S;, NS~¢. The proofs given there are trivially adapted to the present case.
In fact, the proof of the first result in (6.52a) in [1] is easily adapted to any function g € C%1(R).
Hence, we have the results (6.52b).

The result (6.53) is a simple variation of (6.52b) and follows on noting that
(6.54) Imnlg(@) = 9@l < - max | 1g(a(PF)) = g(a(PF)),

» J=Ys 0 g

where {PJ}4_ are the vertices of K. O
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7. CONVERGENCE OF (P ;) TO (P,) IN THE CASE d = 2

7.1. Stability. Before proving our stability results, we introduce some further notation. We
require the L? projector Ry, : V — V} defined by

(7.1) / (v—Rpv) - wdx =0 Vw € V;.
D
In addition, we require Py, : [L?(D)]4*¢ — S} defined by

(7.2) /wh[Phx:qb]dm:/x:qbdm Ve €S},
D D

It is easily deduced for p=1,...,Np and i, j =1,...,d that
1
(7.3) [(Prxlij(Pp) = —— / [Prxlij np de,
Jomp Jp

where 1, € Q} is such that n,(P,) = &, for p, r = 1,..., Np. It follows from (7.2) and (6.7b)
with ¢ = Pp X, in both cases, that

a9 [ IPadPde< [ mipadPde s [ xPde vxe LD
We shall assume from now on that D is convex and that the family {75 }n~0 is quasi-uniform,
ie. hy >Ch,k=1,..., Ng. It then follows that
(7.5) Rrvll 1oy < Cllvll g (p) Vv eV,
see Lemma 4.3 in Heywood and Rannacher [18]. Similarly, it is easily established that
(7.6) IPrxlm o) < Clixlm oy Yx € [HY(D)JE*.

We also require the scalar analogue of Py, where d = 1 and Sj is replaced by Q}, satisfying the
analogues of (7.2)—(7.4) and (7.6).

Let ([H'(D)]2*?) be the topological dual of [H'(D)]4*¢ with [L?(D)]2*? being the pivot space.
Let & : ([HY(D))4*?) — [HY(D)]2*? be such that £x is the unique solution of the Helmholtz
problem

@) Ve Ve Ex0 9l de= (B Vo DI,
D
where (-, ) g1 (py denotes the duality pairing between ([H(D)]3*?)" and [H*(D)]3*?. We note that

(7.8) O EX) o) = IExlinpy  Yx € (HY(D)F ),

and ||€ || g1 (p) is a norm on ([H*(D)]2*%)". We also employ this operator in the scalar case, d = 1,
ie. £: HY(D) — H(D).

Let V' be the topological dual of V with the space of weakly divergent free functions in [L?(D)]¢
being the pivot space. Let S : V' — V be such that Sw is the unique solution to the Helmholtz-
Stokes problem

(7.9) /D [V(Sw) : Vv + (Sw) - v] dz = (w, v)y Yv eV,

where (-, )y denotes the duality pairing between V' and V. We note that

and [|S - || g1 (p) is @ norm on the reflexive space V'.
We recall the following well-known Gagliardo-Nirenberg inequality. Let r € [2,00) if d = 2, and

r € [2,6]if d =3 and 6 = d(3 — 1). Then, there exists a positive constant C(D, r,d) such that

(7.11) 9]l oy < C@, 7, d)nll a2l 10l 3 )y Vi € H'(D).
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We recall also the following compactness results. Let )y, ) and ) be real Banach spaces, ),
i = 0,1, reflexive, with a compact embedding )y — Y and a continuous embedding YV — ).
Then, for u; > 1,7 =0, 1, the following embedding is compact:

(1.12) {ne L0, Ts3) : ST € (0.7 01) } = 190,73

see Theorem 2.1 on p184 in Temam [25]. Let Ay, X and A} be real Hilbert spaces with a compact
embedding Ay — X and a continuous embedding & — A;. Then, for v > 0, the following
embedding is compact:

(7.13) {ne€L*0.T:X) : Din € L*(0,T;X1) } — L*(0, T3 X),

where D]n is the time derivative of order 7 of 1, which can be defined in terms of the Fourier
transform of 7; see Theorem 2.2 on pl186 in Temam [25].
Finally, we recall the discrete Gronwall inequality:

(7.14) (107 + (% < ()2,
(P4 (s <Y M)+ () m>1
n=0 n=0
S P E <en(X )Y@ m>1
n=0 n=0

Theorem 7.1. Under the assumptions of Theorem 6.1, there exists a solution {(ug,&hvag,&h’
nggﬁh)}gil € [VI x S} x QEINT of (Pgﬁt&h , (6.34a-c), such that the bounds (6.48) and (6.49)
hold.

Moreover, if d =2, (6.27) holds and At < C(¢™Y) 'S h2, for a ¢ >0 and a C,(C™!) € Rug
sufficiently small, then the following bounds hold:

(7.15a)

Nt
masx /D mlllot sl dz + > /D (At all Vol 5,2 + mullot sn — ohshl?]] de < €,
n=1

n=0,...,Nt

(7.15b)

Nt
max, [ mllatonP e+ [ [t alVatslP +mllesn - b de < C.
n=1

(7.15¢)
Nt 2 2 4 Qn sh 4
>t 353 [smolean e+ [roms (1 E2)[| Jas<c
n=1 m=1 p=1 L(D)

Proof. Existence and the bounds (6.48) and (6.49) were proved in Theorem 6.1.
On choosing ¢ = o7, 5, in (6.34b), it follows from (3.2), and (4.15), on applying a Young’s
inequality, for any ¢ > 0 that

(7.16)

1 _
! /D [0 5l + 07 5. — 075 2] das + Aty /D Vo™ 5 0l1? da

2
At, %a n
v [ [o (1 282 ) (a0 o

1 _
<5 [ mllosh P e+ 200 [ Fulsy s mleaoh s 0 o Ba(o )] de

Atn QZ,S, n n n
3 o [a (120 ) o (Gu(oton) (s(oan) - otisn) | o
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n
aaa&h

d d
9% sl + At [ 30 Sk o) : FEE de
p

m=1 p=1

+

Aty,
Wi

1 Atn
§§ Fh[H”MhH ]dw‘FWHUa,a,hHLI(D)

+C6t Atn/DWh [tr (Bs(o5.0) ‘6(5(0’3,6,}1) - Ug,ﬁ,hm de

+2At, ||VUZ,5,h||L2(D) ll7h [’16(0'2,5,11, QZ,M) UZ,M 55(‘72,6,h)]”L2(D)

+ C Aty ||“Z,_6,1h”L%1(D) HAé,m,p(Ug,a,h)||L2+<(D) ||VUZ,5,hHL2(D)-
We deduce from (3.3), (1.8), (6.7b), (1.5b), (5.2), (5.3), (6.51) and (7.11), as d = 2, that
(7.17a)  tr (Bs(al 50) |Bs(onsn) —onsn|) <6 tr(|Bs(alsn) —ohsnl) SCOE+ ol sulD),
(7.17b) Hﬂ-h[’%(ag,&,ha 92,5,11) UZ,M 56(‘72,5,11)]”%2(73)

< /7>7Th [Iks(0 5.1 00 50) T 50 Bs(o 5.0)I°] da
<Cb [ m [t sl 160t 5] de < (63 <[ wh[||az,5,h||31dm)

<C (0 + ot snlism) <C (8 + 10 sllfe) ok sl )
Similarly, as d = 2, it follows from (6.24b), (3.3), (6.4) and (7.11) that for all { > 0
(7.18)

Mg (s ) 1255 <Z|Kk|||Aamp( a5h>||Lm<Kk>_cZ|Kk||m Bs (0 s > e
k=1

n 2 n n
< C [0 4 ot snlliemy| < C+CONOE sal3e) 17554 l51 )
In addition, as d = 2, we note from (7.11), (1.13) and (6.49) that for all ¢ > 0

(7.19) ||u2751h|‘L%2<il( D) <O flul 5h||£;(<1)) lug 6hH12{+1C(D) i [Vug, 61hH2+<

Combining (7.16)—(7.19), yields, on applying a Young’s inequality, that for all { > 0
(7.20)

/D Thl 107 52 + 07 50 — 075 2] Az + Aty o /D Vo 512 de

s/pmnamn | de

+C(CY) Aty o~ (0 {1 + HV/u’a&hHLZ('D) + HvuaéhHLz(D)} (1 + Ho'g,é,hH%Z(D)) .

Hence, summing (7.20) fromn =1,...,m for m =1,..., Np yields, on noting (6.7b), that for any
(>0

(7.21) /D o a1 de +a S Aty /D Vo sl dz+ 3 /D Tulllon s — o3| dz
n=1 n=1

= / mllloh|?]dz + C(¢7h) a0
D

+C(¢Y) a~(F9) ZAt

n=1

1Y Ve sl [ ot sl lda
k=n—1

Applying the discrete Gronwall inequality (7.14) to (7.21), and noting (6.27), (6.8), (6.29), (6.5b),

(6.48), (6.49), and that At < C,(¢™')al*C h2 for a ¢ > 0 where C,(¢1) is sufficiently small,

yields the bounds (7.15a).
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Similarly to (7.16) on choosing 7 = g} 5, in (6.34c), it follows from (4.15), (1.3b), (1.4b) and
(1.8), on applying a Young’s inequality, for any ¢ > 0 that

(7.22)

5 |l anl +1eon - i Plde + Ao [ 965, de

1
<5 [mnlleishl?1de 280, [ Vulpn s mlesoh o o an) o Aol o)) da
D
Aty

Wi / 7w [tr (As(op 50, 00 5) Bs (0 51)) 0 5] de
D

d n n
S5  Qasn 904

b ox,

IN

5/”’1“%5}1 |dz + 2 Aty [|Vug 5 pllz2p) |7nlks (0 6.1 06.5.0) O Bs (T o s.1)ll L2(D)
D

_ On.6.h
C Aty ||l w5 || 2 Agmp |1 — 220
+ Hua,&hHL%l(D) H 8m,p ( )
At" n n 2 n 1 n 2 n
+ oWi D”h [tr ((A5(Uoz,6,h’ Qa,é,h)) 56(0a,5,h)) + d> (Qa,a,h) Hﬁ5(0a,6,h)”} de.

Similarly to (7.17b), as d = 2, we deduce from (6.7b), (5.2), (5.3), (3.3), (6.4), (7.11) and (7.15a)
that
(7.23)

HVQZ,J,}LHLZ(D)

L2+¢(D)

||7Th[’€6(02,5,ha QZ,M) QZ,S,h 56(02,5,0]”%2(73)3 Cb /DWh [(Qg,m)Q ||56(UZ,M H]

< C(1+ ol snllsm)) llon snllZsm

<C (140 anlin ) 085l 2oyl 05505 oy
Similarly to (7.18), as d = 2, it follows from (6.24a), (3.3), (6.4) and (7.11) that for all { > 0

n 2+¢
(7.24) HA(S,W (1 — Q‘“—;")

Combining (7.22)—(7.24) and (7.19), yields, on applying a Young’s inequality, that for all { > 0
125) [ mllaonlP +letan— i3 P 1o+ Atva [ Va7 de

< /D mhl | snl? ] de + 2 At IV w5472
Aty, . . ) .
+ W / {tr ((A5(aa,6,h’ Qa,é,h)) 66(0'@75,;1))} dx

+C(Ch) Aty a” 1O {1 + ot snllinm + IVuns hHL?(D)} (1 + loa,s hH%Z(D))
Hence, summing (7.25) from n =1
that for any ¢ > 0

<C+OQ) llonsullF2(my ||QZ,5,hH§p(D)-
L2+¢(D)

,mform=1,..

., Nt yields, on noting (6.7b) and (6.48),

(7.26) /D o5l de +a S Aty /D IVon sl dz+3 /D mul]0% 5 — 02517 da
n=1 n=1

< [ ml(uel)? e+ C(c a9

+C( a9 ZAt [1+Ho'azShHHl(D)Jr”V’u’aéh”L?(D)} /DﬁhHQZ,&,hF]dm
n=1
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Applying the discrete Gronwall inequality (7.14) to (7.26), and noting (6.27), (6.30), (6.5a,b),
(6.48), (6.49), (6.8), (7.15a), and that At < C,(¢"1)al*Sh2, for a ¢ > 0 where C,((7}) is
sufficiently small, yields the bounds (7.15b).

Finally, the desired result (7.15c¢) follows immediately from (7.18) and (7.24) with ( = 2, on
noting (7.15a,b) and (6.8). O

Remark 7.1. Our final convergence result will be restricted to d = 2 for the same reason as
why our result for Oldroyd-B in [1] was restricted to d = 2. For example, the control of the term
(7.17b) necessitates the restriction to d = 2. This could be overcome for FENE-P by replacing the
regularization Bs in (Pos), (5.5a-h), by B2 and using test functions based on G in place of Gy,
where (G8)'(s) = B4(s) for all s € R. On making a similar change to our numerical approzimation
(PZ’SM), (6.84a—c), it is then possible to prove the analogues of Theorem 6.1 and Theorem 7.1 for
d =2 and 3 with no restriction on At. One can then establish analogues of Lemmas 7.1, 7.2 and
Theorem 7.2, below, but now the limits involve the cut-off b, i.e. u’, b and o%. Moreover, it
does not seem possible to establish that 0%, = tr(a?), as we now have Ag,m,p in place of Asm p in
the analogue of (7.60). Hence, in taking the limit §, h, At — 04, the last term in the analogue of
(7.61) would have b 3° (1 - %) +tr(B%(0?)) instead of —(0% —tr(a?)), where B8°(s) = min{s, b}.
Therefore, the extension of the convergence analysis in this paper to d = 3 and with a weaker
restriction on At will be a topic of further research.

Lemma 7.1. Under all of the assumptions of Theorem 7.1, the solution {(ug’57h,ag’57h,
9376,,1)}2@1 of (Pﬁ%,h), (6.34a—c), satisfies the following bounds:

9

& ul 5~ Uns,
n=1 H'(D)
N n n—1 2 Nr n n—1 2
Fas.h — %a,8,h Oa,5,h — Ca,5,n
. n — — n — — S 9
(727b) > Aty ||E < AL ) +Y At ||E < AL ) C
n=1 HY(D) n=1 H'(D)

Nt
(7.27¢c) Z Aty H7Th [Hé(ag,a,ha Qg,é,h) Aé(ag,a,ha Qg,a,h)ﬁé(ag,a,h)] HQL2(D) <C,

n=1

Nr .
(7.27d) ; Aty ||7Th [A5(05 5.5 0a6.n) Bs(T0,5.1)] HZ%@ <C,

where ¥ € (2,4] and C in (7.27a,c) is independent of o, as well as 6, h and At.

Proof. On choosing v = Ry, [8 (%52752“)] € V} in (6.34a) yields, on noting (7.1), (7.10),
(7.5) and Sobolev embedding, that

(7.28)
Ug 5 — UZ_(slh ’ Ug 5 — UZ_(slh Uy 55— U’Z_élh
8 1Yy At 1Yy — Re/ 'Yy At 1Yy . Rh S 1Yy At 1Yy dw
n D n n
H(D)

n n—1
€ n n n n n Ua,s,n — Ya,8,n
= W /Dﬁh [Hls(o'a,zi,hv Qa,&,h) A5(Uo¢,6,h7 Qa,&,h) 55(0a,5,h)} 1V [Rh |jS < >‘|‘| de

u” s, —u
(16)/Vu35hzvl7zh[3<w dz
. »0, At,,
mn n—1
Uy 5,n — Ua 5,
Uy 10y d

Re

Re _ "
Y ((uz,a,lh ) V)“a,a,h) “Rn
D
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n n—1
Re n n- Tt
+ > Dua,a,h : ((“a,é,lh V) th lS <A—tn>H> o
u” —ul)
+ <fn,Rh ls <W
" Hj (D)

2
C { HWh [“6(02,5,ha Qg,é,h) Aé(ag,é,ha Qg,é,h) 56(02,5,h)] HL2(D) + Hvug,é,hH%Z(D)

+ || g §h|| g s.nll ||L2(D) + || [luy, 6hH [Vug sl H%1+9(D) + |fn||§11(p)]a
where 6 > 0 as d = 2. Tt follows from (6.7b) and (5.4) that
n n n n n 2
(729) Hﬂ-h ['%6(‘7&,5,}1’ Qa,&,h) A5 (aa,&h’ Qa,&,h) 66("&,5&)} ||L2(’D)

2
< [ 7 [l o 2t A5(@ o) B0 ] do

<b /D Th {tr ((Ag(dgﬁgyh, 92157}1))2 ﬂ&(ag,d,h))} de.

Applying the Cauchy—Schwarz and the algebraic-geometric mean inequalities, in conjunction with
(7.11), for d = 2, and the Poincaré inequality (1.13) yields that

n

(7.30) et i sl 12y < Mt sl sy ludsnllZaoy < 3 D lusnlliaeo)

m=n—1
n
<C > [ludsaliem) IVuisiliem |-
m=n—1

Similarly, we have for any 6 € (0,1), as d = 2, but now using a Young’s inequality

(7.31) 12y 520 Ve s 0l T 00 oy < 2 50012 DN IVl 5 0122 (p)

2(1-8) 46
< Cllug s hHLé(%) Vg 5l 20 VUl snll e o)

2(1-0) n 2(1+36)
— 1 9 1+6
< C||ua 5hHL 2 E ||Vu$5,h||L2(+D) .
m:n—l

On taking the % power of both sides of (7.28), multiplying by At,, summing from n =1,..., Ny
and noting (7.29), (7.30), (7.31) with § = 2=2 « ¥ = 28133” € (2,4), (6.27), (4.11a), (6.48),
(6.49) and (6.29) yields that

—1
S <“Z,a,h - “Z,&,h)
A
fn H' (D)

jzj:lAtn /Dm [tr ((Aé(o'g,&,ha 03’51’1))266(03,%))} dw] 5

4
[

Nt
(7.32) > At
n=1

N~ %
Z At, [Hvug,a,hH%Z(D) + ||fn|§{1(p)ﬂ
n=1

n 2
+C [1 + _max (|ua,6,h||L2(D)):|

Nt
Z Aty |VUZ,5,h|%2(D)]
n=0
<,
and hence the bound (7.27a) with C' independent of a.
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Choosing ¢ = Py, [5 <%>} €S} in (6.34b) yields, on noting (7.2) and (7.8), that

€ Onsh— GZ:i,lh
At,
H(D)
Tosh = Oa 61h

— T O‘”—O‘ Py,
= —L/ iy £ M dz

WiJp " At,

n n—1
o -0
— a/ Vol sh £ <—a’5’h a,zi,h)H dx
D o Atn
n 0 on Tash~ Todin n
+2 Vua,zi,h *Th ng(o’a,&ha Qa,&,h) Ph & T 55(0a,5,h) dz

0 Ops, *UZ,_,I
A R M A=)

m=1 p=1
It follows from (1.5a,b), (1.3b), (1.4b) and (1.8) that for any ¢ € Rxq

(7.34)
n n—1
Onsh o-a,zi,h

D
n n n 1 Ol sh ™ T n 1
1As(oa.s,n 0a5n) [Bs(oasn)l2| ey v 11Bs(asn)?l| de

S/Wh
D

<¢t /Dﬁh [tr ((As(at.5.s 0 6.0))° Bs(060))] da

+§d%/pwh 5( ““ % )]

Similarly to (7.17b), it follows from (6.7b), (1.5b), 5.3) an ) that

2
sh— g S.h
Th [H5(UZ,6,ha QZ,&,}L) Ph & ( = = )] a 5h ] |
L?(D)

SC/T( £ a5h a5h
_— ( At,

In addition, (3.3), (6.4), (6.8) and (7.15a) imply that for all ¢ € S},

(7.33)

n n 1
Oash— %ash

Aé(ag,zs,h, QZ,&,h) 56(02,5,0 : Ph

V | Py,

Pr

A5(UZ,5,ha QZ,&,h) 56(0'2,5,h) : Pn

P

P, 185 (o aah )| de.

(7.35)

P

2
185 (o a,&,h)|] dz

Nk

(7.36) / o 61 185( s sll | dw <> [0 g nll o e,y + 9] /K ) da

k=1
< C [llog sullL2py + 0] ||¢H2L4(D) <C H¢||§11(D)-
Combining (7.33)—(7.36), yields, on noting (7.6), that
(7.37)

n n—1
£ Onsh o-a,zi,h
At

2

H(D)
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< C’[/D 7 [tr ((As(0 6.0 00 5.0))° Bs(0h 5.0))] A+l Vol 5,07 2p)

2 2
_ 2
IV sl + 5y [ 50 smalotsnluco) a2

m=1 p=1

Similarly to (7.33)—(7.37), choosing 7 = P, [5 <%)] € Q! in (6.34c) yields that

—1
€ Ons.h — QZ,M
At,

< C’[/D m [t ((As(00 .0, 00 50))° Bs(0a 5.1))] A+ all Vol 55172
2

2 2 n
n n— Qa,&h
+ Hvua,S,hH%Q(D) + Hua,é,lh”%‘l(l))/ Z Z Asm.p <1 B > dm}
D L4(D)

m=1 p=1
Multiplying (7.37) and (7.38) by At,, summing from n = 1,..., Ny and noting (6.48), (6.49),
(7.30), (6.27), (6.29) and (7.15a—c) yields the bounds (7.27b).
Multiplying (7.29) by At,, summing from n = 1,..., Ny and noting (6.48) yields the result
(7.27¢) with C independent of «. Finally, it follows from (6.7a) that

]) (e stz

(7.39) H7Th [A5(O'Z,6,ha Qg,a,h)ﬁé(ag,a,h)] H"
%
[ E

(7.38)

H(D)

L8 (D)

1 2N
< [ (|5t on o sttt ) @

] ]
Multiplying (7.39) by At,, summing from n = 1,..., Ny and noting (1.3b), (1.4b), (6.48), (1.8),

(3.3), (6.51), (7.11) with d = 2, (6.8) and (7.15a) yields that

Nt
(7.40) Z Aty HWh [Aé(o'g,zs,ha QZ,M) ﬁé(ag,a,h)]

n=1

Nt
< (Z At
n=1

4
5

<

1
Th [HAé(UZ,é,ha Qg,é,h) [56(02,5,h)] 2

L1(D) LA(D) -

5

L8 (D)

4

2} 5
LY(D)

Nt %
X (Z Aty || [1185(o 5.0)ll] Hiqp))

n=1

1
Th |:HA5(UZ,6,M Qg,é,h) [56(03,6,h)] 2

Nt % Nt %
sc(ZA%mmMﬂMmm@)fx(&+ZA%wmw;@)

n=1 n=1
1
5

Nt
sc@+2mwﬂm&mwmmw)sa
n=1

Hence, we have the desired result (7.27d). O

Unfortunately, the bound (7.27a) is not useful for obtaining compactness via (7.12), see the
discussion in the proof of Theorem 7.2 below. Instead one has to exploit the compactness result
(7.13). This we now do, by following the proof of Lemma 5.6 on p237 in Temam [25]. Here the
introduction of r5(a7y, 5 1,, 04 5.5,) in the extra stress term, as discussed above (5.2), is crucial, as this
yields an L?(Dr) bound on this stress term via the bound (5.4). For this purpose, we introduce



38 JOHN W. BARRETT AND SEBASTIEN BOYAVAL

the following notation in line with (4.10). Let u2% , € C([0,T]; V}) and ufiﬁ € L>=(0,T;V}) be
such that forn=1,..., Np

At t—t"! n =t u® 1 n—1 4n

(7.41a) Uaisn(t) = ——Uasn() + ——uasn() tE "7,
n n

At, At - — _
(741b) ua,ziz(t’ ) = ug,é,h(.)’ a 0, h(t ) = ’U’Z,zi,lh(.) te [tn 15 tn)a
7.41c and A(t) := Aty te [t tm).
( ,
We note that

ou At

(7.42) uihn —ungy, = (t = t’i)#‘”‘ te (" t"), n=1,..,Nr,
where % :=t" and " = "~ L. 'We shall adopt u,, t(’ ) as a collective symbol for uﬁt&h, uﬁ%’i.

We also define O'A(;(h ) and 0, £) similarly to (7.41a,b).

Using the notation (7.41a,b) (Pa 5.1)s 1-e. (6.34a—c) multiplied by At, and summed for n =
1,..., Np, can be restated as:

(7.43a) /D

o5 [ (it o] - [ o] wiif] e

At(

auath

Re 9

v+ (1—e) Vit Vv] da dt

g
+ / T s (085 0B ) As(ah, o5 7) Ba(o )] v deat
D
’ T
:/0 (£ 0) g () dt Yo € L*(0,T; V}),
9o 355 As(a55h. 0350 Bs(oash)
7.43b LI LA @O | dedt
(7.43) /DTM[ o Pt Wi | dx
+a Vaftgz Vodxdt —2 VUS%Z Wh[ﬁa(dita-;,QS%Z)QZ)ﬁa(O’i%I)]dIBdf
Dr
B)
/ > [l m Asmp(onh) 9% 4 dt =0 Vo € L*(0,T;S}),
DT m=1p=1 Oz
s [ |2y (st o sstonii) 1
2 ™ e Wi e
+a V@ﬁ%’ﬁ-vndwdt—2 A Vul st malks(00 T 0h ) n Bs(an )] da dt
T
L @Ataﬁ dn
b mAsmp [ 1— 2 dedt =0 Vn e L?(0,T;Q}
+ DTm 11; ozéh g P( b )amp 776 (7 Qh)

subject to the initial conditions uZ’ ,(0) = uf), 5% ,(0) = &% and 0% ,(0) = tr(o ).

Lemma 7.2. Under all of the assumptions of Theorem 7.1, the solution (uﬁ%’h, 0'27%,,1, Qﬁ%,h) of
(Pa 5.1)s (743a—c), satisfies the following bound:

(7.44) /O 1D} uss ull72(py dt < C,

where v € (0, %) and C is independent of «, as well as §, h and At.
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Proof. Equation (7.43a) can be reinterpreted as
(7.45) e—/ uls (t vda:*/ Vghtt(t): Vode Yo e Vi, te(0,7),
where gAt+(t) € V} is defined by
(7.46) /D VGOt (1) : Vodz = (£ (8), v) o) — (1—¢) /D Vulit(1) : Vo da

e RGBT HOI R (ORI uimt)} dar

- /D i [R5 (@SR 0, 6250 () As (05550, 05 (1) Bs(0 55 1(1)] : Voda.

Similarly to (7.28) and (7.29) with 6 € (0,1), it follows from (7.46) that
(7.47)

HVQAt’Jr(t)HLz(D) <C [||f+(t)|H1(D) + HVuitg;(t)HLz(D)

At, At,
+ g5 Ol g5k Ol 20y + IHlug 5 OIIVag s O o)

(Lo ((asto2iio. 25500) pslodiio) az) |

On noting (7.30), (7.31) and the bound on uj, 5, in (6.49), we deduce from (7.47) that

N

1 At, T
(7.48)  [IVg2"F(t)ll2p) < C [1 + 1Ol 0y + [ Vun s, HL;(GD) + | Vg (t )”L;(ep)

1
2 3
(Lo ((asto2iio. s2570) pslodiio ) az) |
Similarly to (7.32), on recalling (6.29), (4.11a) and (6.49), we deduce from (7.48) that
T 4
(7.49) / Vg2 ()], dt < C.
0

where ¢ € (2,4] and C is independent of «, as well as d, h and At. The rest of the proof follows
as on pl1825—6 in [1], which is based on the proof of Lemma 5.6 on p237 in [25]. O

7.2. Convergence. It follows from (6.48), (6.49), (7.15a—c), (6.29), (6.8), (7.27a~d), (7.44) and
(7.41a—c) that

T [ulsh — w5l
At(,+ At(,+ a,6,h ~ U, 6h L2(D
(50)  sup 5 W) + / Ve 55 e ) + Plat<c,
te(0, 0 A(t)
T Ha_At _ O_At — ||
At(,+ At(,+ a0 a0hllL2(D
(7.50b)  sup [loatE 2, p) +/ | Va9 |2 + D lat<c,
te(0,T) 0 A(?)
At+ At
()12 r At(,) )2 Hé)a,a,h Qa,s hHLZ(D)
(7.50¢) SUP ||Qa 5k ||L2(D) + A Voush 2y + dt
te(o, 0 A(t)
T gAt + 2
+52/ V|G (1— ab“ﬂ dt < C,
0 12(D)

(7.50d) /D m [t (As(o 25t 025028502 ) | dwat < €
T

7a0e) s L (Mo 141 - g2 de < €5,
€(0,
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[ 8um5h ’
(7.50f) / Hs 5;’ + | DI uss |72 p | At < C,
o1 H1(D)
r 2 2
T ao.At o At
(7.50g) / ||6 2,0, g Loon dt < C,
o ot
I H(D) H(D)
(T500)  |m [ro(o it o0h) As(oh 0250 oo i L <€
T
(7500 |m [Astoniooxin) Baenih)]| L <c
L (D)

where 9 € (2,4], v € (0, 1) and C in (7.50a,d,e,f,h) is independent of o, as well as §, h and At.
We are now in a position to prove the following convergence result concerning (Pit& )

Theorem 7.2. Under all of the assumptions of Theorem 7.1, there exists a subsequence of
{(uaA,%7ha US,%JL) QQA,%7h)}6>O,h>O,At>O7 and functions
(7.51a) wo € L0, T;H) N L0, T; V) N W5 (0, T; V') with 1a(0) = u®,
(751b)  oa € L0, T5[LA(D)22) N L2(0, T5 (H (D)) 1 H(0, T (1 (D))
with o non-negative definite a.e. in Dr and 04(0) = o,
(7.51c) 0o € L(0,T; L*(D)) N L*(0,T; H'(D)) N H'(0, T; (H'(D))")
with 0o < b a.e. in Dy and 0,(0) = tr(a?),

such that, as 6, h, At — 04,

(7.52a) ui%(”hi) — Uq weak* in L>(0,T;[L*(D)]?),
(7.52b) ul 5 = ug weakly in L*(0,T;[H'(D)]?),

auAt
(7.52¢) S gt"”‘ = Sagt“ weakly in L7 (0,T; V),
(7.52d) ui%(”hi) = Uq strongly in L*(0,T; [L"(D)]?),
(7.53a) ot = o, weak* in L>(0,T; [L*(D)]**?),
(7.53b) ot = o, weakly in L*(0,T;[H'(D)]**?),

9 ﬁt&h o, 2%2

(7.53c) & 5 & 5t weakly in L*(0,T; [H'(D))3*?),
(7.53d) o'aA,%S’,fE) — T, strongly in L*(0,T; [L"(D)]**?),
(7.53¢) mhlBs (055 = o strongly in L2(0, T; [L*(D)]2*?),
(7.53f) Agﬁmyp(aig(,f)) — 0o Omp strongly in L*(0,T; [L*(D)]**?), m,p=1, 2,
and
(7.54a) o = 0q weak* in L>(0,T; L*(D)),
(7.54b) gi‘é’iﬁ) — 0Oa weakly in L*(0,T; H* (D)),

b At
(7.54c) 5% - 5% weakly in L*(0,T; H (D)),
(7.54d) git&(f) — 0a strongly in L*(0,T; L™ (D)),

At(,£)
(7.54e) [ﬂg (1 - ga%)] = (1 - %“) strongly in L*(0,T; L*(D)),
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At(,+)
(7.54f)  Asmp <1 - gQ%) — (1 - %) Smp strongly in L*(0,T; L*(D)), m,p=1,2,
where ¥ € (2,4] and r € [1,00).

Proof. The results (7.52a—c) follow immediately from the bounds (7.50a,f) on noting the notation
(7.41a—). The denseness of | J,., Q} in L*(D) and (6.1d) yield that u, € L?(0,7; V). Hence, the
result (7.51a) holds on noting (7.10) and (6.33), where u,, : [0, 7] — H is weakly continuous.

The strong convergence result (7.52d) for uﬁt&h and r = 2 follows immediately from (7.50a)
and the second bound in (7.50f) and (7.13) with Xy = [H!(D)]? and X = X; = [L*(D)]?>. Here
we note that H'(D) is compactly embedded in L?(D). We note here also that one cannot appeal
to (7.12) for this strong convergence result with po = 2, u1 = 4/9, Yo = [HY(D)]?, Y1 = V' with
norm ||S - || g1 (py and Y = [L*(D)]? for the stated values of ¥, since [L?(D)]? is not continuously
embedded in V' as V is not dense in [L*(D)]%.

The result (7.52d) for uaAtéj,EL and r = 2 follows immediately from this result for uAt and the

the bound on the last term on the left-hand side of (7.50a), which yields

(7.55) ||ua§h a6h||L2 (0.1:22(D)) = CAt.

Finally, we note from (7.11), for d = 2, that, for all n € L?(0,T; H(D)),

(7.56) ||77||L2(0 T;17(p)) < C ||77||L2(0 T;L2(D)) ||77||%2(0,T;H1(D))

for all r € [2,00) with # = 1 — 2 € (0,1]. Hence, combining (7.56) and (7.52b,d) for u3 with

r = 2 yields (7.52d) for uét;h ) for the stated values of r.

Similarly, the results (7 53a—c) follow immediately from (7.50b,g). The strong convergence
result (7.53d) for o2, follows immediately from (7.53bh), (7.8) and (7.12) with g = p1 = 2,
Yo = [HY(D)]**4, y1 = ([Hl(D)]dXd) and Y = [L"(D)]4*4 for the stated values of 7. Here we note
that H!(D) is compactly embedded in L™ (D) for the stated values of r, and L"(D) is continuously
embedded in (H'(D))'. Similarly to (7.55) and (7.56), the last bound in (7.50b) then yields that
(7.53d) holds for o3\

The results (7.54a—d) follow analogously from noting (7.50c,g). Hence, on noting (7.8) and
(6.33), the results (7.51b,c) hold, where o, : [0,T] — [L*(D)]2*? and o, : [0,7] — L?*(D) are
weakly continuous, apart from the claims on the non-negative definiteness of o, and the bound on
0o It remains to prove these, (7.53¢,f) and (7.54e,f). It follows from (1.11), (6.52b) and (7.50b,e)
that

(7.57) H[Ua]*”L?(O,T;Ll(D))

L AHE) Aty At(,+)
= H[Uo‘]f Lo ]7’ L2(0,T;L1(D H Taoh 1= Th [[ Ta6.n ]7} ‘ L2(0,T;L1(D))
At(,E) ”
+ ’ Th [UWW - L2(0,T;L1 (D))
< oo - o Clh+3d].
LQ(O,T;LI('D))

The desired non-negative definiteness result on o, in (7.51b) then follows from (7.53d). The
desired bound on g, in (7.51c) follows similarly from (1.11), (6.52b), (7.50c,e) and (7.54d). The
results (7.53e,f) follow immediately from (6.52a), (7.50b), (1.11), (7.53d), (3.3) and the non-
negative definiteness result on o, in (7.51b). The results (7.54e,f) follow similarly from the scalar
version of (6.52a), (7.50¢), (1.11), (7.54d), (3.3) and the bound on g, in (7.51c). O

Lemma 7.3. Under all of the assumptions of Theorem 7.1, the subsequence of {(o% m;h,

Qﬁ%,h)}(s>o,h>o,m>o of Theorem 7.2 and the limiting functions o, and o, satisfying (7.51b,c),
are such that, as 0, h, At — 04,

(7.58) h {ﬁé(ggt{;(hi))} = 0q = tr(oy) strongly in L*(0,T; L*(D)).
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In addition, we have with h = o(§), as § — 04, that
(7.59) 0o s positive definite and tr(oq) < b a.e. in Dr.
Proof. Choosing ¢ = n I in (7.43b) and subtracting from (7.43c) yields that
0
(7.60) / [ ~ ( o — (a8 ) n} dzdt +a /D v (025~ t(ed5h) - Vndzat

T
At,+

Oa 0
/ Uy, 6 h] [bAé m,p (1 - %) +tr (Aé,m,p(aitzi,,;))] (9777 dedt =0
DPr ;= 1p 1 P

It follows from (7.52d), (7.53b-d.f), (7.54b—e), (7.7), (7.51a—c) and (6.9a,b) that we may pass to
the limit 6, h, At — 04 in (7.60) with n = 7, x to obtain

T
0
(7.61) / <§ (00 —tr(oa)) ;X>H1(D) dt + « V (00 — tr(oa)) - Vxdxdt
0 Dr

- / (00 —tr(0q)) U - Vxdedt =0 Vx € C5°(0,T;C>=(D)),
Dr

where [0q — tr(04)](0) = 0. For example, in order to pass to the limit on the first term in (7.60),
we note that

(7.62)
0
/ h {8t (Qaéh tr ( sﬁs,h)) Th X] da dt
Dr

= [ {(F @~ wo250) ) mxc (=m0 | (e~ w(o250) ||| awar

Hence the desired first term in (7.61) follows from noting (7.53b,c), (7.54b,c), (7.7) and (6.9a,b).
As C§°(0,T; C>=(D)) is dense in L%(0,T; H*(D)), we have, on noting (7.51a—c), that (7.61) holds
for all x € L?(0,T; H*(D)). It then follows from (7.51a—c) that we can choose Y = 0o — tr(04)
in (7.61) to yield that g, = tr(os) as [0a — tr(o4)](0) = 0. Recalling (7.51b,c), we have that
0a € 10,b] a.e. in Dp. The desired convergence result (7.58) then follows from noting this, (5.3),
(3.3), (6.52b), (7.50¢) and (7.54d).

We now improve on (7.51c) by establishing that g, = tr(o) < b a.e. in Dp. Assuming that
tr(o,) =b a.e. in DbT C Dr, we have

(7.63) b|Dh| = / tr(ora) da dt
Db

= /Db h {tr(ﬁg(a 5h))} d dt + /Db tr (aa — [65(0’3’;’;)}) dedt =Ty + Ts.

We deduce from (3.6) and (3.2) that

At,+
Oa
(7.64) T = / ™ (tr (A,;( gg;,ggg;)ﬂg(aﬁg;))+2) Bs <1%>]dmdt.
D}

It follows from (1.3b) and (1.4b) that
(7.65)

tr (As(o 25 20T At i) < [r (st 2P st wr (st |
Combining (7.64) and (7.65) yields, on noting a scalar version of (6.7a) over D%, (7.50d), (1.8)

and (3.3) that
QAt’J'_ 2 %
Bs <1 — “’b‘*hﬂ da dt

(7.66) T1<C /Db ™ [tr (55( ))+1}
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pAtt 8
<C (1 —|—/ Th [Ho‘f%’ﬁ”ﬂ d:cdt) / m | Bs |1 — =220 dz dt
Dr Y Db, b
It follows from (6.51), (7.11), for d = 2, and (7.50b) that

(7.67)

T
At, At, At, At,
mn | o5l dzdt < Clodihltamy <C | Notstlem) loas i ) dt < C.
D ) 0
T

3
8

o=

3

Th

and n=1,..., Ny, that
At,+
(X
L3 (DL)
Qu.5,h

Similarly to (6.51), it follows from (6.4) with K}, replaced by (K x (tn—1,t,))ND4, k=1,..., Nk
At 4\ 73
Qa,zi,h

(7.68) / h lﬂ,; (1 - )] dedt < C

- b

T
At,+

where z := 7, {55 (1 il (1 - QT"). Here we have noted that g, = tr(a,) = b a.e. in Dj..
Combining (7.66)—(7.68) yields, on noting (7.11), for d = 2, that

(7.69)

oolw

T 2 3 1
n<C| 5., <C 121220 1211300 0y At | < C N2l Es 0 1502000 12 E2 0,150 (0
L% (D) ; (D) ( (D)) ( (D))

< Clellzz o2y 120 L 015220y 121220 7101 ()

It follows from (7.69), (7.51c), (6.26), (3.3), (6.8), (7.50c) and (7.54e) that T} = 0. In addition, it
follows immediately from (7.53e) that T = 0. Hence, we conclude from (7.63) that |D%| = 0, and
SO po = tr(oy) < b a.e. in Dp; that is, the second desired result in (7.59).

We now establish the other result in (7.59) that o, is symmetric positive definite a.e. in Dr,
which improves on (7.51b). This result requires the further assumption that h = o(d), as § — 0.
Assume that o, is not symmetric positive definite a.e. in D% C Dr. Let v € L>(0,T; [L>°(D)]?)
be such that o, v = 0 with |Jv]| =1 a.e. in D% and v = 0 a.e. in Dy \ DY.. It then follows from
(3.2) and (3.6) that

(7.70) |D%|:/D ||v|\da:dt:/p [ [Gato st a2 0] o da at
T T
< /D [ [As(oth a2 Bste250)] o dzas
T

QAt7+
+ / Gj (1 “*ﬁ) ﬂ,;(ai%’i)] v
Dr

A simple variation of (6.7a), (1.3b), (1.4a,b) and (7.50d) yield that

Th dx dt =: T3+T4.

N[

(7.71) Ty < /

<c([ m [plotin)] = ooT)dwat)

Then (7.53e) and the definition of v yield that, as 6, h, At — 0,

1) o] = 0om) e

At, At, At,4\11
(”h [HAN%%I’ Qa3 ) Bs(0057))
T

1
2

7.72 T | Bs a2t s (woD) dedt — oo (vol)dxdt =0,
. a,d,h
T

Dr
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(/DT ] s ol de dt> 2

At,+
so we have that T5 = 0. Similarly to (7.71), on setting Xﬁffr =G} <1 - g“}f”‘) T {ﬁg(o'At’Jr)},
we have from (6.7a) that

«,d,h
2
(7.73) Ty < (/ Th [H[Xﬁf{ﬂé } de dt)
Dr

<C (/ h [X?Jtl’ﬂ : (vol) d:cdt) ,
Dr

where we have noted from (1.3b), (1.4b), (1.8), (6.51), (3.6) and (7.50i) that

a [ [l <e i)

<€ [ 3]

=

N[

LY (Dr)

< [ 3]

L' (Dr) L% (Dr)

<C.

At,+  At+ At,+
<C+C Hﬂ-h |:A5(o-a,6,h’ Qa,&,h) ﬁé(o—a,&h

):|HL%(DT)
We will now show, on possibly extracting a further subsequence of {(o%%,,
Qﬁfa,h)}5>o,h>o,m>o, that

(7.75) Th b

At,

G5 (1 - Lﬁ) ﬁm@,w] = (1- p—“)fl oo weakly in L5 (0,T;[L* (D)]**2).
as 9, h, At — 04 with h = o(d). It follows immediately from (7.74) and our definition of X?Jt{Jr
that {Xéf{ﬂ converges weakly in L3 (0, T [L3 (D)]2%2) to some limit for a subsequence. We
just need to show it is the limit stated in (7.75). We have from (7.53e), (7.54d) and (3.1) that
x§;’+ — (1 — pT“)_l o, a.e. on Dy, for a subsequence, as we have already established that p, =
tr(o) < b a.e. on Dr. So it remains to establish that (I — ) [Xﬁ}tfr} converges to zero a.e. on
Dr. As G € C*!(R) is monotonic, it follows from (6.9b), (6.53), (6.4), (3.2) and (7.50b,c) that

(7.76)
QAt,-i—
@ =m0 st < (=) | |G5 (1= =222 ) | (50250
’ LY(Dr) b H LY(Dr)
T
At,+
[ =m) | (1 St Hﬂh [ﬂa(ﬂm’+)”
b RS ATCH
L?(Dr)
QAt,-i—
<cnvm e <1 . T)] [ [As60250)]|
Yy LQ(DT)
L?(Dr)
<Cés'h

Hence, we have for a subsequence that (I —7p,) [xé,i’ﬂ converges to zero a.e. on Dr as §, h, At —
04 with h = 0(). Therefore we have established (7.75).
Similarly to (7.72), we have that (7.73), (7.75) and our definitions of x?ﬁ* and v yield that

Ty, = 0. Hence it follows from (7.70) with T3 = Ty = 0 that |D%| = 0, and so o, is positive definite
a.e. in Dp; that is, the first desired result in (7.59). O

Lemma 7.4. Under all of the assumptions of Lemma 7.3, a further subsequence of the subsequence
of{(o'aA,téﬁ, Qg,%7h)}6>0,h>0,m>0 of Lemma 7.3 and the limiting function o, satisfying (7.51b) and
(7.59), are such that, as &, h, At — 04, with h = o(J),

(7.77a) o, ke(a2 50 05570 Bs(a5kT)| = oa strongly in L*(0,T; [L*(D)]**?),
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(7.77b) T [A(;(aftaﬁ, QS%J,Z) ﬁa(o’ité—;) — A(on)on  weakly in L: (0,T; [Lg (D)]?*?),
(1.770) i [Ra(on st o5 0) As(o i o250 Ba(o 2] > Aloa) e

weakly in L*(0, T; [L*(D)]**?).
Proof. Tt follows from (6.7a), (1.3b), (1.4b), (5.2), (1.8), (3.3), (6.8) and (7.50b) that

2
A A At At,
(7.78) Hﬂh [H(S( at(;J;Z, Qat(;ﬁ)ﬂa(tfa,is,ﬁ)} — Th [ﬂa(aa,t(s;)”

L?(Dr)

< [ st o250 ~ P (Bl 2570)] m (Bt 257)] do

<c [ m [ |8l — s @] (mn [lonil] +9) dwat

Dr
<O [lm [Bhe2h) - Bs@250)] | . o,

The desired result (7.77a) then follows immediately from (7.78), (7.53e) and (7.58).
The desired result (7.77b) follows immediately from (3.6), (3.2), (7.75) and (1.2) as po = tr(oq).
Similarly to (7.78), it follows from (6.7a), (1.3b), (1.4b), (5.2), (6.8), and (7.50d) that

(7.79)

At,+ At,+ At,+ At + At,+ At,+ At,+ At,+
H”h {’15( ik Qo) As(05 5 1y O 6h>ﬂ5(0a,6,h)} —Th [Azi( a6, @aah)ﬂS(Ua,a,h)] ’

<o [ (m[|eedsn - wisetin]])’
21>2dwdt

X <7Th
< C|jm [t — s @25 ||, L < O [Bhedin) — e85t h]||

LY(Dr)

1

At, At, At, 2
HAé( a(sJiera 52) [56(0%5,4}2)]

LY(Dr) L(Dr)
It follows immediately from (7.79), (7.53e), (7.58) and (7.50h) that the weak limits in (7.77b,c)
are the same. Hence, the desired result (7.77c). (]

Theorem 7.3. Under all of the assumptions of Lemma 7.3, the limiting functions (uq,04) sat-
isfying (7.51a,b) and (7.59) solve the following problem:

(Po) Find u, € L>(0,T;H)N L2(0,T; V)N Wi (0,7;V") and o, € L>(0,T; [LQ(D)]g,XfO’b) N
L*(0,T; [HY(D)JE*) N H(0,T; ([HY(D)IZ?)"), with A(oa) oo € L*(0,T; ([L*(D)]F*?)), such that
u,(0) = u?, 04,(0) =0 and

(7.80a) Re/OT <%,v>vdt+/DT [(1—¢)Vuy: Vo+Rel(ug - V)uy] - v] dedt

T
:/ (f,v)Hl(D)dt—i,/ Aloy) o, : Vodedt VveLﬁ(O,T;V),
0 0 WI Dr

(7.80b) / <6aa , ¢> dt —|—/ (g - V)ou:p+aVo,:: Vo] dedt
0 HY(D) Dr

B /p {2 (Vo) 0o — %A(aa)m] gdadt Ve e LP(0,T; [H'(D)F?),

where ¥ € (2,4).

Proof. The function spaces and the initial conditions for (u,,o,) follow immediately from
(7.51a,b), (7.59) and (7.77c). It remains to prove that (u.,0,) satisfy (7.80a,b). It follows from
(6.3), (7.52b—d), (7.77c), (4.11b), (7.9) and (4.14) that we may pass to the limit, §, h, At — 04,
with h = 0(9), in (7.43a) to obtain that (u., 04 ) satisfy (7.80a).
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It follows from (7.53b—f), (7.52b,d), (7.77a,b), (7.7), (6.9a,b), (1.5a) and as u, € L?(0,T;V)
that we may pass to the limit §, h, At — 04, with h = 0(d), in (7.43b) with x = 7 ¢ to obtain
(7.80b) for any ¢ € C5°(0,T; [C°°(D))3*?). For example, similarly to (7.62), in order to pass to
the limit on the first term in (7.43b), we note that

(7.81)

At At 4+ At+ At,+
/ ™ aaa,&,h Aé(aa,&h’ Qa,&,h) 66(0'&751}1)
- ot Wi

c R | dedt

At,+ At + At,+
/ dolls,  Th {A‘S("a,é,hvQa,é,h)ﬂfi(”a,(s,h
Dr

)
9 Wi s ¢ de dt

At 4+ At, At,
I Th [Aé (Ua,t(sjﬂ Qa,t(;jl) ﬂa(o'a,isjl)}
— : o | daedt.

I — At —
+/DT( Th) | Taoh  Th L’)t Wi

The desired result (7.80b) then follows from noting that C§°(0, T; [C>(D)]3*?) is dense in L?(0, T
(H(D)2°2).

Of course passing to the limit §, h, At — 04, with h = 0(d), in (7.43c), using in addition
(7.54b—d,f), yields the weak formulation for tr(o,) consistent with (7.80Db). O

Remark 7.2. Choosing 1(¢+ ") as a test function in (7.80b) for any ¢ € L?(0,T;[H'(D)]**?)
yields, on noting the symmetry of oy, (7.80b) with the term 2 (Vuy)o o replaced by (Vuy)os +
00(Vus)T, which is consistent with (5.1c).

Finally, it follows from (7.50a,f,h), (7.52a—c) and (7.77c) that
Ou,, G

ot

+ HA(UQ) 0’a”%2(@) dt < C,

T
152 s [ualfo + [ |1Vl + |3
0 H1(D)

t€(0,T)

where ¥ € (2,4) and C is independent of the stress diffusion coefficient a. Of course, in addition,
it follows from (7.59) and (1.8) that ||oq ||~ (D, < b.

REFERENCES

[1] J. W. Barrett and S. Boyaval, Existence and approximation of a (regularized) Oldroyd-B model, Math. Models
Methods Appl. Sci. 21 (2011) 1783-1837.

[2] J. W. Barrett and R. Niirnberg, Convergence of a finite-element approximation of surfactant spreading on a
thin film in the presence of van der Waals forces, IMA J. Numer. Anal. 24 (2004) 323-363.

[3] J. W. Barrett and E. Siili, Existence of global weak solutions to some regularized kinetic models of dilute
polymers, Multiscale Model. Simul. 6 (2007) 506-546.

[4] J. W. Barrett and E. Siili, Existence and equilibration of global weak solutions to kinetic models for dilute
polymers I: Finitely extensible nonlinear bead-spring chains, Math. Models Methods Appl. Sci. 21 (2011)
1211-1289.

[5] J. W. Barrett and E. Siili, Existence of global weak solutions to finitely extensible nonlinear bead-spring chain
models for dilute polymers with variable density and viscosity, Imperial College London and University of
Ozford, 2011. Available from: http://arxiv.org/abs/1112.4781 .

(6] J. W. Barrett and E. Siili, Existence and equilibration of global weak solutions to kinetic models for dilute
polymers II: Hookean-type bead-spring chains, Math. Models Methods Appl. Sci. 22 (2012) 1150024 (84 pages).

[7] J. W. Barrett and E. Siili, Finite element approximation of finitely extensible nonlinear elastic dumbbell models
for dilute polymers, M2AN Math. Model. Numer. Anal. 46 (2012) 949-978.

(8] J. W. Barrett and E. Siili, Existence of global weak solutions to the kinetic Hookean dumbbell model for
incompressible dilute polymeric fluids, Imperial College London and University of Oxford, 2017. Awvailable
from: http://arxiv.org/abs/1702.06502 .

[9] R. Bird, C. Curtiss, R. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol 2: Kinetic Theory
(John Wiley and Sons, New York, 1987).

[10] D. Boffi, Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal. 34 (1997)
664-670.

[11] S. Boyaval, T. Lelievre and C. Mangoubi, Free-energy-dissipative schemes for the Oldroyd-B model, ESAIM
Math. Model. Numer. Anal. 43 (2009) 523-561.

[12] F. Brezzi and M. Fortin, Mized and Hybrid Finite Element Methods (Springer-Verlag, New York, 1992).



(13]
(14]

[15]
[16]

(17]

(18]

(19]
20]

(21]
(22]

(23]
[24]
25]

[26]

FINITE ELEMENT APPROXIMATION OF THE FENE-P MODEL 47

P. Degond and H. Liu, Kinetic models for polymers with inertial effects, Networks and Heterogeneous Media
4 (2009) 625-647.

A. W. El-Kareh and L. G. Leal, Existence of solutions for all Deborah numbers for a non-Newtonian model
modified to include diffusion, J. Non-Newtonian Fluid Mech. 33 (1989) 257-287.

A. Ern and J. L. Guermond, Theory and Practice of Finite Elements (Springer Verlag, New York, 2004).

V. Girault and P.-A. Raviart, Finite Element Methods for Navier—Stokes Equations, volume 5 of Springer Ser.
Comp. Math. (Springer-Verlag, 1986).

G. Griin and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equation, Numer. Math.
87 (2000) 113-152.

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier—Stokes problem
I: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal.
19 (1982) 275-311.

D. Hu and T. Lelievre, New entropy estimates for the Oldroyd-B model, and related models, Comm. Math.
Sci. 5 (2007) 906-916.

N. Masmoudi, Global existence of weak solutions to macroscopic models of polymeric flows, J. Math. Pures
Appl. 96 (2011) 502-520.

R. G. Owens and T. N. Phillips, Computational Rheology (Imperial College Press, 2002).

M. Renardy, Mathematical Analysis of Viscoelastic Flows, volume 73 of CBMS-NSF Conference Series in
Applied Mathematics (SIAM, 2000).

J. D. Schieber, Generalized Brownian configuration field for Fokker—Planck equations including center-of-mass
diffusion, J. Non-Newtonian Fluid Mech. 135 (2006) 179-181.

R. Sureshkumar and A. Beris, Effect of artificial stress diffusivity on the stability of numerical calculations and
the flow dynamics of time-dependent viscoelastic flows, J. Non-Newtonian Fluid Mech. 60 (1995) 53-80.

R. Temam, Navier—Stokes Equations. Theory and Numerical Analysis, volume 2 of Studies in Mathematics
and its Applications (North-Holland, Amsterdam, 1984).

P. Wapperom and M. Hulsen, Thermodynamics of viscoelastic fluids: The temperature equation, J. Non-
Newtonian Fluid Mech. 42 (1998) 999-1019.

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON, LONDON SW7 2AZ, UK, JWBQIC.AC.UK

LABORATOIRE D’HYDRAULIQUE SAINT-VENANT, UNIVERSITE PARIS-EST (ECOLE DES PonTs ParisTEcH) EDF

R&D, 6 QUAI WATIER, 78401 CHATOU CEDEX, FRANCE, SEBASTIEN.BOYAVAL@SAINT-VENANT.ENPC.FR



