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FINITE ELEMENT APPROXIMATION OF THE FENE-P MODEL

JOHN W. BARRETT AND SÉBASTIEN BOYAVAL

Abstract. We extend our analysis on the Oldroyd-B model in Barrett and Boyaval [1] to con-
sider the finite element approximation of the FENE-P system of equations, which models a
dilute polymeric fluid, in a bounded domain D ⊂ R

d, d = 2 or 3, subject to no flow boundary
conditions. Our schemes are based on approximating the pressure and the symmetric conforma-
tion tensor by either (a) piecewise constants or (b) continuous piecewise linears. In case (a) the
velocity field is approximated by continuous piecewise quadratics (d = 2) or a reduced version,
where the tangential component on each simplicial edge (d = 2) or face (d = 3) is linear. In case
(b) the velocity field is approximated by continuous piecewise quadratics or the mini-element.
We show that both of these types of schemes, based on the backward Euler type time discretiza-
tion, satisfy a free energy bound, which involves the logarithm of both the conformation tensor
and a linear function of its trace, without any constraint on the time step. Furthermore, for our
approximation (b) in the presence of an additional dissipative term in the stress equation, the
so-called FENE-P model with stress diffusion, we show (subsequence) convergence in the case
d = 2, as the spatial and temporal discretization parameters tend to zero, towards global-in-
time weak solutions of this FENE-P system. Hence, we prove existence of global-in-time weak
solutions to the FENE-P model with stress diffusion in two spatial dimensions.

Keywords: FENE-P model, entropy, finite element method, convergence analysis, stress diffusion,
existence of weak solutions

AMS Subject Classification: 35Q30, 65M12, 65M60, 76A10, 76M10, 82D60

1. Introduction

1.1. The FENE-P model. We consider the standard FENE-P model for a dilute polymeric fluid.
The fluid, confined to an open bounded domain D ⊂ R

d (d = 2 or 3) with a Lipschitz boundary
∂D, is governed by the following non-dimensionalized system for a given b ∈ R>0:
(P) Find u : (t,x) ∈ [0, T )× D 7→ u(t,x) ∈ R

d, p : (t,x) ∈ DT := (0, T )× D 7→ p(t,x) ∈ R and

σ : (t,x) ∈ [0, T )×D 7→ σ(t,x) ∈ R
d×d
S,>0,b such that

Re

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ (1− ε)∆u+

ε

Wi
div (A(σ)σ) + f on DT ,(1.1a)

divu = 0 on DT ,(1.1b)

∂σ

∂t
+ (u ·∇)σ = (∇u)σ + σ(∇u)T − A(σ)σ

Wi
on DT ,(1.1c)

u(0,x) = u0(x) ∀x ∈ D,(1.1d)

σ(0,x) = σ0(x) ∀x ∈ D,(1.1e)

u = 0 on (0, T )× ∂D;(1.1f)

where

A(φ) :=

(
1− tr(φ)

b

)−1

I − φ−1 ∀φ ∈ R
d×d
S,>0,b :=

{
ψ ∈ R

d×d
S,>0 : tr(ψ) < b

}
.(1.2)

Here R
d×d
S denotes the set of symmetric R

d×d matrices, and R
d×d
S,>0 the set of symmetric positive

definite R
d×d matrices. In addition, I ∈ R

d×d
S,>0 is the identity, and tr(·) denotes trace. The

unknowns in (P) are the velocity of the fluid, u, the hydrostatic pressure, p, and the symmetric
conformation tensor of the polymer molecules, σ. The latter is linked to the symmetric polymeric
extra-stress tensor τ through the relation τ = ε

Wi A(σ)σ. In addition, f : (t,x) ∈ DT 7→ f(t,x) ∈
1
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R
d is the given density of body forces acting on the fluid; and the following given parameters are

dimensionless: the Reynolds number Re ∈ R>0, the Weissenberg number Wi ∈ R>0, the elastic-
to-viscous viscosity fraction ε ∈ (0, 1), and the FENE-P parameter b > 0 (related to a maximal
admissible extensibility of the polymer molecules within the fluid). For the sake of simplicity, we
will limit ourselves to the no flow boundary conditions (1.1f). Finally, we denote ∇u(t,x) ∈ R

d×d

the velocity gradient tensor field with [∇u]ij = ∂ui

∂xj
, and (divσ)(t,x) ∈ R

d the vector field with

[divσ]i =
∑d

j=1
∂σij

∂xj
.

For data f ≡ 0, divergence free u0 ∈ [L2(D)]d, and σ0, which is symmetric positive def-

inite for a.e. x ∈ D, satisfying ln(1 − tr(σ0)
b

) ∈ L1(D), then the existence of a global-in-time

weak solution u ∈ L∞(0, T ; [L2(D)]d) ∩ L2(0, T, [H1
0 (D)]d), σ ∈ L∞(0, T ; [L∞(D)]d×d) and τ ∈

L2(0, T ; [L2(D)]d×d) to (P), (1.1a–f), was proved in Masmoudi [20].
In this work, we consider finite element approximations of the FENE-P system (P) and the

corresponding model with stress diffusion, (Pα), which is obtained by adding the dissipative term
α∆σ for a given α ∈ R>0 to the right-hand side of (1.1c) with an additional no flux boundary
condition for σ on ∂D. This paper extends the results in Barrett and Boyaval [1], where finite
element approximations of the corresponding Oldroyd-B models, where A(σ) = I − σ−1, were
introduced and analysed. In fact, the convergence proof of the finite element approximation of
the Oldroyd-B model with stress diffusion for d = 2 in [1] provided the first existence proof of
global-in-time weak solutions for this system. Note that A(σ) = I − σ−1 is the formal limit of
(1.2) for infinite extensibility; that is, b → ∞.

The model (Pα) has been considered computationally in Sureshkumar and Beris [24]. We
recall also that El-Kareh and Leal [14] showed the existence of a weak solution to a modified
stationary FENE-P system of equations, which included stress diffusion, but there an additional
regularization was also present in their modified system and played an essential role in their proof.
We stress that the dissipative term α∆σ in (Pα) is not a regularization, but can be physically
motivated through the centre-of-mass diffusion in the related microscopic-macroscopic polymer
model, though with a positive α ≪ 1, see Barrett and Süli [3], [5], Schieber [23] and Degond and
Liu [13].

Barrett and Süli have introduced, and proved the existence of global-in-time weak solutions for
d = 2 and 3 to, microscopic-macroscopic dumbbell models of dilute polymers with center-of-mass
diffusion in the corresponding Fokker–Planck equation for a finitely extensible nonlinear elastic
(FENE) spring law or a Hookean-type spring law, see [4] and [6]. Recently, Barrett and Süli [8]
have proved rigorously that the macroscopic Oldroyd-B model with stress diffusion is the exact
closure of the microscopic-macroscopic Hookean dumbbell model with center-of-mass diffusion for
d = 2, when the existence of global-in-time weak solutions to both models can be proved. In
addition, Barrett and Süli [7] have introduced and analysed a finite element approximation for the
FENE microscopic-macroscopic dumbbell model with center-of-mass diffusion.

From a physical viewpoint, the FENE-P model is more realistic than the Oldroyd-B model
because it accounts for the finite-extensibility of the polymer molecules in the fluid through the
non-dimensional parameter b > 0. From a mathematical viewpoint, compared to the Oldroyd-B
model where the nonlinear terms are only the material derivative terms (like (∇u)σ), the FENE-

P model has an additional singular nonlinearity due to the factor
(
1− tr(·)

b

)−1

in the definition

of A(·), which necessitates a careful mathematical treatment. Hence, this paper is not a trivial
extension of [1]. In fact, the latter additional nonlinearity is exactly what makes the FENE-
P model closer to the physics of polymers than the Oldroyd-B model, and thus also to many
other macroscopic models based on different constitutive relations that have been developed by
physicists for polymers. We note the FENE-P system is the approximate macroscopic closure
of the FENE microscopic-macroscopic dumbbell model, whereas the Oldroyd-B system is the
exact macroscopic closure of the Hookean microscopic-macroscopic dumbbell model. Hence, the
microscopic-macroscopic dumbbell models corresponding to Oldroyd-B and FENE-P, only the
spring laws differ; see e.g. Bird et al. [9] and Renardy [22] for a more complete review of the
differences between the Oldroyd-B and the FENE-P models from the physical viewpoint, and for
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other macroscopic models with more nonlinear effects than the Oldroyd-B model, e.g. the Giesekus
model and the Phan–Thien Tanner model.

Similarly to [1], our analysis in the present paper exploits the underlying free energy of the
system, see Wapperom and Hulsen [26] and Hu and Lelièvre [19]. In particular, the finite element
approximation of (Pα) has to be constructed extremely carefully to inherit this free energy struc-
ture, and requires the approximation of tr(σ) as a new unknown. It is definitely not our goal to
review all the macroscopic models used in rheology, although similar studies could probably be
pursued for other macroscopic models endowed with a free energy. We will point out the main dif-
ferences with Barrett and Boyaval [1], and we thus hope to sufficiently suggest how our technique
could be adapted to any nonlinear model with a free energy. We believe that our approach con-
tributes to a better understanding of the numerical stability of the models used in computational
rheology, where numerical instabilities sometimes termed “High-Weissenberg Number Problems”,
see HWNP in Owens and Phillips [21], still persist. Indeed, as exposed in Boyaval et al. [11],
our point is that to make progress in this area one should identify sufficiently general rules for
the derivation of good discretizations of macroscopic models such that they retain the dissipative
structure of weak solutions to the system, at least in some benchmark flows.

The outline of this paper is as follows. First, we end this section by introducing our notation
and some auxiliary results. In Section 2 we review the formal free energy bound for the FENE-P
system (P). In Section 3 we introduce our regularization Gδ of of G ≡ ln, which appears in the
definition of the free energy of the FENE-P system (P). We then introduce a regularized problem
(Pδ), and show a formal free energy bound for it. In Section 4, on assuming that D is a polytope
for ease of exposition, we introduce our finite element approximation of (Pδ), namely (P∆t

δ,h), based
on approximating the pressure and the symmetric conformation tensor by piecewise constants; and
the velocity field with continuous piecewise quadratics or a reduced version, where the tangential
component on each simplicial edge (d = 2) or face (d = 3) is linear. Using the Brouwer fixed point
theorem, we prove existence of a solution to (P∆t

δ,h) and show that it satisfies a discrete regularized
free energy bound for any choice of time step; see Theorem 4.1. We conclude by showing that, in
the limit δ → 0+, these solutions of (P

∆t
δ,h) converge to a solution of (P∆t

h ) with the approximation
of the conformation tensor being positive definite and having a trace strictly less than b. Moreover,
this solution of (P∆t

h ) satisfies a discrete free energy bound; see Theorem 4.2. Next, in Section
5 we introduce the FENE-P system with stress diffusion, (Pα), where the dissipative term α∆σ
has been added to the right-hand side of (1.1c). We then introduce the corresponding regularized
version (Pα,δ), and show a formal free energy bound for it. In Section 6 we introduce our finite
element approximation of (Pα,δ), namely (P∆t

α,δ,h), based on approximating the velocity field with
continuous piecewise quadratics or the mini element, and the pressure, the symmetric conformation
tensor and its trace by continuous piecewise linears. Here we assume that D is a convex polytope
and that the finite element mesh consists of quasi-uniform non-obtuse simplices. Using the Brouwer
fixed point theorem, we prove existence of a solution to (P∆t

α,δ,h) and show that it satisfies a discrete
regularized free energy bound for any choice of time step; see Theorem 6.1. In Section 7 we prove,
in the case d = 2, (subsequence) convergence of the solutions of (P∆t

α,δ,h), as the regularization
parameter, δ, and the spatial, h, and temporal, ∆t, discretization parameters tend to zero, to
global-in-time weak solutions of (Pα); see Theorem 7.3. This existence result for (Pα) is new to
the literature.

1.2. Notation and auxiliary results. The absolute value and the negative part of a real number
s ∈ R are denoted by |s| := max{s,−s} and [s]− = min{s, 0}, respectively. We adopt the following
notation for inner products

v ·w :=

d∑

i=1

viwi ≡ vTw = wTv ∀v,w ∈ R
d,(1.3a)

φ : ψ :=

d∑

i=1

d∑

j=1

φijψij ≡ tr
(
φ

T
ψ
)
= tr

(
ψ

T
φ
)

∀φ,ψ ∈ R
d×d,(1.3b)
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∇φ :: ∇ψ :=

d∑

i=1

d∑

j=1

∇φij ·∇ψij ∀φ,ψ ∈ R
d×d;(1.3c)

where ·T and tr (·) denote transposition and trace, respectively. The corresponding norms are

‖v‖ := (v · v) 1
2 , ‖∇v‖ := (∇v : ∇v)

1
2 ∀v ∈ R

d;(1.4a)

‖φ‖ := (φ : φ)
1
2 , ‖∇φ‖ := (∇φ :: ∇φ)

1
2 ∀φ ∈ R

d×d.(1.4b)

We will use on several occasions that tr(φ) = tr(φT ) and tr(φψ) = tr(ψφ) for all φ,ψ ∈ R
d×d,

and

φχT : ψ = χφ : ψ = χ : ψφ ∀φ,ψ ∈ R
d×d
S , χ ∈ R

d×d ,(1.5a)

‖ψφ‖ ≤ ‖ψ‖ ‖φ‖ ∀φ,ψ ∈ R
d×d,(1.5b)

‖φv‖ ≤ ‖φ‖ ‖v‖ ∀φ ∈ R
d×d, v ∈ R

d.(1.5c)

For any φ ∈ R
d×d
S , there exists a decomposition

(1.6) φ = OTDO ⇒ tr (φ) = tr (D) ,

where O ∈ R
d×d is an orthogonal matrix and D ∈ R

d×d a diagonal matrix. Hence, for any
g : R → R, one can define g(φ) ∈ R

d×d
S as

(1.7) g(φ) := OT g(D)O ⇒ tr (g(φ)) = tr (g(D)) ,

where g(D) ∈ R
d×d
S is the diagonal matrix with entries [g(D)]ii = g(Dii), i = 1, . . . , d. Although

the diagonal decomposition (1.6) is not unique, (1.7) uniquely defines g(φ). We note for later
purposes that

d−1(tr(|φ|))2 ≤ ‖φ‖2 ≤ (tr(|φ|))2 ∀φ ∈ R
d×d
S .(1.8)

One can show via diagonalization, see e.g. [1] for details, that for all concave function g ∈ C1(R),
it holds

(1.9) (φ−ψ) : g′(ψ) ≥ tr (g(φ)− g(ψ)) ≥ (φ−ψ) : g′(φ) ∀φ,ψ ∈ R
d×d
S ,

where g′ denotes the first derivative of g. If g ∈ C1(R) is convex, the inequalities in (1.9) are

reversed. It follows from (1.9) and (1.3b) that for any φ ∈ C1([0, T ];Rd×d
S ) and any concave or

convex g ∈ C1(R)

d

dt
tr (g(φ)) = tr

(
dφ

dt
g′(φ)

)
=

dφ

dt
: g′(φ) ∀t ∈ [0, T ].(1.10)

Of course, a similar result holds for spatial derivatives. Furthermore, the results (1.9) and (1.10)

hold true when C1(R) and R
d×d
S are replaced by C1(R>0) and R

d×d
S,>0 or C1(0, b) and R

d×d
S,>0,b.

Finally, one can show that if g ∈ C0,1(R) with Lipschitz constant gLip, then

‖g(φ)− g(ψ)‖ ≤ gLip ‖φ−ψ‖ ∀φ,ψ ∈ R
d×d
S .(1.11)

We adopt the standard notation for Sobolev spaces, e.g. H1(D) := {η : D 7→ R :
∫
D
[ |η|2 +

‖∇η‖2 ] dx < ∞} with H1
0 (D) being the closure of C∞

0 (D) for the corresponding norm ‖ · ‖H1(D).
We denote the associated semi-norm as | · |H1(D). The topological dual of the Hilbert space

H1
0 (D), with pivot space L2(D), will be denoted by H−1(D). Such function spaces are naturally

extended when the range R is replaced by R
d, Rd×d and R

d×d
S ; e.g. H1(D) becomes [H1(D)]d,

[H1(D)]d×d and [H1(D)]d×d
S , respectively. For ease of notation, we write the corresponding

norms and semi-norms as ‖ · ‖H1(D) and | · |H1(D), respectively, as opposed to e.g. ‖ · ‖[H1(D)]d and

| · |[H1(D)]d , respectively. We denote the duality pairing between H−1(D) and H1
0 (D) as 〈·, ·〉H1

0 (D),

and we similarly write 〈·, ·〉H1
0 (D) for the duality pairing between e.g. [H−1(D)]d and [H1

0 (D)]d. For

notational convenience, we introduce also convex sets such as [H1(D)]d×d
S,>0 := {φ ∈ [H1(D)]d×d

S :

φ ∈ R
d×d
S,>0 a.e. in D}, and [H1(D)]d×d

S,>0,b := {φ ∈ [H1(D)]d×d
S : φ ∈ R

d×d
S,>0,b a.e. in D}.
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In order to analyse (P), we adopt the notation

W := [H1
0 (D)]d, Q := L2(D), V :=

{
v ∈ W :

∫

D

q div v dx = 0 ∀q ∈ Q

}
,

(1.12)

S := [L∞(D)]d×d
S , S>0 := [L∞(D)]d×d

S,>0 and S>0,b := {φ ∈ S>0 : tr(φ) < b a.e. in D} .
Throughout the paper C will denote a generic positive constant independent of the regularization
parameter δ and the mesh parameters h and ∆t. Finally, we recall the Poincaré inequality

(1.13)

∫

D

‖v‖2 dx ≤ CP

∫

D

‖∇v‖2 dx ∀v ∈ W,

where CP ∈ R>0 depends only on D.

2. Formal free energy bound for the problem (P)

In this section we recall from Hu and Lelièvre [19] the free energy structure of problem (P).
Let F (u,σ) denote the free energy associated with a solution (u, p,σ) to problem (P), where we
define

F (v,φ) :=
Re

2

∫

D

‖v‖2 dx− ε

2Wi

∫

D

[
b ln

(
1− tr(φ)

b

)
+ tr (ln(φ) + I)

]
dx(2.1)

∀(v,φ) ∈ [L2(D)]d × S⋆

with S⋆ ⊂ S>0,b such that F (·, ·) is well-defined. Here the first term Re
2

∫
D
‖v‖2 corresponds to the

usual kinetic energy term, and the second term, which is nonnegative, is a relative entropy term.
Moreover, on noting that ln is a concave function on R>0, we observe

(2.2) F (v,φ) ≥ Re

2

∫

D

‖v‖2 dx+
ε

2Wi

∫

D

tr (φ− ln(φ)− I) dx ∀(v,φ) ∈ [L2(D)]d × S⋆,

where the right-hand side is the free energy of the Oldroyd-B model under the same no flow
boundary conditions, see e.g. [19] and [1]. Clearly, diagonalization yields that the relative entropy
term of this Oldroyd-B model is nonnegative. Of course, the I term in the relative entropy for
FENE-P and Oldroyd-B plays no real role, and just means that the minimum relative entropy
for Oldroyd-B is zero and is obtained by φ = I. Finally, we note that tr (ln(φ)) is rewritten as
ln (det(φ)) in [19], which once again is easily deduced from diagonalization.

Proposition 2.1. With f ∈ L2(0, T ; [H−1(D)]d) let (u, p,σ) be a sufficiently smooth solution to
problem (P), (1.1a–f), such that σ(t, ·) ∈ S⋆ for t ∈ (0, T ). Then the free energy F (u,σ) satisfies
for a.a. t ∈ (0, T )

d

dt
F (u,σ) + (1− ε)

∫

D

‖∇u‖2 dx+
ε

2Wi2

∫

D

tr
(
(A(σ))2σ

)
dx = 〈f ,u〉H1

0 (D),(2.3)

where the third term on the left-hand side is positive, via diagonalization, on recalling (1.2).

Proof. Multiplying the Navier-Stokes equation (1.1a) with u and the stress equation (1.1c) with
ε

2Wi A(σ), summing and integrating over D yields, after using integrations by parts, the boundary
condition (1.1f) and the incompressibility property (1.1b) in the standard way, that

∫

D

[
Re

2

∂‖u‖2
∂t

+ (1− ε)‖∇u‖2 + ε

Wi

(
1− tr(σ)

b

)−1

σ : ∇u

]
dx(2.4)

+
ε

2Wi

∫

D

[(
∂σ

∂t
+ (u ·∇)σ

)
+

A(σ)σ

Wi

]
: A(σ) dx

− ε

2Wi

∫

D

(
(∇u)σ + σ (∇u)

T
)
: A(σ) dx = 〈f ,u〉H1

0 (D).
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It follows from the chain rule and (1.10) that
(
∂σ

∂t
+ (u ·∇)σ

)
: A(σ) =

(
∂

∂t
+ (u ·∇)

)(
−b ln

(
1− tr(σ)

b

)
− tr (ln(σ))

)
.(2.5)

On integrating (2.5) over D, the (u ·∇) term on the right-hand side vanishes as u(t, ·) ∈ V. On
noting (1.2), (1.5a), (1.3b) and (1.1b), we obtain that

(
σ (∇u)

T
+ (∇u)σ

)
: A(σ) = 2

(
1− tr(σ)

b

)−1

σ : ∇u.(2.6)

Hence, on combining (2.4)–(2.6) and noting a trace property, we obtain the desired free energy
equality (2.3). �

For later purposes, we note the following.

Remark 2.1. The step in the above proof of testing (1.1c) with ε
2Wi A(σ) is equivalent to testing

(1.1c) with − ε
2Wiσ

−1 and testing the corresponding trace equation

∂ tr(σ)

∂t
+ (u ·∇) tr(σ) = 2∇u : σ − tr (A(σ)σ)

Wi
on DT(2.7)

with ε
2Wi

(
1− tr(σ)

b

)−1

, and adding.

Recall that in the limit b → ∞ the FENE-P model formally converges to the Oldroyd-B model.
It is thus interesting to note that when b → ∞, the free energy equality (2.3) formally converges
to the corresponding free energy equality for the Oldroyd-B model, on recalling (2.2). Finally, we
note the following result.

Corollary 2.1. Under the assumptions of Proposition 2.1 it follows that

sup F (u(t, ·),σ(t, ·))
t∈(0,T )

+
1− ε

2

∫

DT

‖∇u‖2 dx dt+
ε

2Wi2

∫

DT

tr
(
(A(σ))2σ

)
dx dt(2.8)

≤ 2

(
F (u0,σ0) +

1 + CP

2(1− ε)
‖f‖2L2(0,T ;H−1(D))

)
.

Proof. One can bound the term 〈f ,u〉H1
0 (D) in (2.3), using the Cauchy-Schwarz and Young in-

equalities for ν ∈ R>0, and the Poincaré inequality (1.13), by

〈f ,u〉H1
0 (D) ≤ ‖f‖H−1(D) ‖u‖H1(D) ≤

1

2ν2
‖f‖2H−1(D) +

ν2

2
‖u‖2H1(D)(2.9)

≤ 1

2ν2
‖f‖2H−1(D) +

ν2

2
(1 + CP ) ‖∇u‖2L2(D) .

Combining (2.9) and (2.3) with ν2 = (1 − ε)/(1 + CP ), and integrating in time yields the result
(2.8). �

3. Formal free energy bound for a regularized problem (Pδ)

3.1. A regularization. Let G : s ∈ R>0 7→ ln s ∈ R denote the logarithm function, whose domain
of definition can be straightforwardly extended to the set of symmetric positive definite matrices
using (1.6) and (1.7). We define the following concave C1,1(R) regularization of G based on a
given parameter δ ∈ (0, 1):

Gδ : s ∈ R 7→
{
G(s) ∀s ≥ δ,
s
δ
+G(δ)− 1 ∀s ≤ δ

⇒ Gδ(s) ≥ G(s) ∀s ∈ R>0.(3.1)

We define also the following scalar functions

βδ(s) := (G′
δ(s))

−1 ∀s ∈ R and β(s) := (G′(s))
−1 ∀s ∈ R>0.(3.2)

Hence, we have that

βδ : s ∈ R 7→ max{s, δ} and β : s ∈ R>0 7→ s.(3.3)
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For later purposes, we note the following results concerning these functions.

Lemma 3.1. For any φ,ψ ∈ R
d×d
S , η ∈ R and for any δ ∈ (0, 1) we have that

βδ(φ)G
′
δ(φ) = G′

δ(φ)βδ(φ) = I,(3.4a)

tr
(
(ηI −G′

δ(φ))
2
βδ(φ)

)
≥ 0,(3.4b)

tr (φ−Gδ(φ)− I) ≥ 0,(3.4c)

(φ−ψ) : [G′
δ(ψ)] ≥ tr (Gδ(φ)−Gδ(ψ)) ,(3.4d)

− (φ−ψ) : [G′
δ(φ)−G′

δ(ψ)] ≥ δ2 ‖G′
δ(φ)−G′

δ(ψ)‖
2
.(3.4e)

In addition, if δ ∈ (0, 1
2 ] we have that

tr (φ−Gδ(φ)) ≥
{

1
2‖φ‖
1
2δ ‖[φ]−‖

and φ : (I −G′
δ(φ)) ≥ 1

2‖φ‖ − d.(3.5)

Proof. All the results are proved in Lemma 2.1 in [1], except (3.4b) and this can be easily proved
via diagonalization. �

We introduce the following regularization of A, (1.2), for any δ ∈ (0, 12 ]:

Aδ(φ, η) := G′
δ

(
1− η

b

)
I −G′

δ(φ) ∀(φ, η) ∈ R
d×d
S × R.(3.6)

In addition to Lemma 3.1 we will also make use of the following result, which is similar to (3.5).

Lemma 3.2. For any s ∈ R, b ∈ R>0 and δ ∈ (0, 1
2 ], we have that

−bGδ

(
1− s

b

)
− s ≥ 1

2
[|s| − 3b]+ ,(3.7a)

(
G′

δ

(
1− s

b

)
− 1
)
s ≥ [ |s| − b ]+ .(3.7b)

Proof. On recalling (3.1), we first note from the concavity of Gδ that

(3.8) −bGδ

(
1− s

b

)
≥ −bGδ (1) + sG′

δ (1) = s ∀s ∈ R.

From the scalar version of (3.5), we have that

(
1− s

b

)
−Gδ

(
1− s

b

)
≥ 1

2

∣∣∣1− s

b

∣∣∣ ⇒ −bGδ

(
1− s

b

)
− s ≥ b

2

∣∣∣1− s

b

∣∣∣− b.(3.9)

We note that

b

2

∣∣∣1− s

b

∣∣∣− b =

{
1
2 (|s| − 3b) if s ≥ b,

− 1
2 (s+ b) ≥ 1

2 (|s| − 3b) if s ≤ b.
(3.10)

Combining (3.8)–(3.10) yields the desired result (3.7a).
We now consider (3.7b). If 1− s

b
≤ δ, i.e. s ≥ b(1− δ), then

(
G′

δ

(
1− s

b

)
− 1
)
s =

(
1

δ
− 1

)
s ≥ |s|.(3.11)

If 1− s
b
≥ δ, i.e. s ≤ b(1− δ), then

(
G′

δ

(
1− s

b

)
− 1
)
s =

s2

b− s
≥ 0 and

s2

b− s
≥ |s| − b.(3.12)

Combining (3.11) and (3.12) yields the desired result (3.7b). �
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3.2. The regularized problem (Pδ). Using the regularizationsGδ, βδ and Aδ introduced above,
we consider the following regularization of (P) for a given δ ∈ (0, 1

2 ]:

(Pδ) Find uδ : (t,x) ∈ [0, T ) × D 7→ uδ(t,x) ∈ R
d, pδ : (t,x) ∈ DT 7→ pδ(t,x) ∈ R and

σδ : (t,x) ∈ [0, T )×D 7→ σδ(t,x) ∈ R
d×d
S such that

Re

(
∂uδ

∂t
+ (uδ ·∇)uδ

)
= −∇pδ + (1 − ε)∆uδ +

ε

Wi
div (Aδ(σδ, tr(σδ))βδ(σδ)) + f on DT ,

(3.13a)

divuδ = 0 on DT ,(3.13b)

∂σδ

∂t
+ (uδ ·∇)σδ = (∇uδ)βδ(σδ) + βδ(σδ)(∇uδ)

T − Aδ(σδ, tr(σδ))βδ(σδ)

Wi
on DT ,

(3.13c)

uδ(0,x) = u
0(x) ∀x ∈ D,(3.13d)

σδ(0,x) = σ
0(x) ∀x ∈ D,(3.13e)

uδ = 0 on (0, T )× ∂D.(3.13f)

3.3. Formal free energy bound for (Pδ). In this section, we extend the formal energy results
(2.3) and (2.8) for (P) to problem (Pδ). We will assume throughout that

f ∈ L2
(
0, T ; [H−1(D)]d

)
, u0 ∈ H := {w ∈ [L2(D)]d : divw = 0 a.e. in D, w · n∂D = 0 on ∂D},

(3.14)

σ0 ∈ S>0 with σ0
min ‖ξ‖2 ≤ ξTσ0(x) ξ ≤ σ0

max ‖ξ‖2 ∀ξ ∈ R
d for a.e. x in D

and tr
(
σ0(x)

)
≤ b⋆ for a.e. x in D;

where n∂D is normal to ∂D, b⋆, σ0
min, σ

0
max ∈ R>0 with b⋆ < b. Let Fδ(uδ,σδ, tr(σδ)) denote the

free energy associated with a solution (uδ, pδ,σδ) to problem (Pδ), where we define

Fδ(v,φ, η) :=
Re

2

∫

D

‖v‖2 dx− ε

2Wi

∫

D

[
b Gδ

(
1− η

b

)
+ tr (Gδ(φ) + I)

]
dx(3.15)

∀(v,φ, η) ∈ [L2(D)]d × S× L1(D).

Note that the second term in Fδ has been regularized in comparison with F in (2.1). Similarly
to (2.2), we have, on noting (3.8), the inequality
(3.16)

Fδ(v,φ, tr(φ)) ≥
Re

2

∫

D

‖v‖2 dx+
ε

2Wi

∫

D

tr (φ−Gδ(φ)− I) dx ∀(v,φ) ∈ [L2(D)]d × S,

where the right-hand side in (3.16) is the free energy of the corresponding regularized Oldroyd-B
model, see [1] and note (3.4c). It also follows from (3.1) and (3.14) that

Fδ(u
0,σ0, tr(σ0)) ≤ F (u0,σ0).(3.17)

Proposition 3.1. Let δ ∈ (0, 1
2 ] and (uδ, pδ,σδ) be a sufficiently smooth solution to problem (Pδ),

(3.13a–f). Then the free energy Fδ(uδ,σδ, tr(σδ)) satisfies for a.a. t ∈ (0, T )

d

dt
Fδ(uδ,σδ, tr(σδ)) + (1 − ε)

∫

D

‖∇uδ‖2 dx(3.18)

+
ε

2Wi2

∫

D

tr
(
(Aδ(σδ, tr(σδ)))

2
βδ(σδ)

)
dx = 〈f ,uδ〉H1

0 (D),

where the third term on the left-hand side is nonnegative from (3.6) and (3.4b).

Proof. Similarly to the proof of Proposition 2.1, we multiply the regularized Navier-Stokes equa-
tion (3.13a) by uδ and the regularized stress equation (3.13c) with ε

2WiAδ(σδ, tr(σδ)), sum and
integrate over D, use integrations by parts, the boundary condition (3.13f) and the incompress-
ibility property (3.13b). This yields the desired result (3.18) on noting the following analogues of
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(2.5) and (2.6)
(
∂σδ

∂t
+ (uδ ·∇)σδ

)
: Aδ(σδ, tr(σδ))(3.19)

=

(
∂

∂t
+ (uδ ·∇)

)(
−b Gδ

(
1− tr(σδ)

b

)
− tr(Gδ(σδ))

)

and
(
βδ (σδ) (∇uδ)

T
+ (∇uδ) βδ(σδ)

)
: Aδ(σδ, tr(σδ)) = 2G′

δ

(
1− tr(σδ)

b

)
βδ(σδ) : ∇uδ.(3.20)

Here we have recalled (3.6) and (1.10) for (3.19), and (1.5a), (1.3b), (3.4a) and (3.13b) for (3.20).
�

Similarly to Remark 2.1, we note the following.

Remark 3.1. The step in the above proof of testing the regularized stress equation (3.13c) with
ε
2WiAδ(σδ, tr(σδ)) is equivalent to testing (3.13c) with − ε

2WiG
′
δ(σδ) and testing the corresponding

regularized trace equation

∂ tr(σδ)

∂t
+ (uδ ·∇) tr(σδ) = 2∇uδ : βδ(σδ)−

tr(Aδ(σδ, tr(σδ))βδ(σδ))

Wi
on DT(3.21)

with ε
2WiG

′
δ

(
1− tr(σδ)

b

)
, and adding.

Corollary 3.1. Under the assumptions of Proposition 3.1 it follows that

sup
t∈(0,T )

Fδ(uδ(t, ·),σδ(t, ·), tr(σδ(t, ·))) +
1− ε

2

∫

DT

‖∇uδ‖2 dx dt(3.22)

+
ε

2Wi2

∫

DT

tr
(
(Aδ(σδ, tr(σδ)))

2 βδ(σδ)
)
dxdt

≤ 2

(
F (u0,σ0) +

1 + CP

2(1− ε)
‖f‖2L2(0,T ;H−1(D))

)
.

Proof. The proof of (3.22) follows from (3.18) in the same way as (2.8) follows from (2.3), and in
addition noting (3.17). �

4. Finite element approximation of (Pδ) and (P)

4.1. Finite element discretization. We now introduce a finite element discretization of the
problem (Pδ), which satisfies a discrete analogue of (3.18).

The time interval [0, T ) is split into intervals [tn−1, tn) with ∆tn = tn − tn−1, n = 1, . . . , NT .
We set ∆t := maxn=1,...,NT

∆tn. We will assume throughout that the domain D is a polytope.
We define a regular family of meshes {Th}h>0 with discretization parameter h > 0, which is built
from partitionings of the domain D into regular open simplices so that

D = Th :=
NK∪
k=1

Kk with max
k=1,...,NK

hk

ρk
≤ C.

Here ρk is the diameter of the largest inscribed ball contained in the simplex Kk and hk is the
diameter of Kk, so that h = maxk=1,...,NK

hk. For each element Kk, k = 1, . . . , NK , of the mesh
Th let {P k

i }di=0 denotes its vertices, and {nk
i }di=0 the outward unit normals of the edges (d = 2) or

faces (d = 3) with nk
i being that of the edge/face opposite vertex P k

i , i = 0, . . . , d. In addition,
let {ηki (x)}di=0 denote the barycentric coordinates of x ∈ Kk with respect to the vertices {P k

i }di=0;
that is, ηki ∈ P1 and ηki (P

k
j ) = δij , i, j = 0, . . . , d. Here Pm denote polynomials of maximal degree

m in x, and δij the Kronecker delta notation. Finally, we introduce ∂Th := {Ej}NE

j=1 as the set
of internal edges Ej of triangles in the mesh Th when d = 2, or the set of internal faces Ej of
tetrahedra when d = 3.
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We approximate the problem (Pδ) by the problem (P∆t
δ,h) based on the finite element spaces

W0
h×Q0

h×S0h. As is standard, we require the discrete velocity-pressure spaces W
0
h×Q0

h ⊂ W×Q
satisfy the discrete Ladyshenskaya-Babuška-Brezzi (LBB) inf-sup condition

(4.1) inf
q∈Q0

h

sup
v∈W0

h

∫

D

q div v dx

‖q‖L2(D) ‖v‖H1(D)

≥ µ⋆ > 0,

see e.g. [16, p114]. In the following, we set

W0
h := W2

h ⊂ W if d = 2 or W2,−
h ⊂ W if d = 2 or 3,(4.2a)

Q0
h := {q ∈ Q : q |Kk

∈ P0 k = 1, . . . , NK} ⊂ Q(4.2b)

and S0h := {φ ∈ S : φ |Kk
∈ [P0]

d×d
S k = 1, . . . , NK} ⊂ S;(4.2c)

where

W2
h := {v ∈ [C(D)]d ∩W : v |Kk

∈ [P2]
d k = 1, . . . , NK},(4.3a)

W2,−
h := {v ∈ [C(D)]d ∩W : v |Kk

∈ [P1]
d ⊕ span{ςki }di=0 k = 1, . . . , NK}.(4.3b)

Here, for k = 1, . . . , NK and i = 0, . . . , d

ςki (x) = n
k
i

d∏

j=0,j 6=i

ηkj (x) for x ∈ Kk.(4.4)

We introduce also

V0
h :=

{
v ∈ W0

h :

∫

D

q div v dx = 0 ∀q ∈ Q0
h

}
,(4.5)

which approximates V. It is well-known that the choices (4.2a,b) satisfy (4.1), see e.g. [12, p221] for

W0
h = W2

h and d = 2, and Chapter II, Sections 2.1 (d = 2) and 2.3 (d = 3) in [16] for W0
h = W2,−

h .
Moreover, these particular choices of S0h and Q0

h have the desirable property that

(4.6) φ ∈ S0h ⇒ Aδ(φ, tr(φ)) ∈ S0h and b Gδ

(
1− tr(φ)

b

)
+ tr (Gδ(φ)) ∈ Q0

h,

which makes it a straightforward matter to mimic the free energy inequality (3.18) at a discrete
level. Since S0h is discontinuous, we will use the discontinuous Galerkin method to approximate
the advection term (uδ ·∇)σδ in the following. Then, for the boundary integrals, we will make use
of the following definitions (see e.g. [15, p267]). Given v ∈ W0

h, then for any φ ∈ S0h (or Q0
h) and

for any point x that is in the interior of some Ej ∈ ∂Th, we define the downstream and upstream
values of φ at x by

φ
+v(x) = lim

ρ→0+
φ(x+ ρv(x)) and φ

−v(x) = lim
ρ→0−

φ(x+ ρv(x));(4.7)

respectively. In addition, we denote by

[[φ]]→v(x) = φ
+v(x)− φ−v(x) and {φ}v (x) = φ

+v(x) + φ−v(x)

2
,(4.8)

the jump and mean value, respectively, of φ at the point x of boundary Ej . From (4.7), it is clear

that the values of φ+v|Ej
and φ−v|Ej

can change along Ej ∈ ∂Th. Finally, it is easily deduced
that

NE∑

j=1

∫

Ej

|v · n|[[q1]]→v q
+v

2 ds = −
NK∑

k=1

∫

∂Kk

(v · nKk
) q1 q

+v

2 ds ∀v ∈ W0
h, q1, q2 ∈ Q0

h;(4.9)

where n ≡ n(Ej) is a unit normal to Ej , whose sign is of no importance, and nKk
is the outward

unit normal vector of boundary ∂Kk of Kk. We note that similar ideas appear in upwind schemes;
e.g. see Chapter IV, Section 5 in [16] for the Navier-Stokes equations.
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4.2. A free energy preserving approximation (P∆t
δ,h) of (Pδ). For any source term f ∈

L2
(
0, T ; [H−1(D)]d

)
, we define the following piecewise constant function with respect to the time

variable

(4.10) f∆t,+(t, ·) = fn(·) := 1

∆tn

∫ tn

tn−1

f (t, ·) dt, t ∈ [tn−1, tn), n = 1, . . . , NT .

It is easily deduced that for n = 1, . . . , NT

n∑

m=1

∆tm ‖fm‖rH−1(D) ≤
∫ tn

0

‖f(t, ·)‖rH−1(D) dt for any r ∈ [1, 2],(4.11a)

and f∆t,+ → f strongly in L2(0, T ; [H−1(D)]d) as ∆t → 0+.(4.11b)

Throughout this section we choose u0
h ∈ V0

h to be the L2 projection of u0 onto V0
h and σ0

h ∈ S0h
to be the L2 projection of σ0 onto S0h. Hence, we have that

‖u0
h‖L2(D) ≤ ‖u0‖L2(D), σ0

h |Kk
=

1

|Kk|

∫

Kk

σ0 dx, k = 1, . . . , NK ,(4.12a)

where |Kk| is the measure of Kk; and it immediately follows from (3.14) that

σ0
min ‖ξ‖2 ≤ ξTσ0

h |Kk
ξ ≤ σ0

max ‖ξ‖2 ∀ξ ∈ R
d,(4.12b)

tr(σ0
h) |Kk

=
1

|Kk|

∫

Kk

tr(σ0) dx ≤ ‖ tr(σ0)‖L∞(Kk) ≤ b⋆ < b.(4.12c)

We are now ready to introduce our approximation (P∆t
δ,h) of (Pδ) for δ ∈ (0, 12 ]:

(P∆t
δ,h) Setting (u0

δ,h,σ
0
δ,h) = (u0

h,σ
0
h) ∈ V0

h × (S0h ∩ S>0,b) as defined in (4.12a), then for n =

1, . . . , NT find (un
δ,h,σ

n
δ,h) ∈ V0

h × S0h such that for any test functions (v,φ) ∈ V0
h × S0h

∫

D

[
Re

(
un
δ,h − un−1

δ,h

∆tn

)
· v +

Re

2

[(
(un−1

δ,h · ∇)un
δ,h

)
· v − un

δ,h ·
(
(un−1

δ,h · ∇)v
)]

(4.13a)

+ (1 − ε)∇un
δ,h : ∇v +

ε

Wi
Aδ(σ

n
δ,h, tr(σ

n
δ,h))βδ(σ

n
δ,h) : ∇v

]
dx = 〈fn,v〉H1

0 (D),

∫

D

[(
σn

δ,h − σn−1
δ,h

∆tn

)
: φ− 2

(
(∇un

δ,h)βδ(σ
n
δ,h)
)
: φ+

Aδ(σ
n
δ,h, tr(σ

n
δ,h))βδ(σ

n
δ,h) : φ

Wi

]
dx

(4.13b)

+

NE∑

j=1

∫

Ej

∣∣∣un−1
δ,h · n

∣∣∣ [[σn
δ,h]]→u

n−1
δ,h

: φ+u
n−1
δ,h ds = 0.

In deriving (P∆t
δ,h), we have noted (1.5a) and that

∫

D

v · [(z · ∇)w] dx = −
∫

D

w · [(z · ∇)v] dx ∀z ∈ V, ∀v,w ∈ [H1(D)]d,(4.14)

and we refer to [15, p267] and [11] for the consistency of our approximation of the stress advection
term. We note that on replacing Aδ(σ

n
δ,h, tr(σ

n
δ,h)) with I −G′

δ(σ
n
δ,h) then (P∆t

δ,h), (4.13a,b), col-

lapses to the corresponding finite element approximation of Oldroyd-B studied in [1], see (3.12a,b)
there.

Before proving existence of a solution to (P∆t
δ,h), we first derive a discrete analogue of the energy

bound (3.18) for (P∆t
δ,h), which uses the elementary equality

2s1(s1 − s2) = s21 − s22 + (s1 − s2)
2 ∀s1, s2 ∈ R.(4.15)
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4.3. Energy bound for (P∆t
δ,h).

Proposition 4.1. For n = 1, . . . , NT , a solution
(
un
δ,h,σ

n
δ,h

)
∈ V0

h × S0h to (P∆t
δ,h), (4.13a,b), if

it exists, satisfies

Fδ(u
n
δ,h,σ

n
δ,h, tr(σ

n
δ,h))− Fδ(u

n−1
δ,h ,σn−1

δ,h , tr(σn−1
δ,h ))

∆tn
+

Re

2∆tn

∫

D

‖un
δ,h − un−1

δ,h ‖2 dx(4.16)

+ (1− ε)

∫

D

‖∇un
δ,h‖2 dx+

ε

2Wi2

∫

D

tr
((

Aδ(σ
n
δ,h, tr(σ

n
δ,h))

)2
βδ(σ

n
δ,h)
)
dx

≤ 〈fn,un
δ,h〉H1

0 (D) ≤
(1− ε)

2

∫

D

‖∇un
δ,h‖2 dx+

1 + CP

2(1− ε)
‖fn‖2H−1(D).

Proof. Similarly to (3.20), we have that

∫

D

[(
∇un

δ,h

)
βδ(σ

n
δ,h) : Aδ(σ

n
δ,h, tr(σ

n
δ,h))

]
dx =

∫

D

G′
δ

(
1−

tr(σn
δ,h)

b

)
βδ(σ

n
δ,h) : ∇u

n
δ,h dx,

(4.17)

where we have noted (3.6), (1.3b), (3.4a) and (4.5). Then, similarly to the proof of Proposition 3.1,
we choose v = un

δ,h ∈ V0
h in (4.13a) and φ = ε

2WiAδ(σ
n
δ,h, tr(σ

n
δ,h)) ∈ S0h in (4.13b) and obtain, on

noting (4.15), (3.4a), (4.5) and (4.17), that

〈fn,un
δ,h〉H1

0 (D) ≥
∫

D

[
Re

2

(
‖un

δ,h‖2 − ‖un−1
δ,h ‖2

∆tn
+

‖un
δ,h − un−1

δ,h ‖2
∆tn

)
+ (1− ε)‖∇un

δ,h‖2
]
dx

(4.18)

+
ε

2Wi

∫

D

(
σn

δ,h − σn−1
δ,h

∆tn

)
: Aδ(σ

n
δ,h, tr(σ

n
δ,h)) dx

+
ε

2Wi2

∫

D

tr
((

Aδ(σ
n
δ,h, tr(σ

n
δ,h))

)2
βδ(σ

n
δ,h)
)
dx

+
ε

2Wi

NE∑

j=1

∫

Ej

[∣∣∣un−1
δ,h · n

∣∣∣ [[σn
δ,h]]→u

n−1
δ,h

:
(
Aδ(σ

n
δ,h, tr(σ

n
δ,h))

)+u
n−1
δ,h

]
ds.

It follows from (3.6), (3.4d) and the concavity of Gδ that

(
σn

δ,h − σn−1
δ,h

)
: Aδ(σ

n
δ,h, tr(σ

n
δ,h))

(4.19)

≥
(
tr(σn

δ,h)− tr(σn−1
δ,h )

)
G′

δ

(
1−

tr(σn
δ,h)

b

)
+ tr(Gδ(σ

n−1
δ,h )− tr(Gδ(σ

n
δ,h))

≥
(
bGδ

(
1−

tr(σn−1
δ,h )

b

)
+ tr

(
Gδ(σ

n−1
δ,h )

))
−
(
bGδ

(
1−

tr(σn
δ,h)

b

)
+ tr

(
Gδ(σ

n
δ,h)
))

.

Similarly to (4.19), we have, on recalling (3.6), (4.7) and (4.8), that

[[σn
δ,h]]→u

n−1
δ,h

:
(
Aδ(σ

n
δ,h, tr(σ

n
δ,h))

)+u
n−1
δ,h ≥ −[[bGδ

(
1−

tr(σn
δ,h)

b

)
+ tr

(
Gδ(σ

n
δ,h)
)
]]→u

n−1
δ,h

.

(4.20)

Finally, we note from (4.9) and as un−1
δ,h ∈ V0

h that for all q ∈ Q0
h

NE∑

j=1

∫

Ej

∣∣∣un−1
δ,h · n

∣∣∣ [[q]]→u
n−1
δ,h

ds = −
NK∑

k=1

∫

∂Kk

(
un−1
δ,h · nKk

)
q ds = −

NK∑

k=1

∫

Kk

q divun−1
δ,h dx = 0.

(4.21)
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Combining (4.18)–(4.21) yields the first desired inequality in (4.16). The second inequality in
(4.16) follows immediately from (2.9) with ν2 = (1− ε)/(1 + CP ). �

4.4. Existence of a solution to (P∆t
δ,h).

Proposition 4.2. Let δ ∈ (0, 1
2 ], then, given (un−1

δ,h ,σn−1
δ,h ) ∈ V0

h × S0h and for any time step

∆tn > 0, there exists at least one solution
(
un
δ,h,σ

n
δ,h

)
∈ V0

h × S0h to (P∆t
δ,h), (4.13a,b).

Proof. We introduce the following inner product on the Hilbert space V0
h × S0h

((w,ψ), (v,φ))D =

∫

D

[w · v +ψ : φ] dx ∀(w,ψ), (v,φ) ∈ V0
h × S0h.(4.22)

Given (un−1
δ,h ,σn−1

δ,h ) ∈ V0
h × S0h, let F : V0

h × S0h 7→ V0
h × S0h be such that for any (w,ψ) ∈ V0

h × S0h

(F(w,ψ), (v,φ))D

(4.23)

:=

∫

D

[
Re

(
w − un−1

δ,h

∆tn

)
· v +

Re

2

[(
(un−1

δ,h · ∇)w
)
· v −w ·

(
(un−1

δ,h · ∇)v
)]

+ (1− ε)∇w : ∇v +
ε

Wi
Aδ(ψ, tr(ψ))βδ(ψ) : ∇v

+

(
ψ − σn−1

δ,h

∆tn

)
: φ− 2 ((∇w)βδ(ψ)) : φ+

Aδ(ψ, tr(ψ))βδ(ψ) : φ

Wi

]
dx

− 〈fn,v〉H1
0 (D) +

NE∑

j=1

∫

Ej

∣∣∣un−1
δ,h · n

∣∣∣ [[ψ]]→u
n−1
δ,h

: φ+u
n−1
δ,h ds ∀(v,φ) ∈ V0

h × S0h.

We note that a solution (un
δ,h,σ

n
δ,h) to (4.13a,b), if it exists, corresponds to a zero of F ; that is,

(4.24)
(
F(un

δ,h,σ
n
δ,h), (v,φ)

)
D
= 0 ∀(v,φ) ∈ V0

h × S0h.

In addition, it is easily deduced that the mapping F is continuous. For any (w,ψ) ∈ V0
h × S0h, on

choosing (v,φ) =
(
w, ε

2WiAδ(ψ, tr(ψ))
)
, we obtain analogously to (4.16) that

(
F(w,ψ),

(
w,

ε

2Wi
Aδ(ψ, tr(ψ))

))
D

(4.25)

≥
Fδ(w,ψ, tr(ψ))− Fδ(u

n−1
δ,h ,σn−1

δ,h , tr(σn−1
δ,h ))

∆tn
+

Re

2∆tn

∫

D

‖w − un−1
δ,h ‖2 dx

+
1− ε

2

∫

D

‖∇w‖2 dx+
ε

2Wi2

∫

D

tr
(
(Aδ(ψ, tr(ψ)))

2
βδ(ψ)

)
dx− 1 + CP

2(1− ε)
‖fn‖2H−1(D) .

Let us now assume that for any γ ∈ R>0, the continuous mapping F has no zero (un
δ,h,σ

n
δ,h)

satisfying (4.24), which lies in the ball

Bγ :=
{
(v,φ) ∈ V0

h × S0h : ‖(v,φ)‖D ≤ γ
}
;(4.26)

where

‖(v,φ)‖D := [((v,φ), (v,φ))D]
1
2 =

(∫

D

[ ‖v‖2 + ‖φ‖2 ] dx
) 1

2

.(4.27)

Then for such γ, we can define the continuous mapping Gγ : Bγ 7→ Bγ such that for all (v,φ) ∈ Bγ

Gγ(v,φ) := −γ
F(v,φ)

‖F(v,φ)‖D
.(4.28)
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By the Brouwer fixed point theorem, Gγ has at least one fixed point (wγ ,ψγ) in Bγ . Hence it
satisfies

(4.29)
∥∥(wγ ,ψγ)

∥∥
D
=
∥∥Gγ(wγ ,ψγ)

∥∥
D
= γ.

On noting (4.2c) and (4.29), we have that

(4.30) ‖ψγ‖2L∞(D) ≤
1

mink∈NK
|Kk|

∫

D

‖ψγ‖2 dx = µ2
h

∫

D

‖ψγ‖2 dx ≤ µ2
h γ

2,

where µh := [1/(mink∈NK
|Kk|)]

1
2 . Then (3.15), (3.16), (3.5), (4.30) and (4.29) yield that

Fδ(wγ ,ψγ , tr(ψγ))(4.31)

=
Re

2

∫

D

‖wγ‖2 dx+
ε

2Wi

∫

D

[
−b Gδ

(
1−

tr(ψγ)

b

)
− tr

(
Gδ(ψγ) + I

)]
dx

≥ Re

2

∫

D

‖wγ‖2 dx+
ε

2Wi

∫

D

tr
(
ψγ −Gδ(ψγ)− I

)
dx

≥ Re

2

∫

D

‖wγ‖2 dx+
ε

4Wi

[∫

D

‖ψγ‖ dx− 2d|D|
]

≥ Re

2

∫

D

‖wγ‖2 dx+
ε

4Wiµhγ
‖ψγ‖L∞(D)

∫

D

‖ψγ‖ dx− εd|D|
2Wi

≥ min

(
Re

2
,

ε

4Wiµhγ

)(∫

D

[
‖wγ‖2 + ‖ψγ‖2

]
dx

)
− εd|D|

2Wi

= min

(
Re

2
,

ε

4Wiµhγ

)
γ2 − εd|D|

2Wi
.

Hence for all γ sufficiently large, it follows from (4.25), (4.31) and (3.4b) that

(4.32)
(
F(wγ ,ψγ),

(
wγ ,

ε

2Wi
Aδ(ψγ , tr(ψγ))

))
D
≥ 0.

On the other hand as (wγ ,ψγ) is a fixed point of Gγ , we have that

(
F(wγ ,ψγ),

(
wγ ,

ε

2Wi
Aδ(ψγ , tr(ψγ))

))
D

(4.33)

= −
∥∥F(wγ ,ψγ)

∥∥
D

γ

∫

D

[
‖wγ‖2 +

ε

2Wi
ψγ : Aδ(ψγ , tr(ψγ))

]
dx.

It follows from (3.6), (3.7b), (3.5) and similarly to (4.31), on noting (4.30) and (4.29), that
∫

D

[
‖wγ‖2 +

ε

2Wi
ψγ : Aδ(ψγ , tr(ψγ))

]
dx(4.34)

=

∫

D

[
‖wγ‖2 +

ε

2Wi

(
G′

δ

(
1−

tr(ψγ)

b

)
− 1

)
tr(ψγ) +

ε

2Wi
ψγ :

(
I −G′

δ(ψγ)
) ]

dx

≥
∫

D

‖wγ‖2 dx+
ε

4Wi

[∫

D

‖ψγ‖ dx− 2d|D|
]

≥ min

(
1,

ε

4Wiµhγ

)
γ2 − εd|D|

2Wi
.

Therefore on combining (4.33) and (4.34), we have for all γ sufficiently large that
(
F(wγ ,ψγ),

(
wγ ,

ε

2Wi
Aδ(ψγ , tr(ψγ))

))
D
< 0,(4.35)

which obviously contradicts (4.32). Hence the mapping F has a zero in Bγ for γ sufficiently large,
and so there exists a solution (un

δ,h,σ
n
δ,h) to (4.13a,b). �
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Theorem 4.1. For any δ ∈ (0, 1
2 ], NT ≥ 1 and any partitioning of [0, T ] into NT time steps, there

exists a solution {(un
δ,h,σ

n
δ,h)}NT

n=1 ∈ [V0
h × S0h]

NT to (P∆t
δ,h), (4.13a,b). In addition, it follows for

n = 1, . . . , NT that

Fδ(u
n
δ,h,σ

n
δ,h, tr(σ

n
δ,h)) +

1

2

n∑

m=1

∫

D

[
Re‖um

δ,h − um−1
δ,h ‖2 + (1− ε)∆tm‖∇um

δ,h‖2
]
dx(4.36)

+
ε

2Wi2

n∑

m=1

∆tm

∫

D

tr
((

Aδ(σ
m
δ,h, tr(σ

m
δ,h))

)2
βδ(σ

m
δ,h)
)
dx

≤ Fδ(u
0
h,σ

0
h, tr(σ

0
h)) +

1 + CP

2(1− ε)

n∑

m=1

∆tm‖fm‖2H−1(D)

≤ F (u0
h,σ

0
h) +

1 + CP

2(1− ε)
‖f‖2L2(0,tn;H−1(D)) ≤ C,

which yields that

max
n=0,...,NT

∫

D

[
‖un

δ,h‖2 + ‖σn
δ,h‖+ δ−1 ‖[σn

δ,h]−‖+ δ−1
∣∣[b− tr(σn

δ,h)]−
∣∣ ] dx ≤ C.(4.37)

Moreover, for some C(h,∆t) ∈ R>0, but independent of δ, it follows that for k = 1, . . . , NK

and n = 1, . . . , NT

G′
δ

(
1−

tr(σn
δ,h)

b

)
‖βδ(σ

n
δ,h)‖ ≤ C(h,∆t) on Kk,(4.38a)

‖[βδ(σ
n
δ,h)]

−1‖ ≤ C(h,∆t)

[
1 +G′

δ

(
1−

tr(σn
δ,h)

b

)]
on Kk.(4.38b)

Proof. Existence of a solution to (P∆t
δ,h) and the first inequality in (4.36) follow immediately from

Propositions 4.2 and 4.1, respectively. Similarly to (3.17), the second inequality in (4.36) is a
direct consequence of (3.15), (3.1), (4.12b,c) and (4.11a). Finally, the third inequality in (4.36)
follows from (4.12a–c) and (3.14).

It follows from (4.36) and (3.16) that

Re

2

∫

D

‖un
δ,h‖2 dx+

ε

2Wi

∫

D

tr
(
σn

δ,h −Gδ(σ
n
δ,h)− I

)
dx ≤ C, n = 1, . . . , NT .(4.39)

The first three bounds in (4.37) then follow immediately from (4.39) and (3.5). Next we note that
(3.4c), (3.15) and (4.36) yield that

b

∫

D

[(
1−

tr(σn
δ,h)

b

)
−Gδ

(
1−

tr(σn
δ,h)

b

)]
dx(4.40)

≤ −
∫

D

[
b Gδ

(
1−

tr(σn
δ,h)

b

)
+ tr

(
Gδ(σ

n
δ,h) + I

)
− b

]
dx ≤ C.

The last bound in (4.37) is then simply obtained by using a scalar version of (3.5).
Next, we deduce from (4.36), (3.6) and (3.4b) that for n = 1, . . . , NT

0 ≤ tr
((

Aδ(σ
n
δ,h, tr(σ

n
δ,h))

)2
βδ(σ

n
δ,h)
)
≤ C(h,∆t) on Kk, k = 1, . . . , NK .(4.41)

For any δ > 0, βδ(σ
n
δ,h) ∈ R

d×d
S,>0 and so it follows from (1.3b), (1.4b), (3.6), (3.4a), (1.5b), (4.41),

(1.8), (3.3) and (4.37) that
∥∥∥∥G

′
δ

(
1−

tr(σn
δ,h)

b

)
βδ(σ

n
δ,h)− I

∥∥∥∥
2

(4.42)

=
∥∥Aδ(σ

n
δ,h, tr(σ

n
δ,h))βδ(σ

n
δ,h)
∥∥2 ≤

∥∥∥Aδ(σ
n
δ,h, tr(σ

n
δ,h)) [βδ(σ

n
δ,h)]

1
2

∥∥∥
2 ∥∥∥[βδ(σ

n
δ,h)]

1
2

∥∥∥
2

= tr
((

Aδ(σ
n
δ,h, tr(σ

n
δ,h))

)2
βδ(σ

n
δ,h))

)
tr(βδ(σ

n
δ,h)) ≤ C(h,∆t) ‖βδ(σ

n
δ,h)‖

≤ C(h,∆t)
(
‖σn

δ,h‖+ δ
)
≤ C(h,∆t) on Kk, k = 1, . . . , NK , n = 1, . . . , NT .
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The desired result (4.38a) follows immediately from (4.42). Similarly to (4.42), we have from
(4.41), (1.8), (3.6) and (3.4a) that

C(h,∆t) ≥
∥∥Aδ(σ

n
δ,h, tr(σ

n
δ,h))βδ(σ

n
δ,h)Aδ(σ

n
δ,h, tr(σ

n
δ,h))

∥∥(4.43)

≥
∥∥∥∥∥

(
G′

δ

(
1−

tr(σn
δ,h)

b

))2

βδ(σ
n
δ,h)− 2G′

δ

(
1−

tr(σn
δ,h)

b

)
I + [βδ(σ

n
δ,h)]

−1

∥∥∥∥∥
on Kk, k = 1, . . . , NK , n = 1, . . . , NT .

The desired result (4.38b) follows immediately from (4.43) and (4.38a). �

4.5. Convergence of (P∆t
δ,h) to (P∆t

h ). We now consider the corresponding direct finite element

approximation of (P), i.e. (P∆t
h ) without the regularization δ:

(P∆t
h ) Given initial conditions (u0

h,σ
0
h) ∈ V0

h × (S0h ∩ S>0,b) as defined in (4.12a), then for n =
1, . . . , NT find (un

h ,σ
n
h) ∈ V0

h × S0h such that for any test functions (v,φ) ∈ V0
h × S0h∫

D

[
Re

(
un
h − un−1

h

∆tn

)
· v +

Re

2

[(
(un−1

h · ∇)un
h

)
· v − un

h ·
(
(un−1

h · ∇)v
)]

(4.44a)

+ (1− ε)∇un
h : ∇v +

ε

Wi
A(σn

h)σ
n
h : ∇v

]
dx = 〈fn,v〉H1

0 (D),

∫

D

[(
σn

h − σn−1
h

∆tn

)
: φ− 2 ((∇un

h)σ
n
h) : φ+

A(σn
h)σ

n
h : φ

Wi

]
dx(4.44b)

+

NE∑

j=1

∫

Ej

∣∣un−1
h · n

∣∣ [[σn
h]]→u

n−1
h

: φ+u
n−1
h ds = 0.

We note that (4.44a,b) and F (un
h ,σ

n
h) are only well-defined if σn

h ∈ S0h ∩ S>0,b. We also note
that on replacing A(σn

h) with I − (σn
h)

−1 then (P∆t
h ), (4.44a,b), collapses to the corresponding

finite element approximation of Oldroyd-B studied in [1], see (3.35a,b) there.

Theorem 4.2. For all regular partitionings Th of D into simplices {Kk}NK

k=1 and all partitionings

{∆tn}NT

n=1 of [0, T ], there exists a subsequence {{(un
δ,h,σ

n
δ,h)}NT

n=1}δ>0, where {(un
δ,h, σ

n
δ,h)}NT

n=1 ∈
[V0

h × S0h]
NT solves (P∆t

δ,h), (4.13a,b), and {(un
h,σ

n
h)}NT

n=1 ∈ [V0
h × S0h]

NT such that for the subse-
quence

un
δ,h → un

h , σn
δ,h → σn

h as δ → 0+ , for n = 1, . . . , NT .(4.45)

In addition, for all t ∈ [0, T ] n = 1, . . . , NT , σ
n
h |Kk

∈ R
d×d
S,>0,b, k = 1, . . . , NK ,. Moreover,

{(un
h ,σ

n
h)}NT

n=1 ∈ [V0
h × S0h]

NT solves (P∆t
h ), (4.44a,b), and for n = 1, . . . , NT

F (un
h,σ

n
h)− F (un−1

h ,σn−1
h )

∆tn
+

Re

2∆tn

∫

D

‖un
h − un−1

h ‖2 dx+ (1− ε)

∫

D

‖∇un
h‖2 dx(4.46)

+
ε

2Wi2

∫

D

tr
(
(A(σn

h))
2
σn

h

)
dx ≤ 1

2
(1− ε)

∫

D

‖∇un
h‖2 dx+

1 + CP

2(1− ε)
‖fn‖2H−1(D).

Proof. For any integer n ∈ [1, NT ], the desired subsequence convergence results (4.45) follow
immediately from (4.37), as (un

δ,h, σ
n
δ,h) are finite dimensional for fixed V0

h × S0
h. It also follows

from (4.37), (4.45) and (1.11) that [σn
h]− and [b − tr(σn

h)]− vanish on D, so that σn
h must be

non-negative definite and tr(σn
h) ≤ b a.e. on D. Moreover, on noting this, (4.45), (3.3) and (1.11),

we have the following subsequence convergence results

βδ(σ
n
h) → σn

h, βδ(σ
n
δ,h) → σn

h as δ → 0+.(4.47)

If tr(σn
h)|Kk

= b on some simplex Kk, then for the subsequence of (4.45) we have that

tr(σn
δ,h)|Kk

→ b as δ → 0+.(4.48)

In addition, it follows from (1.8), (3.3) and (4.48) for δ sufficiently small that

‖βδ(σ
n
δ,h)‖ ≥ 1√

d
tr
(
βδ(σ

n
δ,h)
)
≥ 1√

d
tr
(
σn

δ,h

)
≥ b

2
√
d

on Kk.(4.49)
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Hence, (4.38a) and (4.49) yield for the subsequence of (4.45) for all δ sufficiently small that

G′
δ

(
1−

tr(σn
δ,h)

b

)
≤ C(h,∆t) on Kk,(4.50)

but this contradicts (4.48) on recalling (3.2) and (3.3). Therefore, tr(σn
h)|Kk

< b on all simplices
Kk, and so it follows from (4.45), (3.2) and (3.3) that

Gδ

(
1−

tr(σn
δ,h)

b

)
→ ln

(
1− tr(σn

h)

b

)
, G′

δ

(
1−

tr(σn
δ,h)

b

)
→
(
1− tr(σn

h)

b

)−1

(4.51)

as δ → 0+.
The results (4.38b) and (4.51) yield for δ sufficiently small that

‖[βδ(σ
n
δ,h)]

−1‖ ≤ C(h,∆t) on Kk, k = 1, . . . , NK .(4.52)

Furthermore, it follows from (4.52), (4.47), (3.2), (3.3) and as [βδ(σ
n
δ,h)]

−1βδ(σ
n
δ,h) = I that the

following subsequence result

[βδ(σ
n
δ,h)]

−1 = G′
δ(σ

n
δ,h) → [σn

h]
−1 as δ → 0+(4.53)

holds, and so σn
h |Kk

∈ R
d×d
S,>0,b, k = 1, . . . , NK . Therefore, we have from (4.45) and (3.1) that

Gδ(σ
n
δ,h) → ln(σn

h) as δ → 0+.(4.54)

Since un−1
δ,h , un−1

h ∈ C(D), it follows from (4.45), (4.7) and (4.8) that for j = 1, . . . , NE and all

φ ∈ S0h

∫

Ej

∣∣∣un−1
δ,h · n

∣∣∣ [[σn
δ,h]]→u

n−1
δ,h

: φ+u
n−1
δ,h ds→

∫

Ej

∣∣un−1
h · n

∣∣ [[σn
h]]→u

n−1
h

: φ+u
n−1
h ds as δ → 0+.

(4.55)

Hence using (4.45), (4.47), (4.51) and (4.55), we can pass to the limit δ → 0+ for the subsequence

in (P∆t
δ,h), (4.13a,b), to show that {(un

h ,σ
n
h)}NT

n=1 ∈ [V0
h×S0h]

NT solves (P∆t
h ), (4.44a,b). Similarly,

using (4.45), (4.47), (4.51), (4.53) and (4.54), and noting (3.15) and (2.1), we can pass to the limit
δ → 0+ in (4.16) to obtain (4.46). �

5. Fene-p model with stress diffusion

5.1. Model (Pα), (P) with stress diffusion. In this section we consider the following modified
version of (P), (1.1a–f), with a stress diffusion term for a given constant α ∈ R>0:
(Pα) Find uα : (t,x) ∈ [0, T ) × D 7→ uα(t,x) ∈ R

d, pα : (t,x) ∈ DT 7→ pα(t,x) ∈ R and

σα : (t,x) ∈ [0, T )×D 7→ σα(t,x) ∈ R
d×d
S,>0,b such that

Re

(
∂uα

∂t
+ (uα ·∇)uα

)
= −∇pα + (1 − ε)∆uα +

ε

Wi
div (A(σα)σα) + f on DT ,(5.1a)

divuα = 0 on DT ,(5.1b)

∂σα

∂t
+ (uα ·∇)σα = (∇uα)σα + σα(∇uα)

T − A(σα)σα

Wi
+ α∆σα on DT ,(5.1c)

uα(0,x) = u
0(x) ∀x ∈ D,(5.1d)

σα(0,x) = σ
0(x) ∀x ∈ D,(5.1e)

uα = 0 on (0, T )× ∂D,(5.1f)

(n∂D ·∇)σα = 0 on (0, T )× ∂D.(5.1g)

Hence problem (Pα) is the same as (P), but with the added diffusion term α∆σα for the
stress equation (5.1c), and the associated Neumann boundary condition (5.1g). Similarly to (Pδ),
(3.13a–f), we introduce a regularization of (Pα,δ) of (Pα) mimicking the free energy structure
of (Pα). Moreover, we need to be able to construct a finite element approximation of (Pα,δ)
that satisfies a discrete analogue of this free energy structure. Apart from the obvious addition
of the stress diffusion term, there are three other distinct differences. First, one has to deal with
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the advective term in the stress equation differently, see (5.11) below, to the approach used in
(3.19) for the stability bound, as the approach there cannot be mimicked at a discrete level using
continuous piecewise linear functions to approximate σα,δ, the regularization of σα. Note that
one cannot use S0h with the desirable property (4.6) to approximate σα,δ due to the additional
stress diffusion term. Second, as a consequence of this stress advective term, one has to introduce
another regularization of tr(σα), ̺α,δ, as well as the obvious candidate tr(βδ(σα,δ)), and solve
for this directly, see Remark 5.1 below. Third, it is desirable for the convergence analysis, as
δ → 0, to have a uniform L2(DT ) bound on the extra stress term Aδ(σα,δ, ̺α,δ)βδ(σα,δ) in the
Navier–Stokes equation (5.5a) below. To achieve this we replace Aδ(σα,δ, ̺α,δ)βδ(σα,δ) there by
κδ(σα,δ, ̺α,δ)Aδ(σα,δ, ̺α,δ)βδ(σα,δ), where we define, for δ ∈ (0,min{ 1

2 , b}],

κδ(φ, η) :=

[
βb
δ(η)

tr(βδ(φ))

] 1
2

∀(φ, η) ∈ R
d×d
S × R(5.2)

with

βb
δ : s ∈ R 7→ min{βδ(s), b}.(5.3)

It follows from (5.2), (5.3), (1.3b) and (1.4b) that

‖κδ(φ, η)Aδ(φ, η)βδ(φ)‖2 ≤ ‖κδ(φ, η) [βδ(φ)]
1
2 ‖2‖Aδ(φ, η) [βδ(φ)]

1
2 ‖2(5.4)

≤ b tr
(
(Aδ(φ, η))

2
βδ(φ)

)
∀(φ, η) ∈ R

d×d
S × R.

Hence a uniform L2(DT ) bound on κδ(σα,δ, ̺α,δ)Aδ(σα,δ, ̺α,δ)βδ(σα,δ) follows from a uniform

L1(DT ) on tr
(
(Aδ(σα,δ, ̺α,δ))

2
βδ(σα,δ)

)
, which will follow from the free energy bound. Although

̺α,δ 6= tr(βδ(σα,δ)), we will show, in the limit δ → 0, that βδ(σα,δ) → σα and ̺α,δ → tr(σα)

with σα(·, ·) ∈ R
d×d
S,>0,b, and hence implying that κδ(σα,δ, ̺α,δ) → 1. In order to maintain the free

energy bound we need to include κδ(σα,δ, ̺α,δ) on the right-hand sides of (5.5c,d) below.
Therefore, we consider the following regularization of (Pα) for a given δ ∈ (0,min{ 1

2 , b}]:
(Pα,δ) Find uα,δ : (t,x) ∈ [0, T ) × D 7→ uα,δ(t,x) ∈ R

d, pα,δ : (t,x) ∈ DT 7→ pα,δ(t,x) ∈ R,

σα,δ : (t,x) ∈ [0, T )× D 7→ σα,δ(t,x) ∈ R
d×d
S and ̺α,δ : (t,x) ∈ [0, T )×D 7→ ̺α,δ(t,x) ∈ R such

that

Re

(
∂uα,δ

∂t
+ (uα,δ ·∇)uα,δ

)
= −∇pα,δ + (1− ε)∆uα,δ(5.5a)

+
ε

Wi
div (κδ(σα,δ, ̺α,δ)Aδ(σα,δ, ̺α,δ)βδ(σα,δ))

+ f on DT ,

divuα,δ = 0 on DT ,(5.5b)

∂σα,δ

∂t
+ (uα,δ ·∇)βδ(σα,δ) = κδ(σα,δ, ̺α,δ)

[
(∇uα,δ)βδ(σα,δ) + βδ(σα,δ)(∇uα,δ)

T
]

(5.5c)

− Aδ(σα,δ, ̺α,δ)βδ(σα,δ)

Wi
+ α∆σα,δ on DT ,

∂̺α,δ
∂t

− b (uα,δ ·∇)βδ(1−
̺α,δ
b

) = 2κδ(σα,δ, ̺α,δ)∇uα,δ : βδ(σα,δ)(5.5d)

− tr(Aδ(σα,δ, ̺α,δ)βδ(σα,δ))

Wi
+ α∆̺α,δ on DT ,

uα,δ(0,x) = u
0(x) ∀x ∈ D,(5.5e)

σα,δ(0,x) = σ
0(x), ̺α,δ(0,x) = tr(σ0(x)) ∀x ∈ D,(5.5f)

uα,δ = 0 on (0, T )× ∂D,(5.5g)

(n∂D ·∇)σα,δ = 0, (n∂D ·∇)̺α,δ = 0 on (0, T )× ∂D.(5.5h)

We note from (3.3) that −b∇βδ

(
1− ̺α,δ

b

)
= ∇̺α,δ if

(
1− ̺α,δ

b

)
≥ δ, i.e. ̺α,δ ≤ b(1 − δ). We

remark again, due the required regularization of the advective terms in (5.5c,d), that ̺α,δ 6=
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tr(σα,δ). However, we note that on taking the trace of (5.5c), subtracting (5.5d) and integrating
over D, yields, on noting (5.5b,f–h) and (1.3b), that for all t ∈ [0, T ]

∫

D

[tr(σα,δ(t, ·))− ̺α,δ(t, ·)] dx =

∫

D

[tr(σα,δ(0, ·))− ̺α,δ(0, ·)] dx = 0.(5.6)

5.2. Formal free energy bound for (Pα,δ). First, similarly to (3.1), we introduce, for δ ∈ (0, 1),
the concave C1,1(R>0) function

Hδ : s ∈ R>0 7→
{
G(s) ∀s ∈ (0, δ−1],

δ s+G(δ−1)− 1 ∀s ≥ δ−1
⇒ H ′

δ(G
′
δ(s)) = βδ(s) ∀s ∈ R.(5.7)

We have the following analogue of Proposition 3.1.

Proposition 5.1. Let α ∈ R>0, δ ∈ (0,min{ 1
2 , b}] and (uα,δ, pα,δ,σα,δ, ̺α,δ) be a sufficiently

smooth solution to problem (Pα,δ), (5.5a–h). Then the free energy Fδ(uα,δ,σα,δ, ̺α,δ) satisfies for
a.a. t ∈ (0, T )

d

dt
Fδ(uα,δ,σα,δ, ̺α,δ) + (1− ε)

∫

D

‖∇uα,δ‖2 dx(5.8)

+
αεδ2

2Wi

∫

D

[
‖∇G′

δ(σα,δ)‖2 + b
∥∥∥∇G′

δ

(
1− ̺α,δ

b

)∥∥∥
2
]
dx

+
ε

2Wi2

∫

D

tr
(
(Aδ(σα,δ, ̺α,δ))

2 βδ(σα,δ)
)
dx ≤ 〈f ,uα,δ〉H1

0 (D).

Proof. Similarly to the proof of Proposition 3.18, on noting Remark 3.1, we multiply the Navier-
Stokes equation (5.5a) with uα,δ and the stress equation (5.5c) with − ε

2WiG
′
δ(σα,δ), the trace

equation (5.5d) with ε
2WiG

′
δ

(
1− ̺α,δ

b

)
, sum and integrate over D. This yields, after performing

integration by parts and noting (5.5b,g,h), (1.5a), (3.4a) and (3.6), that
∫

D

[
Re

2

∂‖uα,δ‖2
∂t

+ (1− ε)‖∇uα,δ‖2
]
dx(5.9)

− ε

2Wi

∫

D

(
∂σα,δ

∂t
+ (uα,δ ·∇)βδ(σα,δ)

)
: G′

δ(σα,δ) dx

+
ε

2Wi

∫

D

(
∂̺α,δ
∂t

− b (uα,δ ·∇)βδ

(
1− ̺α,δ

b

))
G′

δ

(
1− ̺α,δ

b

)
dx

− αε

2Wi

∫

D

[
∇σα,δ :: ∇G′

δ(σα,δ)−∇̺α,δ ·∇G′
δ

(
1− ̺α,δ

b

)]
dx

+
ε

2Wi2

∫

D

tr
(
(Aδ(σα,δ, ̺α,δ))

2
βδ(σα,δ)

)
dx = 〈f ,uα,δ〉H1

0 (D).

Using (1.10), we have that

∂σα,δ

∂t
: G′

δ(σα,δ) =
∂

∂t
tr (Gδ(σα,δ)) and

∂̺α,δ
∂t

G′
δ

(
1− ̺α,δ

b

)
= −b

∂

∂t
Gδ

(
1− ̺α,δ

b

)
.

(5.10)

As βδ(σα,δ) ≡ H ′
δ(G

′
δ(σα,δ)), on recalling (5.7), we have, on noting uα,δ ∈ V and the spatial

version of (1.10), that

−
∫

D

(uα,δ ·∇)βδ(σα,δ) : G
′
δ(σα,δ) dx =

∫

D

βδ(σα,δ) : (uα,δ ·∇)G′
δ(σα,δ) dx(5.11)

=

∫

D

(uα,δ ·∇) tr (Hδ(G
′
δ(σα,δ))) dx = 0.

Similarly to (5.11), we have that

−
∫

D

[
(uα,δ ·∇)βδ

(
1− ̺α,δ

b

)]
G′

δ

(
1− ̺α,δ

b

)
dx =

∫

D

(uα,δ ·∇)Hδ

(
G′

δ

(
1− ̺α,δ

b

))
dx = 0.

(5.12)
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Similarly to (3.4e), we have that

−∇σα,δ :: ∇G′
δ(σα,δ) ≥ δ2‖∇G′

δ(σα,δ)‖2 a.e. in DT ,(5.13a)

∇̺α,δ ·∇G′
δ

(
1− ̺α,δ

b

)
= −b∇

(
1− ̺α,δ

b

)
·∇G′

δ

(
1− ̺α,δ

b

)
(5.13b)

≥ b δ2
∥∥∥∇G′

δ

(
1− ̺α,δ

b

)∥∥∥
2

a.e. in DT .

Combining (5.9)–(5.13a,b) yields the desired result (5.8). �

Remark 5.1. We note if we multiply the advection term in (5.5c) by −G′
δ(1 − tr(σα,δ)

b
) I and

integrate over D, then we obtain, on noting uα,δ ∈ V and (5.12), that

−
∫

D

(uα,δ ·∇)βδ(σα,δ) : G
′
δ

(
1− tr(σα,δ)

b

)
Idx

=

∫

D

tr(βδ(σα,δ)) (uα,δ ·∇)G′
δ

(
1− tr(σα,δ)

b

)
dx

= −b

∫

D

(
1− tr(βδ(σα,δ))

b

)
(uα,δ ·∇)G′

δ

(
1− tr(σα,δ)

b

)
dx

6= −b

∫

D

βδ

(
1− tr(σα,δ)

b

)
(uα,δ ·∇)G′

δ

(
1− tr(σα,δ)

b

)
dx = 0.

Hence, the need for the new variable ̺α,δ in order to mimic the free energy structure of (Pα).

The following Corollary follows from (5.8) on noting the proof of Corollary 3.1.

Corollary 5.1. Under the assumptions of Proposition 5.1 it follows that

sup
t∈(0,T )

Fδ(uα,δ(t, ·),σα,δ(t, ·), ̺α,δ(t, ·)) +
1− ε

2

∫

DT

‖∇uα,δ‖2 dx dt(5.14)

+
αεδ2

2Wi

∫

DT

[
‖∇G′

δ(σα,δ)‖2 + b
∥∥∥∇G′

δ

(
1− ̺α,δ

b

)∥∥∥
2
]
dx dt

+
ε

2Wi2

∫

DT

tr
(
(Aδ(σα,δ, ̺α,δ))

2
βδ(σα,δ)

)
dx dt

≤ 2

(
F (u0,σ0) +

1 + CP

2(1− ε)
‖f‖2L2(0,T ;H−1(D))

)
.

6. Finite element approximation of (Pα,δ)

6.1. Finite element discretization. We now introduce a conforming finite element discretiza-
tion of (Pα,δ), (5.5a–h), which satisfies a discrete analogue of (5.8). As noted in Section 5, we
cannot use S0h with the desirable property (4.6) to approximate σα,δ, as we now have the added
diffusion term. In the following, we choose

W1
h := W2

h ⊂ W or W1,+
h ⊂ W,(6.1a)

Q1
h = {q ∈ C(D) : q |Kk

∈ P1 k = 1, . . . , NK} ⊂ Q,(6.1b)

S1h = {φ ∈ [C(D)]d×d
S : φ |Kk

∈ [P1]
d×d
S k = 1, . . . , NK} ⊂ S(6.1c)

and V1
h =

{
v ∈ W1

h :

∫

D

q div v dx = 0 ∀q ∈ Q1
h

}
;(6.1d)

where W2
h is defined as in (4.3a) and, on recalling the barycentric coordinate notation used in

(4.4),

W1,+
h :=



v ∈ [C(D)]d ∩W : v |Kk

∈
[
P1 ⊕ span

d∏

i=0

ηki

]d
k = 1, . . . , NK



 .(6.2)
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The velocity-pressure choice, W2
h × Q1

h, is the lowest order Taylor-Hood element. It satisfies
(4.1) with W0

h and Q0
h replaced by W2

h and Q1
h, respectively, provided, in addition to {Th}h>0

being a regular family of meshes, that each simplex has at least one vertex in D, see p177 in
Girault and Raviart [16] in the case d = 2 and Boffi [10] in the case d = 3. Of course, this is a very

mild restriction on {Th}h>0. The velocity-pressure choice, W1,+
h ×Q1

h, is called the mini-element.

It satisfies (4.1) with W0
h and Q0

h replaced by W1,+
h and Q1

h, respectively; see Chapter II, Section
4.1 in Girault and Raviart [16] in the case d = 2 and Section 4.2.4 in Ern and Guermond [15] in
the case d = 3. Hence for both choices of W1

h, it follows that for all v ∈ V there exists a sequence
{vh}h>0, with vh ∈ V1

h, such that

lim
h→0+

‖v − vh‖H1(D) = 0 .(6.3)

We recall the well-known local inverse inequality for Q1
h

‖q‖L∞(Kk) ≤ C |Kk|−1

∫

Kk

|q| dx ∀q ∈ Q1
h, k = 1, . . . , NK(6.4)

⇒ ‖χ‖L∞(Kk) ≤ C |Kk|−1

∫

Kk

‖χ‖ dx ∀χ ∈ S1h, k = 1, . . . , NK .

We recall a similar well-known local inverse inequality for S1h and V1
h

‖∇φ‖L2(Kk) ≤ C h−1
k ‖φ‖L2(Kk) ∀φ ∈ S1h, k = 1, . . . , NK ,(6.5a)

‖∇v‖L2(Kk) ≤ C h−1
k ‖v‖L2(Kk) ∀v ∈ V1

h, k = 1, . . . , NK .(6.5b)

We introduce the interpolation operator πh : C(D) → Q1
h, and extended naturally to πh :

[C(D)]d×d
S → S1h, such that for all η ∈ C(D) and φ ∈ [C(D)]d×d

S

πhη(Pp) = η(Pp) and πhφ(Pp) = φ(Pp) p = 1, . . . , NP ,(6.6)

where {Pp}NP

p=1 are the vertices of Th. As φ ∈ S1h and q ∈ Q1
h do not imply that G′

δ(φ) ∈
S1h and G′

δ

(
1− q

b

)
∈ Q1

h, we have to test the finite element approximation of (5.5c,d) with

− ε
2Wiπh[G

′
δ(σ

n
α,δ,h)] ∈ S1h and ε

2Wiπh

[
G′

δ

(
1− ̺n

α,δ,h

b

)]
∈ Q1

h, respectively, where σn
α,δ,h ∈ S1h

and ̺nα,δ,h ∈ Q1
h are our finite element approximations to σα,δ and ̺α,δ at time level tn. There-

fore the finite element approximation of (5.5c,d) have to be constructed to mimic the results

(5.9)–(5.13a,b), when tested with − ε
2Wiπh[G

′
δ(σ

n
α,δ,h)] ∈ S1h and ε

2Wiπh

[
G′

δ

(
1− ̺n

α,δ,h

b

)]
∈ Q1

h,

respectively.
In order to mimic (5.10) and the (Pα,δ) analogue of (3.20), we need to use numerical integration

(vertex sampling). We note the following results. As the basis functions associated with Q1
h and

S1h are nonnegative and sum to unity everywhere, we have, on noting (1.5b), for k = 1, . . . , NK

that

‖πh[φψ]‖ ≤ πh[ ‖φ‖ ‖ψ‖ ](6.7a)

≤ [πh[ ‖φ‖r1 ] ]
1
r1 [πh[ ‖ψ‖r2 ] ]

1
r2 on Kk, ∀φ, ψ ∈ [C(Kk)]

d×d
S ,

‖πhφ‖2 ≤ πh[ ‖φ‖2 ] on Kk, ∀φ ∈ [C(Kk)]
d×d
S ,(6.7b)

where r1, r2 ∈ (1,∞) satisfy r−1
1 + r−1

2 = 1. In addition, we have for k = 1, . . . , NK that
∫

Kk

‖χ‖2 dx ≤
∫

Kk

πh[ ‖χ‖2] dx ≤ C

∫

Kk

‖χ‖2 dx ∀χ ∈ S1h.(6.8)

The first inequality in (6.8) follows immediately from (6.7b), and the second from applying (6.4)
and a Cauchy–Schwarz inequality. Of course, scalar versions of (6.7a,b) and (6.8) hold with

[C(Kk)]
d×d
S and S1h replaced by C(Kk) and Q1

h, respectively.
Furthermore, for later use, we recall the following well-known results concerning the interpolant

πh for k = 1, . . . , NK :

‖(I − πh)q‖W 1,∞(Kk) ≤ C h |q|W 2,∞(Kk) ∀q ∈ W 2,∞(Kk),(6.9a)
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‖(I − πh)[q1 q2]‖L1(Kk) ≤ C h2
k ‖∇q1‖L2(Kk) ‖∇q2‖L2(Kk)(6.9b)

≤ C hk ‖q1‖L2(Kk) ‖∇q2‖L2(Kk) ∀q1, q2 ∈ Q1
h.

In order to mimic (5.11) and (5.12), we have to carefully construct our finite element approxima-
tion of the advective terms in (5.5c,d). Our construction is a non-trivial extension of an approach
that has been used in the finite element approximation of fourth-order degenerate nonlinear par-
abolic equations, such as the thin film equation; see e.g. Grün and Rumpf [17] and Barrett and
Nürnberg [2]. Let {ei}di=1 be the orthonormal vectors in R

d, such that the jth component of ei
is δij , i, j = 1, . . . , d. Let K̂ be the standard open reference simplex in R

d with vertices {P̂i}di=0,

where P̂0 is the origin and P̂i = ei, i = 1, . . . , d. Given a simplex Kk ∈ Th with vertices {P k
i }di=0,

then there exists a non-singular matrix Bk such that the linear mapping

(6.10) Bk : x̂ ∈ R
d 7→ P k

0 +Bkx̂ ∈ R
d

maps vertex P̂i to vertex P k
i , i = 0, . . . , d. Hence Bk maps K̂ to Kk. For all η ∈ Q1

h and Kk ∈ Th,
we define

η̂(x̂) := η(Bk(x̂)) ∀x̂ ∈ K̂ ⇒ ∇η(Bk(x̂)) = (BT
k )

−1
∇̂η̂(x̂) ∀x̂ ∈ K̂ ,(6.11)

where for all x̂ ∈ K̂

[∇̂η̂(x̂)]j =
∂

∂x̂j

η̂(x̂) = η̂(P̂j)− η̂(P̂0) = η(P k
j )− η(P k

0 ) j = 1, . . . , d.(6.12)

Such notation is easily extended to φ ∈ S1h.

Given q ∈ Q1
h and Kk ∈ Th, then first, for j = 1, . . . , d, we find the unique Λ̂k

δ,j(q̂) ∈ R, which
is continuous on q, such that

Λ̂k
δ,j(q̂)

∂

∂x̂j

π̂h[G
′
δ(q̂)] =

∂

∂x̂j

π̂h[Hδ(G
′
δ(q̂))] on K̂,(6.13)

where (π̂hη̂)(x̂) ≡ (πhη)(Bkx̂) for all x̂ ∈ K̂ and η ∈ C(Kk). We set

Λ̂k
δ,j(q̂) :=





Hδ(G
′
δ(q(P

k
j )))−Hδ(G

′
δ(q(P

k
0 )))

G′
δ(q(P

k
j ))−G′

δ(q(P
k
0 ))

if βδ(q(P
k
j )) 6= βδ(q(P

k
0 )),

βδ(q(P
k
j )) = βδ(q(P

k
0 )) if βδ(q(P

k
j )) = βδ(q(P

k
0 )),

(6.14)

where we have noted that G′
δ(βδ(s)) = G′

δ(s) for all s ∈ R and G′
δ(·) is strictly decreasing on

[δ,∞). Clearly, Λ̂k
δ,j(q̂) ∈ R, j = 1, . . . , d, satisfies (6.13) and depends continuously on q |Kk

.

Next, we extend the construction (6.14) for a given φ ∈ S1h and Kk ∈ Th, to find for j = 1, . . . , d

the unique Λ̂k
δ,j(φ̂) ∈ R

d×d
S , which is continuous on φ, such that

Λ̂k
δ,j(φ̂) :

∂

∂x̂j

π̂h[G
′
δ(φ̂)] =

∂

∂x̂j

π̂h[tr(Hδ(G
′
δ(φ̂)))] on K̂.(6.15)

To construct Λ̂k
δ,j(φ̂) satisfying (6.15), we note the following. We have from (5.7) and (1.9) that

βδ(φ(P
k
j )) : (G

′
δ(φ(P

k
j ))−G′

δ(φ(P
k
0 ))) ≤ tr(Hδ(G

′
δ(φ(P

k
j ))−Hδ(G

′
δ(φ(P

k
0 )))(6.16)

≤ βδ(φ(P
k
0 )) : (G

′
δ(φ(P

k
j ))−G′

δ(φ(P
k
0 ))).

Since G′
δ(βδ(s)) = G′

δ(s) for all s ∈ R, it follows from (3.4e) that

− (βδ(φ(P
k
j ))− βδ(φ(P

k
0 ))) : (G

′
δ(φ(P

k
j ))−G′

δ(φ(P
k
0 )))(6.17)

= −(βδ(φ(P
k
j ))− βδ(φ(P

k
0 ))) : (G

′
δ(βδ(φ(P

k
j )))−G′

δ(βδ(φ(P
k
0 ))))

≥ δ2‖G′
δ(βδ(φ(P

k
j ))) −G′

δ(βδ(φ(P
k
0 )))‖2.

Therefore the left-hand side of (6.17) is zero if and only if G′
δ(βδ(φ(P

k
j ))) = G′

δ(βδ(φ(P
k
0 ))), which

is equivalent to βδ(φ(P
k
j )) = βδ(φ(P

k
0 )) as G

′
δ(·) is invertible on [δ,∞), the range of βδ(·). Hence,

on noting (6.12), (6.16), (6.17) and (1.3b), we have that

Λ̂k
δ,j(φ̂) := (1− λk

δ,j)βδ(φ(P
k
j )) + λk

δ,jβδ(φ(P
k
0 ))(6.18a)
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if (βδ(φ(P
k
j ))− βδ(φ(P

k
0 ))) : (G

′
δ(φ(P

k
j ))−G′

δ(φ(P
k
0 ))) 6= 0 ,

Λ̂k
δ,j(φ̂) := βδ(φ(P

k
j )) = βδ(φ(P

k
0 ))(6.18b)

if (βδ(φ(P
k
j ))− βδ(φ(P

k
0 ))) : (G

′
δ(φ(P

k
j ))−G′

δ(φ(P
k
0 ))) = 0

satisfies (6.15) for j = 1, . . . , d; where λk
δ,j ∈ [0, 1] is defined as

λk
δ,j :=

[
tr(Hδ(G

′
δ(φ(P

k
j ))−Hδ(G

′
δ(φ(P

k
0 )))− βδ(φ(P

k
j )) : (G

′
δ(φ(P

k
j ))−G′

δ(φ(P
k
0 )))

]

(βδ(φ(P k
0 ))− βδ(φ(P k

j ))) : (G
′
δ(φ(P

k
j ))−G′

δ(φ(P
k
0 )))

.

Furthermore, Λ̂k
δ,j(φ̂) ∈ R

d×d
S , j = 1, . . . , d, depends continuously on φ |Kk

.

Therefore given q ∈ Q1
h and φ ∈ S1h, we introduce, for m, p = 1, . . . , d,

Λδ,m,p(q) =

d∑

j=1

[(BT
k )

−1]mj Λ̂
k
δ,j(q̂) [B

T
k ]jp ∈ R, on Kk, k = 1, . . . , NK ,(6.19a)

Λδ,m,p(φ) =

d∑

j=1

[(BT
k )

−1]mj Λ̂
k
δ,j(φ̂) [B

T
k ]jp ∈ R

d×d
S on Kk, k = 1, . . . , NK .(6.19b)

It follows from (6.19a,b), (6.13), (6.15) and (6.11) that

Λδ,m,p(q) ≈ βδ(q) δmp, Λδ,m,p(φ) ≈ βδ(φ) δmp m, p = 1, . . . , d ;(6.20)

and for m = 1, . . . , d

d∑

p=1

Λδ,m,p(q)
∂

∂xp

πh[G
′
δ(q)] =

∂

∂xm

πh[Hδ(G
′
δ(q))] on Kk, k = 1, . . . , NK ,(6.21a)

d∑

p=1

Λδ,m,p(φ) :
∂

∂xp

πh[G
′
δ(φ)] =

∂

∂xm

πh[tr(Hδ(G
′
δ(φ)))] on Kk, k = 1, . . . , NK .(6.21b)

For a more precise version of (6.20), see Lemma 6.4 below. Of course, for (6.19a) and (6.21a) we
can adopt the more compact notation on Kk, k = 1, . . . , NK ,

Λδ(q) = (BT
k )

−1 Λ̂k
δ (q̂)B

T
k ≈ βδ(q) I ⇒ Λδ(q)∇πh[G

′
δ(q)] = ∇πh[Hδ(G

′
δ(q))],(6.22)

where Λk
δ (q̂) ∈ R

d×d
S is diagonal with [Λk

δ (q̂)]jj = Λk
δ,j(q̂), j = 1, . . . , d, so that Λδ(q) ∈ R

d×d
S with

[Λδ(q)]mp = Λδ,m,p(q), m, p = 1, . . . , d.
Finally, as the partitioning Th consists of regular simplices, we have that

‖(BT
k )

−1‖ ‖BT
k ‖ ≤ C, k = 1, . . . , NK .(6.23)

Hence, it follows from (6.19a,b), (6.23) and (6.18a,b) that for k = 1, . . . , NK

‖Λδ,m,p(q)‖L∞(Kk) ≤ C ‖πh[βδ(q)]‖L∞(Kk) ∀q ∈ Q1
h,(6.24a)

‖Λδ,m,p(φ)‖L∞(Kk) ≤ C ‖πh[βδ(φ)]‖L∞(Kk) ∀φ ∈ S1h.(6.24b)

In order to mimic (5.13a,b), we shall assume from now on that the family of meshes, {Th}h>0,
for the polytope D consists of non-obtuse simplices only, i.e. all dihedral angles of any simplex in
Th are less than or equal to π

2 . Let Kk have vertices {P k
j }dj=0, and let ηkj (x) be the basis functions

on Kk associated with Q1
h and S1h, i.e. ηkj |Kk

∈ P1 and ηkj (P
k
i ) = δij , i, j = 0, . . . , d. As Kk is

non-obtuse it follows that

∇ηki ·∇ηkj ≤ 0 on Kk, i, j = 0, . . . , d, with i 6= j.(6.25)

We then have the following result.

Lemma 6.1. Let g ∈ C0,1(R) be monotonically increasing with Lipschitz constant gLip. As Th
consists of only non-obtuse simplices, then we have for all q ∈ Q1

h, φ ∈ S1h that

gLip∇πh[g(q)] ·∇q ≥ ‖∇πh[g(q)]‖2 and gLip∇πh[g(φ)] :: ∇φ ≥ ‖∇πh[g(φ)]‖2(6.26)

on Kk, k = 1, . . . , NK .
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Proof. See the proof of Lemma 5.1 in [1]. �

Of course, the construction of a non-obtuse mesh in the case d = 3 is not straightforward for a
general polytope D. However, we stress that our numerical method (P∆t

α,δ,h), see (6.34a–c) below,

does not require this constraint. It is only required to show that (P∆t
α,δ,h) mimics the free energy

structure of (Pα,δ).

6.2. A free energy preserving approximation, (P∆t
α,δ,h), of (Pα,δ). In addition to the as-

sumptions on the finite element discretization stated in subsection 6.1, and our definition of ∆t
in subsection 4.1, we shall assume for the convergence analysis, see Section 7, that there exists a
C ∈ R>0 such that

∆tn ≤ C∆tn−1, n = 2, . . . , N, as ∆t → 0+.(6.27)

We note that this constraint is not required for the results in this section, in particular Theorem
6.1.

With ∆t1 and C as above, let ∆t0 ∈ R>0 be such that ∆t1 ≤ C∆t0. Given initial data satisfying
(3.14), we choose u0

h ∈ V1
h and σ0

h ∈ S1h throughout the rest of this paper such that
∫

D

[
u0
h · v +∆t0∇u

0
h : ∇v

]
dx =

∫

D

u0 · v dx ∀v ∈ V1
h,(6.28a)

∫

D

[
πh[σ

0
h : χ] + ∆t0∇σ

0
h :: ∇χ

]
dx =

∫

D

σ0 : χdx ∀χ ∈ S1h.(6.28b)

It follows from (6.28a,b), (6.8) and (3.14) that
∫

D

[
‖u0

h‖2 + ‖σ0
h‖2 +∆t0

[
‖∇u0

h‖2 + ‖∇σ0
h‖2
] ]

dx ≤ C.(6.29)

In addition, we note the following result.

Lemma 6.2. For p = 1, . . . , NP we have that

σ0
min ‖ξ‖2 ≤ ξTσ0

h(Pp) ξ ≤ σ0
max ‖ξ‖2 ∀ξ ∈ R

d and tr(σ0
h(Pp)) ≤ b⋆.(6.30)

Proof. For the proof of the first result in (6.30), see the proof of Lemma 5.2 in [1].
We now prove the second result in (6.30). On choosing χ = Iη, with η ∈ Q1

h, in (6.28b) yields
that zh := tr(σ0

h)− b⋆ ∈ Q1
h satisfies

∫

D

[πh[zh η] + ∆t0∇zh ·∇η] dx =

∫

D

z η dx ∀η ∈ Qh
1 ,(6.31)

where z := tr(σ0)− b⋆ ∈ L∞(D) and is non-positive on recalling (3.14). Choosing η = πh[zh]+ ∈
Q1

h, it follows, on noting the Q1
h version of (6.8) and (6.26) with g(·) = [ · ]+, that∫

D

[
πh[zh]+]

2 +∆t0 ‖∇πh[zh]+‖2
]
dx ≤

∫

d

[
πh

[
[zh]

2
+

]
+∆t0∇zh ·∇πh[zh]+

]
dx(6.32)

=

∫

D

z πh[zh]+ dx ≤ 0.

Hence πh[zh]+ ≡ 0 and so the second result in (6.30) holds. �

Furthermore, it follows from (6.28a,b), (6.29), (3.14), (6.3) and (6.9a,b) that, as h, ∆t0 → 0+,

u0
h → u0 weakly in [L2(D)]d and σ0

h → σ0 weakly in [L2(D)]d×d.(6.33)

Our approximation (P∆t
α,δ,h) of (Pα,δ) is then:

(P∆t
α,δ,h) Setting (u0

α,δ,h,σ
0
α,δ,h, ̺

0
α,δ,h) = (u0

h,σ
0
h, tr(σ

0
h)) ∈ V1

h× (S1h∩S>0,b)×Q1
h, with u

0
h and

σ0
h as defined in (6.28a,b), then for n = 1, . . . , NT find (un

α,δ,h, σ
n
α,δ,h, ̺

n
α,δ,h) ∈ V1

h × S1h×Q1
h such

that for any test functions (v,φ, η) ∈ V1
h × S1h ×Q1

h

∫

D

[
Re

(
un
α,δ,h − un−1

α,δ,h

∆tn

)
· v +

Re

2

[(
(un−1

α,δ,h · ∇)un
α,δ,h

)
· v − un

α,δ,h ·
(
(un−1

α,δ,h · ∇)v
)]

(6.34a)
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+ (1− ε)∇un
α,δ,h : ∇v +

ε

Wi
πh

[
κδ(σ

n
α,δ,h, ̺

n
α,δ,h)Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

]
: ∇v

]
dx

= 〈fn,v〉H1
0 (D),

∫

D

πh

[(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)
: φ+

Aδ(σ
n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h) : φ

Wi

]
dx

(6.34b)

+

∫

D

[
α∇σn

α,δ,h :: ∇φ− 2∇un
α,δ,h : πh[κδ(σ

n
α,δ,h, ̺

n
α,δ,h)φβδ(σ

n
α,δ,h)

]
dx

−
∫

D

d∑

m=1

d∑

p=1

[un−1
α,δ,h]m Λδ,m,p(σ

n
α,δ,h) :

∂φ

∂xp

dx = 0,

∫

D

πh



(
̺nα,δ,h − ̺n−1

α,δ,h

∆tn

)
η +

tr
(
Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

)

Wi
η


dx

(6.34c)

+

∫

D

[
α∇̺nα,δ,h ·∇η − 2∇un

α,δ,h : πh[κδ(σ
n
α,δ,h, ̺

n
α,δ,h) η βδ(σ

n
α,δ,h)]

]
dx

+ b

∫

D

d∑

m=1

d∑

p=1

[un−1
α,δ,h]m Λδ,m,p

(
1−

̺nα,δ,h
b

)
∂η

∂xp

dx = 0.

In deriving (P∆t
α,δ,h), we have noted (4.14), (1.5a), (6.19a,b) and (6.20). We note that on replac-

ing Aδ(σ
n
α,δ,h, tr(̺

n
α,δ,h)) with I −G′

δ(σ
n
α,δ,h) and κδ(σ

n
α,δ,h, ̺

n
α,δ,h) by 1 then (P∆t

α,δ,h), (6.34a,b),
collapses to the corresponding finite element approximation of Oldroyd-B with stress diffusion
studied in [1], see (5.34a,b) with no L cut-off there.

Before proving existence of a solution to (P∆t
α,δ,h), we first derive a discrete analogue of the

energy bound (5.8) for (Pα,δ).

6.3. Energy bound. On setting

Fδ,h(v,φ, η) :=
Re

2

∫

D

‖v‖2 dx− ε

2Wi

∫

D

πh

[
bGδ

(
1− η

b

)
+ tr (Gδ(φ) + I)

]
dx(6.35)

∀(v,φ, η) ∈ V1
h × S1h ×Q1

h,

we have the following discrete analogue of Proposition 5.1.

Proposition 6.1. For n = 1, . . . , NT , a solution
(
un
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h

)
∈ V1

h×S1h×Q1
h to (P∆t

α,δ,h),

(6.34a–c), if it exists, satisfies

Fδ,h(u
n
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h)− Fδ,h(u

n−1
α,δ,h,σ

n−1
α,δ,h, ̺

n−1
α,δ,h)

∆tn
(6.36)

+
Re

2∆tn

∫

D

‖un
α,δ,h − un−1

α,δ,h‖2 dx+ (1 − ε)

∫

D

‖∇un
α,δ,h‖2 dx

+
ε

2Wi2

∫

D

πh

[
tr
((

Aδ(σ
n
α,δ,h, ̺

n
α,δ,h)

)2
βδ(σ

n
α,δ,h)

)]
dx

+
αεδ2

2Wi

∫

D

[
‖∇πh[G

′
δ(σ

n
α,δ,h)]‖2 + b

∥∥∥∥∇πh

[
G′

δ

(
1−

̺nα,δ,h
b

)]∥∥∥∥
2
]
dx

≤ 〈fn,un
α,δ,h〉H1

0 (D) ≤
1

2
(1 − ε)

∫

D

‖∇un
α,δ,h‖2 dx+

1 + CP

2(1− ε)
‖fn‖2H−1(D).

Proof. The proof is similar to that of Proposition 4.1, we choose as test functions v = un
α,δ,h ∈ V1

h,

φ = − ε
2Wiπh[G

′
δ(σ

n
α,δ,h)] ∈ S1h and η = ε

2Wiπh

[
G′

δ

(
1− ̺n

α,δ,h

b

)]
∈ Q1

h in (6.34a–c), and obtain, on
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noting (4.15), (3.4a,d), (3.6), (6.26) with g = −G′
δ having Lipschitz constant δ−2, (6.21a,b) and

(6.35) that

〈fn,un
α,δ,h〉H1

0 (D) ≥
Fδ,h(u

n
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h)− Fδ,h(u

n−1
α,δ,h,σ

n−1
α,δ,h, ̺

n−1
α,δ,h)

∆tn

(6.37)

+
Re

2∆tn

∫

D

‖un
α,δ,h − un−1

α,δ,h‖2 dx+ (1− ε)

∫

D

‖∇un
α,δ,h‖2 dx

+
ε

2Wi2

∫

D

πh

[
tr
((

Aδ(σ
n
α,δ,h, ̺

n
α,δ,h)

)2
βδ(σ

n
α,δ,h)

)]
dx

+
αεδ2

2Wi

∫

D

[
‖∇πh[G

′
δ(σ

n
α,δ,h)]‖2 + b

∥∥∥∥∇πh

[
G′

δ

(
1−

̺nα,δ,h
b

)]∥∥∥∥
2
]
dx

+
ε

2Wi

∫

D

un−1
α,δ,h ·∇πh

[
tr(Hδ(G

′
δ(σ

n
α,δ,h))) + bHδ

(
G′

δ

(
1−

̺nα,δ,h
b

))]
dx.

The first desired inequality in (6.36) follows immediately from (6.37) on noting (6.1a,d), (1.12)
and that πh : C(D) → Q1

h. The second inequality in (6.36) follows immediately from (2.9) with
ν2 = (1− ε)/(1 + CP ). �

6.4. Existence of discrete solutions.

Proposition 6.2. Given (un−1
α,δ,h,σ

n−1
α,δ,h, ̺

n−1
α,δ,h) ∈ V1

h×S1h×Q1
h such that

∫
D
[tr(σn−1

α,δ,h)−̺n−1
α,δ,h] dx

= 0 and for any time step ∆tn > 0, then there exists at least one solution
(
un
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h

)
∈

V1
h × S1h ×Q1

h to (P∆t
α,δ,h), (6.34a–c), such that

∫
D
[tr(σn

α,δ,h)− ̺nα,δ,h] dx = 0.

Proof. The proof is similar to that of Proposition 4.2. We introduce the following inner product
on the Hilbert space V1

h × S1h ×Q1
h

((w,ψ, ξ), (v,φ, η))
h
D =

∫

D

[w · v + πh[ψ : φ+ ξ η] ] dx ∀(w,ψ, ξ), (v,φ, η) ∈ V1
h × S1h ×Q1

h.

Given (un−1
α,δ,h,σ

n−1
α,δ,h, ̺

n−1
α,δ,h) ∈ V1

h × S1h ×Q1
h, let Fh : V1

h × S1h ×Q1
h → V1

h × S1h ×Q1
h be such that

for any (w,ψ, ξ) ∈ V1
h × S1h ×Q1

h

(
Fh(w,ψ, ξ), (v,φ, η)

)h
D

(6.38)

:=

∫

D

[
Re

(
w − un−1

α,δ,h

∆tn

)
· v + (1− ε)∇w : ∇v +

ε

Wi
πh [κδ(ψ, ξ)Aδ(ψ, ξ)βδ(ψ)] : ∇v

+
Re

2

[(
(un−1

α,δ,h · ∇)w
)
· v −w ·

(
(un−1

α,δ,h · ∇)v
)]

+ α [∇ψ :: ∇φ+∇ξ ·∇η]− 2∇w : πh [κδ(ψ, ξ) [φ+ ηI]βδ(ψ)]

]
dx

+

∫

D

πh

[(
ψ − σn−1

α,δ,h

∆tn

)
: φ+

Aδ(ψ, ξ)βδ(ψ)

Wi
: φ+

(
ξ − ̺n−1

α,δ,h

∆tn

)
η +

tr (Aδ(ψ, ξ)βδ(ψ))

Wi
η

]
dx

−
∫

D

d∑

m=1

d∑

p=1

[un−1
α,δ,h]m

[
Λδ,m,p(ψ) :

∂φ

∂xp

− bΛδ,m,p

(
1− ξ

b

)
∂η

∂xp

]
dx− 〈fn,v〉H1

0 (D)

∀(v,φ, η) ∈ V1
h × S1h ×Q1

h.

A solution (un
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h) to (4.13a–c), if it exists, corresponds to a zero of Fh. On recalling

(6.19a,b), (6.18a,b) and (6.14), it is easily deduced that the mapping Fh is continuous. For any
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(w,ψ, ξ) ∈ V1
h × S1h ×Q1

h, on choosing (v,φ, η) =
(
w,− ε

2Wiπh[G
′
δ(ψ)],

ε
2Wiπh

[
G′

δ

(
1− ξ

b

)])
, we

obtain analogously to (6.36) that

(
Fh(w,ψ, ξ),

(
w,− ε

2Wi
πh[G

′
δ(ψ)],

ε

2Wi
πh

[
G′

δ

(
1− ξ

b

)]))h

D

(6.39)

≥
Fδ,h(w,ψ, ξ)− Fδ,h(u

n−1
α,δ,h,σ

n−1
α,δ,h, ̺

n−1
α,δ,h)

∆tn
+

Re

2∆tn

∫

D

‖w − un−1
α,δ,h‖2 dx

+
1− ε

2

∫

D

‖∇w‖2 dx− 1 + CP

2(1− ε)
‖fn‖2H−1(D) +

ε

2Wi2

∫

D

πh

[
tr
(
(Aδ(ψ, ξ))

2
βδ(ψ)

)]
dx

+
αεδ2

2Wi

∫

D

[
‖∇πh[G

′
δ(ψ)]‖2 + b

∥∥∥∥∇πh

[
G′

δ

(
1− ξ

b

)]∥∥∥∥
2
]
dx.

Let

‖(v,φ, η)‖hD :=
[
((v,φ, η), (v,φ, η))hD

] 1
2 =

(∫

D

[
‖v‖2 + πh[ ‖φ‖2 + |η|2 ]

]
dx

) 1
2

.

If for any γ ∈ R>0, the continuous mapping Fh has no zero (un
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h), which lies in

the ball

Bh
γ :=

{
(v,φ, η) ∈ V1

h × S1h ×Q1
h : ‖(v,φ, η)‖hD ≤ γ

}
;

then for such γ, we can define the continuous mapping Gh
γ : Bh

γ → Bh
γ such that for all (v,φ, η) ∈ Bh

γ

Gh
γ (v,φ, η) := −γ

Fh(v,φ, η)

‖Fh(v,φ, η)‖hD
.

By the Brouwer fixed point theorem, Gh
γ has at least one fixed point (wγ ,ψγ , ξγ) in Bh

γ . Hence it
satisfies

(6.40)
∥∥(wγ ,ψγ , ξγ)

∥∥h
D
=
∥∥Gh

γ (wγ ,ψγ , ξγ)
∥∥h
D
= γ.

In addition,
(
(wγ ,ψγ , ξγ), (v,φ, η)

)h
D

=
(
Gh(wγ ,ψγ , ξγ), (v,φ, η)

)h
D

with (v,φ, η) = (0, I,−1)
yields that

∫

D

[tr(ψγ)− ξγ ] dx =

∫

D

[tr(σn−1
α,δ,h)− ̺n−1

α,δ,h] dx = 0.(6.41)

On noting (6.4), we have that there exists a µh ∈ R>0 such that for all φ ∈ S1h,

(6.42) ‖πh[ ‖φ‖ ]‖2L∞(D) = ‖πh[ ‖φ‖2]‖L∞(D) ≤ µ2
h

∫

D

πh[ ‖φ‖2 ] dx,

and an equivalent result holding for all η ∈ Q1
h. It follows from (6.35), (6.41), (3.5), (3.7a), (6.42)

and (6.40) that

Fδ,h(wγ ,ψγ , ξγ)(6.43)

=
Re

2

∫

D

‖wγ‖2 dx+
ε

2Wi

∫

D

πh

[
tr(ψγ −Gδ(ψγ)− I)− bGδ

(
1− ξγ

b

)
− ξγ

]
dx

≥ Re

2

∫

D

‖wγ‖2 dx+
ε

4Wi

[∫

D

πh[ ‖ψγ‖+ |ξγ | ] dx− (2d+ 3b)|D|
]

≥ Re

2

∫

D

‖wγ‖2 dx− ε(2d+ 3b)|D|
4Wi

+
ε

4Wiµhγ

[
‖πh[ ‖ψγ‖ ]‖L∞(D)

∫

D

πh[ ‖ψγ‖] dx+ ‖πh[ |ξγ | ]‖L∞(D)

∫

D

πh[ |ξγ | ] dx
]

≥ min

(
Re

2
,

ε

4Wiµhγ

)(∫

D

[
‖wγ‖2 + πh[ ‖ψγ‖2 + |ξγ |2 ]

]
dx

)
− ε(2d+ 3b)|D|

4Wi
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= min

(
Re

2
,

ε

4Wiµhγ

)
γ2 − ε(2d+ 3b)|D|

4Wi
.

Hence for all γ sufficiently large, it follows from (6.39) and (6.43) that

(6.44)

(
Fh(wγ ,ψγ , ξγ),

(
wγ ,−

ε

2Wi
πh[G

′
δ(ψγ)],

ε

2Wi
πh

[
G′

δ

(
1− ξγ

b

)]))h

D

≥ 0.

On the other hand as (wγ ,ψγ , ξγ) is a fixed point of Gh
γ , we have that

(
Fh(wγ ,ψγ , ξγ),

(
wγ ,−

ε

2Wi
πh[G

′
δ(ψγ)],

ε

2Wi
πh

[
G′

δ

(
1− ξγ

b

)]))h

D

(6.45)

= −
∥∥Fh(wγ ,ψγ , ξγ)

∥∥h
D

γ

∫

D

[
‖wγ‖2 −

ε

2Wi
πh

[
ψγ : G′

δ(ψγ)− ξγ G
′
δ

(
1− ξγ

b

)]]
dx.

It follows from (6.41), (3.5), (3.7b), and similarly to (6.43), on noting (6.42) and (6.40), that
∫

D

[
‖wγ‖2 −

ε

2Wi
πh

[
ψγ : G′

δ(ψγ)− ξγ G
′
δ

(
1− ξγ

b

)]]
dx(6.46)

=

∫

D

[
‖wγ‖2 +

ε

2Wi
πh

[
ψγ : (I −G′

δ(ψγ)) + ξγ

(
G′

δ

(
1− ξγ

b

)
− 1

)]]
dx

≥
∫

D

[
‖wγ‖2 +

ε

4Wi

[
πh[ ‖ψγ‖+ |ξγ | ]− 2(d+ b)

]]
dx

≥ min

(
1,

ε

4Wiµhγ

)
γ2 − ε(d+ b)|D|

2Wi
.

Therefore on combining (6.45) and (6.46), we have for all γ sufficiently large that
(
Fh(wγ ,ψγ , ξγ),

(
wγ ,−

ε

2Wi
πh[G

′
δ(ψγ)],

ε

2Wi
πh

[
G′

δ

(
1− ξγ

b

)]))h

D

< 0 ,(6.47)

which obviously contradicts (6.44). Hence the mapping Fh has a zero, (un
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h) ∈ Bh

γ

for γ sufficiently large. Finally, similarly to (6.41), it follows, on choosing (v,φ, η) = (0, I,−1)

in
(
Fh(un

α,δ,h,σ
n
α,δ,h, ̺

n
α,δ,h), (v,φ, η)

)h
D

= 0, that
∫
D
[tr(σn

α,δ,h) − ̺nα,δ,h] dx =
∫
D
[tr(σn−1

α,δ,h) −
̺n−1
α,δ,h] dx = 0. �

We now have the analogue of Theorem 4.1.

Theorem 6.1. For any δ ∈ (0,min{ 1
2 , b}], NT ≥ 1 and any partitioning of [0, T ] into NT time

steps, there exists a solution {(un
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h)}NT

n=1 ∈ [V1
h×S1h×Q1

h]
NT to (P∆t

α,δ,h), (6.34a–c).

In addition, it follows for n = 1, . . . , NT that
∫
D
[tr(σn

α,δ,h)− ̺nα,δ,h] dx = 0 and

Fδ,h(u
n
α,δ,h,σ

n
α,δ,h, ̺

n
α,δ,h) +

1

2

n∑

m=1

∫

D

[
Re‖um

α,δ,h − um−1
α,δ,h‖2 + (1 − ε)∆tm‖∇um

α,δ,h‖2
]
dx(6.48)

+
ε

2Wi2

n∑

m=1

∆tm

∫

D

πh

[
tr
((

Aδ(σ
m
α,δ,h, ̺

m
α,δ,h)

)2
βδ(σ

m
α,δ,h)

)]
dx

+
αεδ2

2Wi

n∑

m=1

∆tm

∫

D

[
‖∇πh[G

′
δ(σ

m
α,δ,h)]‖2 + b

∥∥∥∥∇πh

[
G′

δ

(
1−

̺mα,δ,h
b

)]∥∥∥∥
2
]
dx

≤ Fδ,h(u
0
h,σ

0
h, tr(σ

0
h)) +

1 + CP

2(1− ε)

n∑

m=1

∆tm‖fm‖2H−1(D) ≤ C,

which yields that

max
n=0,...,NT

∫

D

[
‖un

α,δ,h‖2 + ‖σn
α,δ,h‖+ |̺nα,δ,h|+ δ−1 πh

[
‖[σn

α,δ,h]−‖+
∣∣[b− ̺nα,δ,h]−

∣∣ ] ] dx ≤ C;

(6.49)
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where C is independent of α, as well as δ, h and ∆t.

Proof. Existence and the stability result (6.48) follow immediately from Propositions 6.2 and 6.1,
respectively, on noting (6.35), (3.1), (6.29), (6.30), (4.11a) and (3.14). The bounds (6.49) follow
immediately from (6.48), on noting (3.6), (3.4b), (6.35), (3.5) and that

∫

D

πh

[
b

[(
1−

̺nα,δ,h
b

)
−Gδ

(
1−

̺nα,δ,h
b

)]
+ tr(σn

α,δ,h −Gδ(σ
n
α,δ,h))

]
dx(6.50)

=

∫

D

πh

[
b

[
1−Gδ

(
1−

̺nα,δ,h
b

)]
− tr(Gδ(σ

n
α,δ,h))

]
dx ≤ C.

�

Remark 6.1. We recall that we have used S1h for the approximation of σα,δ in (P∆t
α,δ,h), (6.34a–c),

due to the presence of the diffusion term in (5.5c). Secondly, due to the advective term in (5.5c),
one has to introduce the variable ̺nα,δ,h and its equation (6.34c) in (P∆t

α,δ,h) in order to obtain the

entropy bound (6.36). However, we now have a bound on πh[[b − ̺nα,δ,h]−] in (6.49), as opposed

to [b − tr(σn
δ,h)]− in (4.37). Now, it does not seem possible to pass to the limit δ → 0 in (P∆t

α,δ,h)

to prove well-posedness of the corresponding direct approximation of (Pα), i.e. (P
∆t
α,h) without the

regularization δ, as we did for (P∆t
δ,h) in subsection 4.5.

Finally, we note the following Lemmas for later purposes.

Lemma 6.3. For all Kk ∈ Th and φ ∈ [C(Kk)]
d×d
S , we have, for r ∈ [1,∞), that

∫

Kk

[πh [‖φ‖r] + |πh [‖φ‖]|r] dx ≤ C

∫

Kk

‖πhφ‖r dx.(6.51)

Proof. It follows immediately from (6.4) that
∫

Kk

[πh [‖φ‖r] + |πh [‖φ‖]|r] dx ≤ 2 |Kk| ‖πhφ‖rL∞(Kk)
≤ C

∫

Kk

‖πhφ‖r dx,

and hence the desired result(6.51). �

Lemma 6.4. Let g ∈ C0,1(R) with Lipschitz constant gLip. For all Kk ∈ Th, and for all q ∈ Q1
h,

φ ∈ S1h we have that
∫

Kk

‖πh[βδ(φ)]− βδ(φ)‖2 dx+ max
m,p=1,...,d

∫

Kk

‖Λδ,m,p(φ)− βδ(φ) δmp‖2 dx(6.52a)

≤ C h2

∫

Kk

‖∇φ‖2 dx,
∫

Kk

‖πh[g(q)]− g(q)‖2 dx ≤ C g2Lip h
2

∫

Kk

‖∇q‖2 dx(6.52b)

and

∫

Kk

‖πh[g(φ)]− g(φ)‖2 dx ≤ C g2Lip h
2

∫

Kk

‖∇φ‖2 dx.

In addition, if g is monotonic then, for all Kk ∈ Th and for all q ∈ Q1
h, we have that

∫

Kk

‖πh[g(q)]− g(q)‖2 dx ≤ C h2

∫

Kk

‖∇πh[g(q)]‖2 dx.(6.53)

Proof. The results (6.52a) are proved in Lemma 5.3 of [1] for the case when βδ, Λδ,m,p and S1h are
replaced by β, Λm,p and S1h∩S>0. The proofs given there are trivially adapted to the present case.
In fact, the proof of the first result in (6.52a) in [1] is easily adapted to any function g ∈ C0,1(R).
Hence, we have the results (6.52b).

The result (6.53) is a simple variation of (6.52b) and follows on noting that

‖πh[g(q)]− g(q)‖L∞(Kk) ≤ max
i, j=0,...,Pk

d

|g(q(P k
i ))− g(q(P k

j ))|,(6.54)

where {P k
j }dj=0 are the vertices of Kk. �
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7. Convergence of (P∆t
α,δ,h) to (Pα) in the case d = 2

7.1. Stability. Before proving our stability results, we introduce some further notation. We
require the L2 projector Rh : V → V1

h defined by
∫

D

(v −Rhv) ·w dx = 0 ∀w ∈ V1
h.(7.1)

In addition, we require Ph : [L2(D)]d×d
S → S1h defined by

∫

D

πh[Phχ : φ] dx =

∫

D

χ : φ dx ∀φ ∈ S1h.(7.2)

It is easily deduced for p = 1, . . . , NP and i, j = 1, . . . , d that

[Phχ]ij(Pp) =
1∫

D
ηp

∫

D

[Phχ]ij ηp dx,(7.3)

where ηp ∈ Q1
h is such that ηp(Pr) = δpr for p, r = 1, . . . , NP . It follows from (7.2) and (6.7b)

with φ = Phχ, in both cases, that
∫

D

‖Phχ‖2 dx ≤
∫

D

πh[ ‖Phχ‖2] dx ≤
∫

D

‖χ‖2 dx ∀χ ∈ [L2(D)]d×d
S .(7.4)

We shall assume from now on that D is convex and that the family {Th}h>0 is quasi-uniform,
i.e. hk ≥ C h, k = 1, . . . , NK . It then follows that

‖Rhv‖H1(D) ≤ C‖v‖H1(D) ∀v ∈ V,(7.5)

see Lemma 4.3 in Heywood and Rannacher [18]. Similarly, it is easily established that

‖Phχ‖H1(D) ≤ C‖χ‖H1(D) ∀χ ∈ [H1(D)]d×d
S .(7.6)

We also require the scalar analogue of Ph, where d = 1 and S1h is replaced by Q1
h, satisfying the

analogues of (7.2)–(7.4) and (7.6).

Let ([H1(D)]d×d
S )′ be the topological dual of [H1(D)]d×d

S with [L2(D)]d×d
S being the pivot space.

Let E : ([H1(D)]d×d
S )′ → [H1(D)]d×d

S be such that Eχ is the unique solution of the Helmholtz
problem

∫

D

[∇(Eχ) :: ∇φ+ (Eχ) : φ] dx = 〈χ,φ〉H1(D) ∀φ ∈ [H1(D)]d×d
S ,(7.7)

where 〈·, ·〉H1(D) denotes the duality pairing between ([H1(D)]d×d
S )′ and [H1(D)]d×d

S . We note that

〈χ, Eχ〉H1(D) = ‖Eχ‖2H1(D) ∀χ ∈ ([H1(D)]d×d
S )′,(7.8)

and ‖E ·‖H1(D) is a norm on ([H1(D)]d×d
S )′. We also employ this operator in the scalar case, d = 1,

i.e. E : H1(D)′ → H1(D).
Let V′ be the topological dual of V with the space of weakly divergent free functions in [L2(D)]d

being the pivot space. Let S : V′ → V be such that Sw is the unique solution to the Helmholtz-
Stokes problem

∫

D

[∇(Sw) : ∇v + (Sw) · v] dx = 〈w,v〉V ∀v ∈ V,(7.9)

where 〈·, ·〉V denotes the duality pairing between V′ and V. We note that

〈w,Sw〉V = ‖Sw‖2H1(D) ∀w ∈ V′,(7.10)

and ‖S · ‖H1(D) is a norm on the reflexive space V′.
We recall the following well-known Gagliardo-Nirenberg inequality. Let r ∈ [2,∞) if d = 2, and

r ∈ [2, 6] if d = 3 and θ = d(12 − 1
r
). Then, there exists a positive constant C(D, r, d) such that

‖η‖Lr(D) ≤ C(D, r, d)‖η‖1−θ
L2(D)‖η‖θH1(D) ∀η ∈ H1(D).(7.11)
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We recall also the following compactness results. Let Y0, Y and Y1 be real Banach spaces, Yi,
i = 0, 1, reflexive, with a compact embedding Y0 →֒ Y and a continuous embedding Y →֒ Y1.
Then, for µi > 1, i = 0, 1, the following embedding is compact:

{ η ∈ Lµ0(0, T ;Y0) :
∂η

∂t
∈ Lµ1(0, T ;Y1) } →֒ Lµ0(0, T ;Y);(7.12)

see Theorem 2.1 on p184 in Temam [25]. Let X0, X and X1 be real Hilbert spaces with a compact
embedding X0 →֒ X and a continuous embedding X →֒ X1. Then, for γ > 0, the following
embedding is compact:

{ η ∈ L2(0, T ;X0) : D
γ
t η ∈ L2(0, T ;X1) } →֒ L2(0, T ;X ),(7.13)

where Dγ
t η is the time derivative of order γ of η, which can be defined in terms of the Fourier

transform of η; see Theorem 2.2 on p186 in Temam [25].
Finally, we recall the discrete Gronwall inequality:

(r0)2 + (s0)2 ≤ (q0)2,(7.14)

(rm)2 + (sm)2 ≤
m−1∑

n=0

(ηn)2(rn)2 +

m∑

n=0

(qn)2 m ≥ 1

⇒ (rm)2 + (sm)2 ≤ exp(

m−1∑

n=0

(ηn)2)

m∑

n=0

(qn)2 m ≥ 1.

Theorem 7.1. Under the assumptions of Theorem 6.1, there exists a solution {(un
α,δ,h,σ

n
α,δ,h,

̺nα,δ,h)}NT

n=1 ∈ [V1
h × S1h × Q1

h]
NT of (P∆t

α,δ,h), (6.34a–c), such that the bounds (6.48) and (6.49)
hold.

Moreover, if d = 2, (6.27) holds and ∆t ≤ C⋆(ζ
−1)α1+ζ h2, for a ζ > 0 and a C⋆(ζ

−1) ∈ R>0

sufficiently small, then the following bounds hold:

max
n=0,...,NT

∫

D

πh[ ‖σn
α,δ,h‖2 ] dx+

NT∑

n=1

∫

D

[
∆tn α‖∇σn

α,δ,h‖2 + πh[ ‖σn
α,δ,h − σn−1

α,δ,h‖2 ]
]
dx ≤ C,

(7.15a)

max
n=0,...,NT

∫

D

πh[ |̺nα,δ,h|2 ] dx+

NT∑

n=1

∫

D

[
∆tn α‖∇̺nα,δ,h‖2 + πh[ |̺nα,δ,h − ̺n−1

α,δ,h|2 ]
]
dx ≤ C,

(7.15b)

NT∑

n=1

∆tn

2∑

m=1

2∑

p=1

[
∥∥Λδ,m,p(σ

n
α,δ,h)

∥∥4
L4(D)

+

∥∥∥∥Λδ,m,p

(
1−

̺nα,δ,h
b

)∥∥∥∥
4

L4(D)

]
dx ≤ C.

(7.15c)

Proof. Existence and the bounds (6.48) and (6.49) were proved in Theorem 6.1.
On choosing φ = σn

α,δ,h in (6.34b), it follows from (3.2), and (4.15), on applying a Young’s
inequality, for any ζ > 0 that

1

2

∫

D

πh[ ‖σn
α,δ,h‖2 + ‖σn

α,δ,h − σn−1
α,δ,h‖2 ] dx+∆tn α

∫

D

‖∇σn
α,δ,h‖2 dx

(7.16)

+
∆tn
Wi

∫

D

πh

[
G′

δ

(
1−

̺nα,δ,h
b

)
tr
(
(βδ(σ

n
α,δ,h))

2
)]

dx

≤ 1

2

∫

D

πh[ ‖σn−1
α,δ,h‖2 ] dx+ 2∆tn

∫

D

∇un
α,δ,h : πh[κδ(σ

n
α,δ,h, ̺

n
α,δ,h)σ

n
α,δ,h βδ(σ

n
α,δ,h)] dx

+
∆tn
Wi

∫

D

πh

[
G′

δ

(
1−

̺nα,δ,h
b

)
tr
(
βδ(σ

n
α,δ,h) (βδ(σ

n
α,δ,h)− σn

α,δ,h)
)]

dx
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+
∆tn
Wi

‖σn
α,δ,h‖L1(D) +∆tn

∫

D

d∑

m=1

d∑

p=1

[un−1
α,δ,h]m Λδ,m,p(σ

n
α,δ,h) :

∂σn
α,δ,h

∂xp

dx

≤ 1

2

∫

D

πh[ ‖σn−1
α,δ,h‖2 ] dx+

∆tn
Wi

‖σn
α,δ,h‖L1(D)

+ C δ−1 ∆tn

∫

D

πh

[
tr
(
βδ(σ

n
α,δ,h)

∣∣βδ(σ
n
α,δ,h)− σn

α,δ,h

∣∣)] dx

+ 2∆tn ‖∇un
α,δ,h‖L2(D) ‖πh[κδ(σ

n
α,δ,h, ̺

n
α,δ,h)σ

n
α,δ,h βδ(σ

n
α,δ,h)]‖L2(D)

+ C∆tn ‖un−1
α,δ,h‖

L
2(2+ζ)

ζ (D)
‖Λδ,m,p(σ

n
α,δ,h)‖L2+ζ(D) ‖∇σn

α,δ,h‖L2(D).

We deduce from (3.3), (1.8), (6.7b), (1.5b), (5.2), (5.3), (6.51) and (7.11), as d = 2, that

tr
(
βδ(σ

n
α,δ,h)

∣∣βδ(σ
n
α,δ,h)− σn

α,δ,h

∣∣) ≤ δ tr
(∣∣βδ(σ

n
α,δ,h)− σn

α,δ,h

∣∣) ≤ C δ (δ + ‖σn
α,δ,h‖),(7.17a)

‖πh[κδ(σ
n
α,δ,h, ̺

n
α,δ,h)σ

n
α,δ,h βδ(σ

n
α,δ,h)]‖2L2(D)(7.17b)

≤
∫

D

πh

[
‖κδ(σ

n
α,δ,h, ̺

n
α,δ,h)σ

n
α,δ,h βδ(σ

n
α,δ,h)‖2

]
dx

≤ C b

∫

D

πh

[
‖σn

α,δ,h‖2 ‖βδ(σ
n
α,δ,h)‖

]
dx ≤ C

(
δ3 +

∫

D

πh[ ‖σn
α,δ,h‖3 ] dx

)

≤ C
(
δ3 + ‖σn

α,δ,h‖3L3(D)

)
≤ C

(
δ3 + ‖σn

α,δ,h‖2L2(D) ‖σn
α,δ,h‖H1(D)

)
.

Similarly, as d = 2, it follows from (6.24b), (3.3), (6.4) and (7.11) that for all ζ > 0

‖Λδ,m,p(σ
n
α,δ,h)‖2+ζ

L2+ζ(D)
≤

NK∑

k=1

|Kk| ‖Λδ,m,p(σ
n
α,δ,h)‖2+ζ

L∞(Kk)
≤ C

NK∑

k=1

|Kk| ‖πh[βδ(σ
n
α,δ,h)]‖2+ζ

L∞(Kk)

(7.18)

≤ C
[
δ2+ζ + ‖σn

α,δ,h‖2+ζ

L2+ζ(D)

]
≤ C + C(ζ) ‖σn

α,δ,h‖2L2(D) ‖σn
α,δ,h‖ζH1(D).

In addition, as d = 2, we note from (7.11), (1.13) and (6.49) that for all ζ > 0

‖un−1
α,δ,h‖

L
2(2+ζ)

ζ (D)
≤ C(ζ−1) ‖un−1

α,δ,h‖
ζ

2+ζ

L2(D) ‖u
n−1
α,δ,h‖

2
2+ζ

H1(D) ≤ C(ζ−1) ‖∇un−1
α,δ,h‖

2
2+ζ

L2(D) .(7.19)

Combining (7.16)–(7.19), yields, on applying a Young’s inequality, that for all ζ > 0

∫

D

πh[ ‖σn
α,δ,h‖2 + ‖σn

α,δ,h − σn−1
α,δ,h‖2 ] dx+∆tn α

∫

D

‖∇σn
α,δ,h‖2 dx

(7.20)

≤
∫

D

πh[ ‖σn−1
α,δ,h‖2 ] dx

+ C(ζ−1)∆tn α
−(1+ζ)

[
1 + ‖∇un

α,δ,h‖2L2(D) + ‖∇un−1
α,δ,h‖2L2(D)

] (
1 + ‖σn

α,δ,h‖2L2(D)

)
.

Hence, summing (7.20) from n = 1, . . . ,m for m = 1, . . . , NT yields, on noting (6.7b), that for any
ζ > 0

∫

D

πh[ ‖σm
α,δ,h‖2 ] dx+ α

m∑

n=1

∆tn

∫

D

‖∇σn
α,δ,h‖2 dx+

m∑

n=1

∫

D

πh[ ‖σn
α,δ,h − σn−1

α,δ,h‖2 ] dx(7.21)

≤
∫

D

πh[ ‖σ0
h‖2 ] dx+ C(ζ−1)α−(1+ζ)

+ C(ζ−1)α−(1+ζ)
m∑

n=1

∆tn

[
1 +

n∑

k=n−1

‖∇uk
α,δ,h‖2L2(D)

] ∫

D

πh[ ‖σn
α,δ,h‖2 ] dx.

Applying the discrete Gronwall inequality (7.14) to (7.21), and noting (6.27), (6.8), (6.29), (6.5b),
(6.48), (6.49), and that ∆t ≤ C⋆(ζ

−1)α1+ζ h2, for a ζ > 0 where C⋆(ζ
−1) is sufficiently small,

yields the bounds (7.15a).
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Similarly to (7.16) on choosing η = ̺nα,δ,h in (6.34c), it follows from (4.15), (1.3b), (1.4b) and

(1.8), on applying a Young’s inequality, for any ζ > 0 that

1

2

∫

D

πh[ |̺nα,δ,h|2 + |̺nα,δ,h − ̺n−1
α,δ,h|2 ] dx+∆tn α

∫

D

‖∇̺nα,δ,h‖2 dx

(7.22)

≤ 1

2

∫

D

πh[ |̺n−1
α,δ,h|2 ] dx+ 2∆tn

∫

D

∇un
α,δ,h : πh[κδ(σ

n
α,δ,h, ̺

n
α,δ,h) ̺

n
α,δ,h βδ(σ

n
α,δ,h)] dx

− ∆tn
Wi

∫

D

πh

[
tr
(
Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

)
̺nα,δ,h

]
dx

−∆tn b

∫

D

d∑

m=1

d∑

p=1

[un−1
α,δ,h]m Λδ,m,p

(
1−

̺nα,δ,h
b

)
∂̺nα,δ,h
∂xp

dx

≤ 1

2

∫

D

πh[ |̺n−1
α,δ,h|2 ] dx+ 2∆tn ‖∇un

α,δ,h‖L2(D) ‖πh[κδ(σ
n
α,δ,h, ̺

n
α,δ,h) ̺

n
α,δ,h βδ(σ

n
α,δ,h)]‖L2(D)

+ C∆tn ‖un−1
α,δ,h‖

L
2(2+ζ)

ζ (D)

∥∥∥∥Λδ,m,p

(
1−

̺nα,δ,h
b

)∥∥∥∥
L2+ζ(D)

‖∇̺nα,δ,h‖L2(D)

+
∆tn
2Wi

∫

D

πh

[
tr
((

Aδ(σ
n
α,δ,h, ̺

n
α,δ,h)

)2
βδ(σ

n
α,δ,h)

)
+ d

1
2 (̺nα,δ,h)

2‖βδ(σ
n
α,δ,h)‖

]
dx.

Similarly to (7.17b), as d = 2, we deduce from (6.7b), (5.2), (5.3), (3.3), (6.4), (7.11) and (7.15a)
that

‖πh[κδ(σ
n
α,δ,h, ̺

n
α,δ,h) ̺

n
α,δ,h βδ(σ

n
α,δ,h)]‖2L2(D)≤ C b

∫

D

πh

[
(̺nα,δ,h)

2 ‖βδ(σ
n
α,δ,h)‖

]
dx

(7.23)

≤ C
(
1 + ‖σn

α,δ,h‖L3(D)

)
‖̺nα,δ,h‖2L3(D)

≤ C
(
1 + ‖σn

α,δ,h‖
1
3

H1(D)

)
‖̺nα,δ,h‖

4
3

L2(D)‖̺
n
α,δ,h‖

2
3

H1(D).

Similarly to (7.18), as d = 2, it follows from (6.24a), (3.3), (6.4) and (7.11) that for all ζ > 0
∥∥∥∥Λδ,m,p

(
1−

̺nα,δ,h
b

)∥∥∥∥
2+ζ

L2+ζ(D)

≤ C + C(ζ) ‖̺nα,δ,h‖2L2(D) ‖̺nα,δ,h‖
ζ

H1(D).(7.24)

Combining (7.22)–(7.24) and (7.19), yields, on applying a Young’s inequality, that for all ζ > 0
∫

D

πh[ |̺nα,δ,h‖2 + |̺nα,δ,h − ̺n−1
α,δ,h|2 ] dx+∆tn α

∫

D

‖∇̺nα,δ,h‖2 dx(7.25)

≤
∫

D

πh[ |̺n−1
α,δ,h|2 ] dx+ 2∆tn ‖∇un

α,δ,h‖2L2(D)

+
∆tn
Wi

∫

D

πh

[
tr
((

Aδ(σ
n
α,δ,h, ̺

n
α,δ,h)

)2
βδ(σ

n
α,δ,h)

)]
dx

+ C(ζ−1)∆tn α
−(1+ζ)

[
1 + ‖σn

α,δ,h‖2H1(D) + ‖∇un−1
α,δ,h‖2L2(D)

] (
1 + ‖̺nα,δ,h‖2L2(D)

)
.

Hence, summing (7.25) from n = 1, . . . ,m for m = 1, . . . , NT yields, on noting (6.7b) and (6.48),
that for any ζ > 0

∫

D

πh[ |̺mα,δ,h|2 ] dx+ α

m∑

n=1

∆tn

∫

D

‖∇̺nα,δ,h‖2 dx+

m∑

n=1

∫

D

πh[ |̺nα,δ,h − ̺n−1
α,δ,h‖2 ] dx(7.26)

≤
∫

D

πh[ (tr(σ
0
h))

2 ] dx+ C(ζ−1)α−(1+ζ)

+ C(ζ−1)α−(1+ζ)
m∑

n=1

∆tn

[
1 + ‖σn

α,δ,h‖2H1(D) + ‖∇un−1
α,δ,h‖2L2(D)

] ∫

D

πh[ |̺nα,δ,h|2 ] dx.
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Applying the discrete Gronwall inequality (7.14) to (7.26), and noting (6.27), (6.30), (6.5a,b),
(6.48), (6.49), (6.8), (7.15a), and that ∆t ≤ C⋆(ζ

−1)α1+ζ h2, for a ζ > 0 where C⋆(ζ
−1) is

sufficiently small, yields the bounds (7.15b).
Finally, the desired result (7.15c) follows immediately from (7.18) and (7.24) with ζ = 2, on

noting (7.15a,b) and (6.8). �

Remark 7.1. Our final convergence result will be restricted to d = 2 for the same reason as
why our result for Oldroyd-B in [1] was restricted to d = 2. For example, the control of the term
(7.17b) necessitates the restriction to d = 2. This could be overcome for FENE-P by replacing the
regularization βδ in (Pα,δ), (5.5a–h), by βb

δ and using test functions based on Gb
δ in place of Gδ,

where (Gb
δ)

′(s) = βb
δ(s) for all s ∈ R. On making a similar change to our numerical approximation

(Ph,∆t
α,δ ), (6.34a–c), it is then possible to prove the analogues of Theorem 6.1 and Theorem 7.1 for

d = 2 and 3 with no restriction on ∆t. One can then establish analogues of Lemmas 7.1, 7.2 and
Theorem 7.2, below, but now the limits involve the cut-off b, i.e. ub

α, σ
b
α and ̺bα. Moreover, it

does not seem possible to establish that ̺bα = tr(σb
α), as we now have Λb

δ,m,p in place of Λδ,m,p in

the analogue of (7.60). Hence, in taking the limit δ, h, ∆t → 0+, the last term in the analogue of

(7.61) would have b βb
(
1− ̺b

α

b

)
+tr(βb(σb

α)) instead of −(̺bα − tr(σb
α)), where βb(s) = min{s, b}.

Therefore, the extension of the convergence analysis in this paper to d = 3 and with a weaker
restriction on ∆t will be a topic of further research.

Lemma 7.1. Under all of the assumptions of Theorem 7.1, the solution {(un
α,δ,h,σ

n
α,δ,h,

̺nα,δ,h)}NT

n=1 of (P∆t
α,δ,h), (6.34a–c), satisfies the following bounds:

NT∑

n=1

∆tn

∥∥∥∥∥S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)∥∥∥∥∥

4
ϑ

H1(D)

≤ C,(7.27a)

NT∑

n=1

∆tn

∥∥∥∥∥E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)∥∥∥∥∥

2

H1(D)

+

NT∑

n=1

∆tn

∥∥∥∥∥E
(
̺nα,δ,h − ̺n−1

α,δ,h

∆tn

)∥∥∥∥∥

2

H1(D)

≤ C,(7.27b)

NT∑

n=1

∆tn
∥∥πh

[
κδ(σ

n
α,δ,h, ̺

n
α,δ,h)Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

]∥∥2
L2(D)

≤ C,(7.27c)

NT∑

n=1

∆tn
∥∥πh

[
Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

]∥∥ 8
5

L
8
5 (D)

≤ C,(7.27d)

where ϑ ∈ (2, 4] and C in (7.27a,c) is independent of α, as well as δ, h and ∆t.

Proof. On choosing v = Rh

[
S
(

u
n
α,δ,h−u

n−1
α,δ,h

∆tn

)]
∈ V1

h in (6.34a) yields, on noting (7.1), (7.10),

(7.5) and Sobolev embedding, that

Re

∥∥∥∥∥S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)∥∥∥∥∥

2

H1(D)

= Re

∫

D

un
α,δ,h − un−1

α,δ,h

∆tn
· Rh

[
S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)]
dx

(7.28)

=
ε

Wi

∫

D

πh

[
κδ(σ

n
α,δ,h, ̺

n
α,δ,h)Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

]
: ∇

[
Rh

[
S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)]]
dx

− (1− ε)

∫

D

∇un
α,δ,h : ∇

[
Rh

[
S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)]]
dx

− Re

2

∫

D

(
(un−1

α,δ,h ·∇)un
α,δ,h

)
· Rh

[
S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)]
dx
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+
Re

2

∫

D

un
α,δ,h ·

(
(un−1

α,δ,h ·∇)

[
Rh

[
S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)]])
dx

+

〈
fn,Rh

[
S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)]〉

H1
0 (D)

≤ C

[ ∥∥πh

[
κδ(σ

n
α,δ,h, ̺

n
α,δ,h)Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

]∥∥2
L2(D)

+ ‖∇un
α,δ,h‖2L2(D)

+ ‖ ‖un−1
α,δ,h‖ ‖un

α,δ,h‖ ‖2L2(D) + ‖ ‖un−1
α,δ,h‖ ‖∇un

α,δ,h‖ ‖2L1+θ(D) + ‖fn‖2H−1(D)

]
,

where θ > 0 as d = 2. It follows from (6.7b) and (5.4) that
∥∥πh

[
κδ(σ

n
α,δ,h, ̺

n
α,δ,h)Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

]∥∥2
L2(D)

(7.29)

≤
∫

D

πh

[∥∥κδ(σ
n
α,δ,h, ̺

n
α,δ,h)Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

∥∥2
]
dx

≤ b

∫

D

πh

[
tr
((

Aδ(σ
n
α,δ,h, ̺

n
α,δ,h)

)2
βδ(σ

n
α,δ,h)

)]
dx.

Applying the Cauchy–Schwarz and the algebraic-geometric mean inequalities, in conjunction with
(7.11), for d = 2, and the Poincaré inequality (1.13) yields that

‖ ‖un−1
α,δ,h‖ ‖un

α,δ,h‖ ‖2L2(D) ≤ ‖un−1
α,δ,h‖2L4(D) ‖un

α,δ,h‖2L4(D) ≤ 1
2

n∑

m=n−1

‖um
α,δ,h‖4L4(D)(7.30)

≤ C
n∑

m=n−1

[
‖um

α,δ,h‖2L2(D) ‖∇um
α,δ,h‖2L2(D)

]
.

Similarly, we have for any θ ∈ (0, 1), as d = 2, but now using a Young’s inequality

‖ ‖un−1
α,δ,h‖ ‖∇un

α,δ,h‖ ‖2L1+θ(D) ≤ ‖un−1
α,δ,h‖2

L
2(1+θ)
1−θ (D)

‖∇un
α,δ,h‖2L2(D)(7.31)

≤ C ‖un−1
α,δ,h‖

2(1−θ)
1+θ

L2(D) ‖∇u
n−1
α,δ,h‖

4θ
1+θ

L2(D) ‖∇u
n
α,δ,h‖2L2(D)

≤ C ‖un−1
α,δ,h‖

2(1−θ)
1+θ

L2(D)

n∑

m=n−1

‖∇um
α,δ,h‖

2(1+3θ)
1+θ

L2(D) .

On taking the 2
ϑ
power of both sides of (7.28), multiplying by ∆tn, summing from n = 1, . . . , NT

and noting (7.29), (7.30), (7.31) with θ = ϑ−2
6−ϑ

⇔ ϑ = 2(1+3θ)
(1+θ) ∈ (2, 4), (6.27), (4.11a), (6.48),

(6.49) and (6.29) yields that

NT∑

n=1

∆tn

∥∥∥∥∥S
(
un
α,δ,h − un−1

α,δ,h

∆tn

)∥∥∥∥∥

4
ϑ

H1(D)

(7.32)

≤ C

[
NT∑

n=1

∆tn

∫

D

πh

[
tr
((

Aδ(σ
n
α,δ,h, ̺

n
α,δ,h)

)2
βδ(σ

n
α,δ,h)

)]
dx

] 2
ϑ

+ C

[
NT∑

n=1

∆tn

[
‖∇un

α,δ,h‖2L2(D) + ‖fn‖2H−1(D)

]]
2
ϑ

+ C

[
1 + max

n=0,...,NT

(
‖un

α,δ,h‖2L2(D)

)] [NT∑

n=0

∆tn ‖∇un
α,δ,h‖2L2(D)

]

≤ C,

and hence the bound (7.27a) with C independent of α.
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Choosing φ = Ph

[
E
(

σ
n
α,δ,h−σ

n−1
α,δ,h

∆tn

)]
∈ S1h in (6.34b) yields, on noting (7.2) and (7.8), that

∥∥∥∥∥E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)∥∥∥∥∥

2

H1(D)

(7.33)

=

∫

D

πh

[(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)
: Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]]
dx

= − 1

Wi

∫

D

πh

[
Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h) : Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]]
dx

− α

∫

D

∇σn
α,δ,h :: ∇

[
Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]]
dx

+ 2

∫

D

∇un
α,δ,h : πh

[
κδ(σ

n
α,δ,h, ̺

n
α,δ,h)Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]
βδ(σ

n
α,δ,h)

]
dx

+

∫

D

d∑

m=1

d∑

p=1

[un−1
α,δ,h]m Λδ,m,p(σ

n
α,δ,h) :

∂

∂xp

[
Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]]
dx.

It follows from (1.5a,b), (1.3b), (1.4b) and (1.8) that for any ζ ∈ R>0

∣∣∣∣∣

∫

D

πh

[
Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h) : Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]]
dx

∣∣∣∣∣

(7.34)

≤
∫

D

πh

[
‖Aδ(σ

n
α,δ,h, ̺

n
α,δ,h) [βδ(σ

n
α,δ,h)]

1
2 ‖
∥∥∥∥∥Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]∥∥∥∥∥ ‖[βδ(σ
n
α,δ,h)]

1
2 ‖
]
dx

≤ ζ−1

∫

D

πh

[
tr
(
(Aδ(σ

n
α,δ,h, ̺

n
α,δ,h))

2 βδ(σ
n
α,δ,h)

)]
dx

+ ζ d
1
2

∫

D

πh



∥∥∥∥∥Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]∥∥∥∥∥

2

‖βδ(σ
n
α,δ,h)‖


dx.

Similarly to (7.17b), it follows from (6.7b), (1.5b), (5.2), (5.3) and (1.8) that
∥∥∥∥∥πh

[
κδ(σ

n
α,δ,h, ̺

n
α,δ,h)Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]
βδ(σ

n
α,δ,h)

]∥∥∥∥∥

2

L2(D)

(7.35)

≤ C

∫

D

πh



∥∥∥∥∥Ph

[
E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)]∥∥∥∥∥

2

‖βδ(σ
n
α,δ,h)‖


dx.

In addition, (3.3), (6.4), (6.8) and (7.15a) imply that for all φ ∈ S1h
∫

D

πh

[
‖φ‖2 ‖βδ(σ

n
α,δ,h)‖

]
dx ≤

NK∑

k=1

[
‖σn

α,δ,h‖L∞(Kk) + δ
] ∫

Kk

‖φ‖2 dx(7.36)

≤ C
[
‖σn

α,δ,h‖L2(D) + δ
]
‖φ‖2L4(D) ≤ C ‖φ‖2H1(D) .

Combining (7.33)–(7.36), yields, on noting (7.6), that

∥∥∥∥∥E
(
σn

α,δ,h − σn−1
α,δ,h

∆tn

)∥∥∥∥∥

2

H1(D)

(7.37)
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≤ C

[∫

D

πh

[
tr
(
(Aδ(σ

n
α,δ,h, ̺

n
α,δ,h))

2 βδ(σ
n
α,δ,h)

)]
dx+ α‖∇σn

α,δ,h‖2L2(D)

+ ‖∇un
α,δ,h‖2L2(D) + ‖un−1

α,δ,h‖2L4(D)

∫

D

2∑

m=1

2∑

p=1

∥∥Λδ,m,p(σ
n
α,δ,h)

∥∥2
L4(D)

dx

]
.

Similarly to (7.33)–(7.37), choosing η = Ph

[
E
(

̺n
α,δ,h−̺

n−1
α,δ,h

∆tn

)]
∈ Q1

h in (6.34c) yields that

∥∥∥∥∥E
(
̺nα,δ,h − ̺n−1

α,δ,h

∆tn

)∥∥∥∥∥

2

H1(D)

(7.38)

≤ C

[∫

D

πh

[
tr
(
(Aδ(σ

n
α,δ,h, ̺

n
α,δ,h))

2 βδ(σ
n
α,δ,h)

)]
dx+ α‖∇̺nα,δ,h‖2L2(D)

+ ‖∇un
α,δ,h‖2L2(D) + ‖un−1

α,δ,h‖2L4(D)

∫

D

2∑

m=1

2∑

p=1

∥∥∥∥Λδ,m,p

(
1−

̺nα,δ,h
b

)∥∥∥∥
2

L4(D)

dx

]
.

Multiplying (7.37) and (7.38) by ∆tn, summing from n = 1, ..., NT and noting (6.48), (6.49),
(7.30), (6.27), (6.29) and (7.15a–c) yields the bounds (7.27b).

Multiplying (7.29) by ∆tn, summing from n = 1, ..., NT and noting (6.48) yields the result
(7.27c) with C independent of α. Finally, it follows from (6.7a) that

∥∥πh

[
Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

]∥∥ 8
5

L
8
5 (D)

(7.39)

≤
∫

D

(
πh

[∥∥∥Aδ(σ
n
α,δ,h, ̺

n
α,δ,h) [βδ(σ

n
α,δ,h)]

1
2

∥∥∥
2
]) 4

5
(
πh

[∥∥∥[βδ(σ
n
α,δ,h)]

1
2

∥∥∥
2
]) 4

5

dx

≤
∥∥∥∥πh

[∥∥∥Aδ(σ
n
α,δ,h, ̺

n
α,δ,h) [βδ(σ

n
α,δ,h)]

1
2

∥∥∥
2
]∥∥∥∥

4
5

L1(D)

∥∥∥∥πh

[∥∥∥[βδ(σ
n
α,δ,h)]

1
2

∥∥∥
2
]∥∥∥∥

4
5

L4(D)

.

Multiplying (7.39) by ∆tn, summing from n = 1, ..., NT and noting (1.3b), (1.4b), (6.48), (1.8),
(3.3), (6.51), (7.11) with d = 2, (6.8) and (7.15a) yields that

NT∑

n=1

∆tn
∥∥πh

[
Aδ(σ

n
α,δ,h, ̺

n
α,δ,h)βδ(σ

n
α,δ,h)

]∥∥ 8
5

L
8
5 (D)

(7.40)

≤
(

NT∑

n=1

∆tn

∥∥∥∥πh

[∥∥∥Aδ(σ
n
α,δ,h, ̺

n
α,δ,h) [βδ(σ

n
α,δ,h)]

1
2

∥∥∥
2
]∥∥∥∥

L1(D)

) 4
5

×
(

NT∑

n=1

∆tn
∥∥πh

[
‖βδ(σ

n
α,δ,h)‖

]∥∥4
L4(D)

) 1
5

≤ C

(
NT∑

n=1

∆tn
∥∥πh

[
βδ(σ

n
α,δ,h)

]∥∥4
L4(D)

) 1
5

≤ C

(
δ4 +

NT∑

n=1

∆tn
∥∥σn

α,δ,h

∥∥4
L4(D)

) 1
5

≤ C

(
δ4 +

NT∑

n=1

∆tn
∥∥σn

α,δ,h

∥∥2
L2(D)

∥∥σn
α,δ,h

∥∥2
H1(D)

) 1
5

≤ C.

Hence, we have the desired result (7.27d). �

Unfortunately, the bound (7.27a) is not useful for obtaining compactness via (7.12), see the
discussion in the proof of Theorem 7.2 below. Instead one has to exploit the compactness result
(7.13). This we now do, by following the proof of Lemma 5.6 on p237 in Temam [25]. Here the
introduction of κδ(σ

n
α,δ,h, ̺

n
α,δ,h) in the extra stress term, as discussed above (5.2), is crucial, as this

yields an L2(DT ) bound on this stress term via the bound (5.4). For this purpose, we introduce
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the following notation in line with (4.10). Let u∆t
α,δ,h ∈ C([0, T ]; V1

h) and u
∆t,±
α,δ,h ∈ L∞(0, T ; V1

h) be
such that for n = 1, . . . , NT

u∆t
α,δ,h(t, ·) :=

t− tn−1

∆tn
un
α,δ,h(·) +

tn − t

∆tn
un−1
α,δ,h(·) t ∈ [tn−1, tn],(7.41a)

u
∆t,+
α,δ,h(t, ·) := un

α,δ,h(·), u
∆t,−
α,δ,h(t, ·) := un−1

α,δ,h(·) t ∈ [tn−1, tn),(7.41b)

and ∆(t) := ∆tn t ∈ [tn−1, tn).(7.41c)

We note that

u∆t
α,δ,h − u∆t,±

α,δ,h = (t− tn±)
∂u∆t

α,δ,h

∂t
t ∈ (tn−1, tn), n = 1, . . . , NT ,(7.42)

where tn+ := tn and tn− := tn−1. We shall adopt u
∆t(,±)
α,δ,h as a collective symbol for u∆t

α,δ,h, u
∆t,±
α,δ,h.

We also define σ
∆t(,±)
α,δ,h and ̺

∆t(,±)
α,δ,h similarly to (7.41a,b).

Using the notation (7.41a,b), (P∆t
α,δ,h), i.e. (6.34a–c) multiplied by ∆tn and summed for n =

1, . . . , NT , can be restated as:

∫

DT

[
Re

∂u∆t
α,δ,h

∂t
· v + (1 − ε)∇u∆t,+

α,δ,h : ∇v

]
dx dt(7.43a)

+
Re

2

∫

DT

[[
(u∆t,−

α,δ,h ·∇)u∆t,+
α,δ,h

]
· v −

[
(u∆t,−

α,δ,h ·∇)v
]
· u∆t,+

α,δ,h

]
dx dt

+
ε

Wi

∫

DT

πh

[
κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]
: ∇v dxdt

=

∫ T

0

〈f+,v〉H1
0 (D) dt ∀v ∈ L2(0, T ; V1

h),

∫

DT

πh

[
∂σ∆t

α,δ,h

∂t
: φ+

Aδ(σ
∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

Wi
: φ

]
dx dt(7.43b)

+ α

∫

DT

∇σ
∆t,+
α,δ,h :: ∇φ dxdt− 2

∫

DT

∇u
∆t,+
α,δ,h : πh[κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)φ βδ(σ

∆t,+
α,δ,h)] dx dt

−
∫

DT

d∑

m=1

d∑

p=1

[u∆t,−
α,δ,h]m Λδ,m,p(σ

∆t,+
α,δ,h) :

∂φ

∂xp

dx dt = 0 ∀φ ∈ L2(0, T ; S1h),

∫

DT

πh


∂̺

∆t
α,δ,h

∂t
η +

tr
(
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

)

Wi
η


dx dt(7.43c)

+ α

∫

DT

∇̺∆t,+
α,δ,h ·∇η dx dt− 2

∫

DT

∇u
∆t,+
α,δ,h : πh[κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h) η βδ(σ

∆t,+
α,δ,h)] dx dt

+ b

∫

DT

d∑

m=1

d∑

p=1

[u∆t,−
α,δ,h]m Λδ,m,p

(
1−

̺∆t,+
α,δ,h

b

)
∂η

∂xp

dxdt = 0 ∀η ∈ L2(0, T ; Q1
h)

subject to the initial conditions u∆t
α,δ,h(0) = u

0
h, σ

∆t
α,δ,h(0) = σ

0
h and ̺∆t

α,δ,h(0) = tr(σ0
h).

Lemma 7.2. Under all of the assumptions of Theorem 7.1, the solution (u∆t
α,δ,h,σ

∆t
α,δ,h, ̺

∆t
α,δ,h) of

(P∆t
α,δ,h), (7.43a–c), satisfies the following bound:

∫ T

0

‖Dγ
t u

∆t
α,δ,h‖2L2(D) dt ≤ C,(7.44)

where γ ∈ (0, 1
4 ) and C is independent of α, as well as δ, h and ∆t.
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Proof. Equation (7.43a) can be reinterpreted as

Re
d

dt

∫

D

u∆t
α,δ,h(t) · v dx =

∫

D

∇g∆t,+(t) : ∇v dx ∀v ∈ V1
h, t ∈ (0, T ),(7.45)

where g∆t,+(t) ∈ V1
h is defined by

∫

D

∇g∆t,+(t) : ∇v dx = 〈f+(t),v〉H1
0 (D) − (1− ε)

∫

D

∇u
∆t,+
α,δ,h(t) : ∇v dx(7.46)

− Re

2

∫

D

[[
(u∆t,−

α,δ,h(t) ·∇)u∆t,+
α,δ,h(t)

]
· v −

[
(u∆t,−

α,δ,h(t) ·∇)v
]
· u∆t,+

α,δ,h(t)
]
dx

− ε

Wi

∫

D

πh

[
κδ(σ

∆t,+
α,δ,h(t), ̺

∆t,+
α,δ,h(t))Aδ(σ

∆t,+
α,δ,h(t), ̺

∆t,+
α,δ,h(t))βδ(σ

∆t,+
α,δ,h(t))

]
: ∇v dx.

Similarly to (7.28) and (7.29) with θ ∈ (0, 1), it follows from (7.46) that

‖∇g∆t,+(t)‖L2(D) ≤ C

[
‖f+(t)‖H−1(D) + ‖∇u∆t,+

α,δ,h(t)‖L2(D)

(7.47)

+ ‖ ‖u∆t,−
α,δ,h(t)‖ ‖u

∆t,+
α,δ,h(t)‖ ‖L2(D) + ‖ ‖u∆t,−

α,δ,h(t)‖ ‖∇u
∆t,+
α,δ,h(t)‖ ‖L1+θ(D)

+

(∫

D

tr

((
Aδ(σ

∆t,+
α,δ,h(t), ̺

∆t,+
α,δ,h(t))

)2
βδ(σ

∆t,+
α,δ,h(t))

)
dx

) 1
2
]
.

On noting (7.30), (7.31) and the bound on un
α,δ,h in (6.49), we deduce from (7.47) that

‖∇g∆t,+(t)‖L2(D) ≤ C

[
1 + ‖f+(t)‖H−1(D) + ‖∇u∆t,−

α,δ,h(t)‖
1+3θ
1+θ

L2(D) + ‖∇u∆t,+
α,δ,h(t)‖

1+3θ
1+θ

L2(D)(7.48)

+

(∫

D

tr

((
Aδ(σ

∆t,+
α,δ,h(t), ̺

∆t,+
α,δ,h(t))

)2
βδ(σ

∆t,+
α,δ,h(t))

)
dx

) 1
2
]
.

Similarly to (7.32), on recalling (6.29), (4.11a) and (6.49), we deduce from (7.48) that
∫ T

0

‖∇g∆t,+(t)‖
4
ϑ

L2(D) dt ≤ C,(7.49)

where ϑ ∈ (2, 4] and C is independent of α, as well as δ, h and ∆t. The rest of the proof follows
as on p1825–6 in [1], which is based on the proof of Lemma 5.6 on p237 in [25]. �

7.2. Convergence. It follows from (6.48), (6.49), (7.15a–c), (6.29), (6.8), (7.27a–d), (7.44) and
(7.41a–c) that

sup
t∈(0,T )

‖u∆t(,±)
α,δ,h ‖2L2(D) +

∫ T

0

[
‖∇u∆t(,±)

α,δ,h ‖2L2(D) +
‖u∆t,+

α,δ,h − u∆t,−
α,δ,h‖2L2(D)

∆(t)

]
dt ≤ C,(7.50a)

sup
t∈(0,T )

‖σ∆t(,±)
α,δ,h ‖2L2(D) +

∫ T

0

[
α‖∇σ∆t(,±)

α,δ,h ‖2L2(D) +
‖σ∆t,+

α,δ,h − σ∆t,−
α,δ,h‖2L2(D)

∆(t)

]
dt ≤ C,(7.50b)

sup
t∈(0,T )

‖̺∆t(,±)
α,δ,h ‖2L2(D) +

∫ T

0

[
α‖∇̺

∆t(,±)
α,δ,h ‖2L2(D) +

‖̺∆t,+
α,δ,h − ̺∆t,−

α,δ,h‖2L2(D)

∆(t)

]
dt(7.50c)

+ δ2
∫ T

0

∥∥∥∥∥∇πh

[
G′

δ

(
1−

̺∆t,+
α,δ,h

b

)]∥∥∥∥∥

2

L2(D)

dt ≤ C,

∫

DT

πh

[
tr
(
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)

2βδ(σ
∆t,+
α,δ,h)

)]
dx dt ≤ C,(7.50d)

sup
t∈(0,T )

∫

D

πh

[
‖[σ∆t(,±)

α,δ,h ]−‖+ |[b− ̺
∆t(,±)
α,δ,h ]−|

]
dx ≤ C δ,(7.50e)
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∫ T

0



∥∥∥∥∥S

∂u∆t
α,δ,h

∂t

∥∥∥∥∥

4
ϑ

H1(D)

+ ‖Dγ
t u

∆t
α,δ,h‖2L2(D)


dt ≤ C,(7.50f)

∫ T

0



∥∥∥∥∥E

∂σ∆t
α,δ,h

∂t

∥∥∥∥∥

2

H1(D)

+

∥∥∥∥∥E
∂̺∆t

α,δ,h

∂t

∥∥∥∥∥

2

H1(D)


dt ≤ C,(7.50g)

∥∥∥πh

[
κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]∥∥∥
L2(DT )

≤ C,(7.50h)

∥∥∥πh

[
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]∥∥∥
L

8
5 (DT )

≤ C,(7.50i)

where ϑ ∈ (2, 4], γ ∈ (0, 1
4 ) and C in (7.50a,d,e,f,h) is independent of α, as well as δ, h and ∆t.

We are now in a position to prove the following convergence result concerning (P∆t
α,δ,h).

Theorem 7.2. Under all of the assumptions of Theorem 7.1, there exists a subsequence of
{(u∆t

α,δ,h,σ
∆t
α,δ,h, ̺

∆t
α,δ,h)}δ>0,h>0,∆t>0, and functions

uα ∈ L∞(0, T ; H) ∩ L2(0, T ; V) ∩W 1, 4
ϑ (0, T ; V′) with uα(0) = u

0,(7.51a)

σα ∈ L∞(0, T ; [L2(D)]2×2
S ) ∩ L2(0, T ; [H1(D)]2×2

S ) ∩H1(0, T ; ([H1(D)]2×2
S )′)(7.51b)

with σα non-negative definite a.e. in DT and σα(0) = σ
0,

̺α ∈ L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D)) ∩H1(0, T ; (H1(D))′)(7.51c)

with ̺α ≤ b a.e. in DT and ̺α(0) = tr(σ0),

such that, as δ, h, ∆t → 0+,

u
∆t(,±)
α,δ,h → uα weak* in L∞(0, T ; [L2(D)]2),(7.52a)

u
∆t(,±)
α,δ,h → uα weakly in L2(0, T ; [H1(D)]2),(7.52b)

S
∂u∆t

α,δ,h

∂t
→ S ∂uα

∂t
weakly in L

4
ϑ (0, T ; V),(7.52c)

u
∆t(,±)
α,δ,h → uα strongly in L2(0, T ; [Lr(D)]2),(7.52d)

σ
∆t(,±)
α,δ,h → σα weak* in L∞(0, T ; [L2(D)]2×2),(7.53a)

σ
∆t(,±)
α,δ,h → σα weakly in L2(0, T ; [H1(D)]2×2),(7.53b)

E
∂σ∆t

α,δ,h

∂t
→ E ∂σα

∂t
weakly in L2(0, T ; [H1(D)]2×2

S ),(7.53c)

σ
∆t(,±)
α,δ,h → σα strongly in L2(0, T ; [Lr(D)]2×2),(7.53d)

πh[βδ(σ
∆t(,±)
α,δ,h )] → σα strongly in L2(0, T ; [L2(D)]2×2),(7.53e)

Λδ,m,p(σ
∆t(,±)
α,δ,h ) → σα δmp strongly in L2(0, T ; [L2(D)]2×2), m, p = 1, 2,(7.53f)

and

̺
∆t(,±)
α,δ,h → ̺α weak* in L∞(0, T ;L2(D)),(7.54a)

̺
∆t(,±)
α,δ,h → ̺α weakly in L2(0, T ;H1(D)),(7.54b)

E
∂̺∆t

α,δ,h

∂t
→ E ∂̺α

∂t
weakly in L2(0, T ;H1(D)),(7.54c)

̺
∆t(,±)
α,δ,h → ̺α strongly in L2(0, T ;Lr(D)),(7.54d)

πh

[
βδ

(
1−

̺
∆t(,±)
α,δ,h

b

)]
→
(
1− ̺α

b

)
strongly in L2(0, T ;L2(D)),(7.54e)
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Λδ,m,p

(
1−

̺
∆t(,±)
α,δ,h

b

)
→
(
1− ̺α

b

)
δmp strongly in L2(0, T ;L2(D)), m, p = 1, 2,(7.54f)

where ϑ ∈ (2, 4] and r ∈ [1,∞).

Proof. The results (7.52a–c) follow immediately from the bounds (7.50a,f) on noting the notation
(7.41a–c). The denseness of

⋃
h>0 Q

1
h in L2(D) and (6.1d) yield that uα ∈ L2(0, T ; V). Hence, the

result (7.51a) holds on noting (7.10) and (6.33), where uα : [0, T ] → H is weakly continuous.
The strong convergence result (7.52d) for u∆t

α,δ,h and r = 2 follows immediately from (7.50a)

and the second bound in (7.50f) and (7.13) with X0 = [H1(D)]2 and X = X1 = [L2(D)]2. Here
we note that H1(D) is compactly embedded in L2(D). We note here also that one cannot appeal
to (7.12) for this strong convergence result with µ0 = 2, µ1 = 4/ϑ, Y0 = [H1(D)]2, Y1 = V′ with
norm ‖S · ‖H1(D) and Y = [L2(D)]2 for the stated values of ϑ, since [L2(D)]2 is not continuously

embedded in V′ as V is not dense in [L2(D)]2.

The result (7.52d) for u∆t,±
α,δ,h and r = 2 follows immediately from this result for u∆t

α,δ,h and the

the bound on the last term on the left-hand side of (7.50a), which yields

‖u∆t
α,δ,h − u∆t,±

α,δ,h‖2L2(0,T ;L2(D)) ≤ C∆t.(7.55)

Finally, we note from (7.11), for d = 2, that, for all η ∈ L2(0, T ;H1(D)),

‖η‖L2(0,T ;Lr(D)) ≤ C ‖η‖1−θ
L2(0,T ;L2(D)) ‖η‖

θ
L2(0,T ;H1(D))(7.56)

for all r ∈ [2,∞) with θ = 1 − 2
r
∈ (0, 1]. Hence, combining (7.56) and (7.52b,d) for u

∆t(,±)
α,δ,h with

r = 2 yields (7.52d) for u
∆t(,±)
α,δ,h for the stated values of r.

Similarly, the results (7.53a–c) follow immediately from (7.50b,g). The strong convergence
result (7.53d) for σ∆t

α,δ,h follows immediately from (7.53b,h), (7.8) and (7.12) with µ0 = µ1 = 2,

Y0 = [H1(D)]d×d, Y1 = ([H1(D)]d×d)′ and Y = [Lr(D)]d×d for the stated values of r. Here we note
that H1(D) is compactly embedded in Lr(D) for the stated values of r, and Lr(D) is continuously
embedded in (H1(D))′. Similarly to (7.55) and (7.56), the last bound in (7.50b) then yields that

(7.53d) holds for σ
∆t(,±)
α,δ,h .

The results (7.54a–d) follow analogously from noting (7.50c,g). Hence, on noting (7.8) and

(6.33), the results (7.51b,c) hold, where σα : [0, T ] → [L2(D)]d×d
S and ̺α : [0, T ] → L2(D) are

weakly continuous, apart from the claims on the non-negative definiteness of σα and the bound on
̺α. It remains to prove these, (7.53e,f) and (7.54e,f). It follows from (1.11), (6.52b) and (7.50b,e)
that

‖[σα]−‖L2(0,T ;L1(D))(7.57)

≤
∥∥∥[σα]− − [σ

∆t(,±)
α,δ,h ]−

∥∥∥
L2(0,T ;L1(D))

+
∥∥∥[σ∆t(,±)

α,δ,h ]− − πh

[
[σ

∆t(,±)
α,δ,h ]−

]∥∥∥
L2(0,T ;L1(D))

+
∥∥∥πh

[
[σ

∆t(,±)
α,δ,h ]−

]∥∥∥
L2(0,T ;L1(D))

≤
∥∥∥σα − σ∆t(,±)

α,δ,h

∥∥∥
L2(0,T ;L1(D))

+ C [h+ δ] .

The desired non-negative definiteness result on σα in (7.51b) then follows from (7.53d). The
desired bound on ̺α in (7.51c) follows similarly from (1.11), (6.52b), (7.50c,e) and (7.54d). The
results (7.53e,f) follow immediately from (6.52a), (7.50b), (1.11), (7.53d), (3.3) and the non-
negative definiteness result on σα in (7.51b). The results (7.54e,f) follow similarly from the scalar
version of (6.52a), (7.50c), (1.11), (7.54d), (3.3) and the bound on ̺α in (7.51c). �

Lemma 7.3. Under all of the assumptions of Theorem 7.1, the subsequence of {(σ∆t
α,δ,h,

̺∆t
α,δ,h)}δ>0,h>0,∆t>0 of Theorem 7.2 and the limiting functions σα and ̺α, satisfying (7.51b,c),

are such that, as δ, h, ∆t → 0+,

πh

[
βb
δ(̺

∆t(,±)
α,δ,h )

]
→ ̺α = tr(σα) strongly in L2(0, T ;L2(D)).(7.58)



42 JOHN W. BARRETT AND SÉBASTIEN BOYAVAL

In addition, we have with h = o(δ), as δ → 0+, that

σα is positive definite and tr(σα) < b a.e. in DT .(7.59)

Proof. Choosing φ = η I in (7.43b) and subtracting from (7.43c) yields that
∫

DT

πh

[
∂

∂t

(
̺∆t
α,δ,h − tr(σ∆t

α,δ,h)
)
η

]
dxdt+ α

∫

DT

∇

(
̺∆t,+
α,δ,h − tr(σ∆t,+

α,δ,h)
)
·∇η dxdt(7.60)

+

∫

DT

d∑

m=1

d∑

p=1

[u∆t,−
α,δ,h]m

[
bΛδ,m,p

(
1−

̺∆t,+
α,δ,h

b

)
+ tr

(
Λδ,m,p(σ

∆t,+
α,δ,h)

)] ∂η

∂xp

dx dt = 0

∀η ∈ L2(0, T ; Q1
h).

It follows from (7.52d), (7.53b–d,f), (7.54b–e), (7.7), (7.51a–c) and (6.9a,b) that we may pass to
the limit δ, h, ∆t → 0+ in (7.60) with η = πh χ to obtain

∫ T

0

〈 ∂
∂t

(̺α − tr(σα)) , χ〉H1(D) dt+ α

∫

DT

∇ (̺α − tr(σα)) ·∇χ dxdt(7.61)

−
∫

DT

(̺α − tr(σα)) uα ·∇χ dx dt = 0 ∀χ ∈ C∞
0 (0, T ;C∞(D)),

where [̺α − tr(σα)](0) = 0. For example, in order to pass to the limit on the first term in (7.60),
we note that

∫

DT

πh

[
∂

∂t

(
̺∆t
α,δ,h − tr(σ∆t

α,δ,h)
)
πh χ

]
dxdt

(7.62)

=

∫

DT

{(
∂

∂t

(
̺∆t
α,δ,h − tr(σ∆t

α,δ,h)
))

πh χ+ (I − πh)

[(
̺∆t
α,δ,h − tr(σ∆t

α,δ,h)
)
πh

[
∂χ

∂t

]]}
dx dt.

Hence the desired first term in (7.61) follows from noting (7.53b,c), (7.54b,c), (7.7) and (6.9a,b).
As C∞

0 (0, T ;C∞(D)) is dense in L2(0, T ;H1(D)), we have, on noting (7.51a–c), that (7.61) holds
for all χ ∈ L2(0, T ;H1(D)). It then follows from (7.51a–c) that we can choose χ = ̺α − tr(σα)
in (7.61) to yield that ̺α = tr(σα) as [̺α − tr(σα)](0) = 0. Recalling (7.51b,c), we have that
̺α ∈ [0, b] a.e. in DT . The desired convergence result (7.58) then follows from noting this, (5.3),
(3.3), (6.52b), (7.50c) and (7.54d).

We now improve on (7.51c) by establishing that ̺α = tr(σα) < b a.e. in DT . Assuming that
tr(σα) = b a.e. in Db

T ⊂ DT , we have

b |Db
T | =

∫

Db
T

tr(σα) dx dt(7.63)

=

∫

Db
T

πh

[
tr(βδ(σ

∆t,+
α,δ,h))

]
dxdt+

∫

Db
T

tr
(
σα − πh

[
βδ(σ

∆t,+
α,δ,h)

])
dx dt =: T1 + T2.

We deduce from (3.6) and (3.2) that

T1 =

∫

Db
T

πh

[(
tr
(
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

)
+ 2
)
βδ

(
1−

̺∆t,+
α,δ,h

b

)]
dxdt.(7.64)

It follows from (1.3b) and (1.4b) that

tr
(
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

)
≤
[
tr
(
(Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h))

2 βδ(σ
∆t,+
α,δ,h)

)
tr
(
βδ(σ

∆t,+
α,δ,h)

)] 1
2

.

(7.65)

Combining (7.64) and (7.65) yields, on noting a scalar version of (6.7a) over Db
T , (7.50d), (1.8)

and (3.3) that

T1 ≤ C



∫

Db
T

πh



[
tr
(
βδ(σ

∆t,+
α,δ,h)

)
+ 1
] [

βδ

(
1−

̺∆t,+
α,δ,h

b

)]2
 dxdt




1
2

(7.66)
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≤ C

(
1 +

∫

DT

πh

[
‖σ∆t,+

α,δ,h‖4
]
dx dt

) 1
8



∫

Db
T

πh

[
βδ

(
1−

̺∆t,+
α,δ,h

b

)] 8
3

dxdt




3
8

.

It follows from (6.51), (7.11), for d = 2, and (7.50b) that

∫

DT

πh

[
‖σ∆t,+

α,δ,h‖4
]
dx dt ≤ C ‖σ∆t,+

α,δ,h‖4L4(DT ) ≤ C

∫ T

0

‖σ∆t,+
α,δ,h‖2L2(D) ‖σ∆t,+

α,δ,h‖2H1(D) dt ≤ C.

(7.67)

Similarly to (6.51), it follows from (6.4) with Kk replaced by (Kk×(tn−1, tn))∩Db
T , k = 1, . . . , NK

and n = 1, . . . , NT , that

∫

Db
T

πh

[
βδ

(
1−

̺∆t,+
α,δ,h

b

)] 8
3

dx dt ≤ C

∥∥∥∥∥πh

[
βδ

(
1−

̺∆t,+
α,δ,h

b

)]∥∥∥∥∥

8
3

L
8
3 (Db

T
)

≤ C ‖z‖
8
3

L
8
3 (Db

T )
,(7.68)

where z := πh

[
βδ

(
1− ̺

∆t,+
α,δ,h

b

)]
−
(
1− ̺α

b

)
. Here we have noted that ̺α = tr(σα) = b a.e. in Db

T .

Combining (7.66)–(7.68) yields, on noting (7.11), for d = 2, that

T1 ≤ C ‖z‖
L

8
3 (DT )

≤ C

(∫ T

0

‖z‖2L2(D) ‖z‖
2
3

H1(D) dt

) 3
8

≤ C ‖z‖
3
4

L3(0,T ;L2(D)) ‖z‖
1
4

L2(0,T ;H1(D))

(7.69)

≤ C ‖z‖
1
2

L2(0,T ;L2(D)) ‖z‖
1
4

L∞(0,T ;L2(D)) ‖z‖
1
4

L2(0,T ;H1(D)).

It follows from (7.69), (7.51c), (6.26), (3.3), (6.8), (7.50c) and (7.54e) that T1 = 0. In addition, it
follows immediately from (7.53e) that T2 = 0. Hence, we conclude from (7.63) that |Db

T | = 0, and
so ρα = tr(σα) < b a.e. in DT ; that is, the second desired result in (7.59).

We now establish the other result in (7.59) that σα is symmetric positive definite a.e. in DT ,
which improves on (7.51b). This result requires the further assumption that h = o(δ), as δ → 0+.
Assume that σα is not symmetric positive definite a.e. in D0

T ⊂ DT . Let v ∈ L∞(0, T ; [L∞(D)]2)
be such that σα v = 0 with ‖v‖ = 1 a.e. in D0

T and v = 0 a.e. in DT \ D0
T . It then follows from

(3.2) and (3.6) that

|D0
T | =

∫

DT

‖v‖ dx dt =

∫

DT

∥∥∥πh

[
G′

δ(σ
∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]
v

∥∥∥ dxdt(7.70)

≤
∫

DT

∥∥∥πh

[
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]
v

∥∥∥ dxdt

+

∫

DT

∥∥∥∥∥πh

[
G′

δ

(
1−

̺∆t,+
α,δ,h

b

)
βδ(σ

∆t,+
α,δ,h)

]
v

∥∥∥∥∥ dx dt =: T3 + T4.

A simple variation of (6.7a), (1.3b), (1.4a,b) and (7.50d) yield that

T3 ≤
∫

DT

(
πh

[∥∥∥Aδ(σ
∆t,+
α,δ,h, ̺

∆t,+
α,δ,h) [βδ(σ

∆t,+
α,δ,h)]

1
2

∥∥∥
2
]) 1

2 (
πh

[
βδ(σ

∆t,+
α,δ,h)

]
:: (v vT )

) 1
2

dx dt(7.71)

≤ C

(∫

DT

πh

[
βδ(σ

∆t,+
α,δ,h)

]
:: (v vT ) dx dt

) 1
2

.

Then (7.53e) and the definition of v yield that, as δ, h, ∆t → 0+,
∫

DT

πh

[
βδ(σ

∆t,+
α,δ,h)

]
:: (v vT ) dx dt →

∫

DT

σα :: (v vT ) dx dt = 0,(7.72)
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so we have that T3 = 0. Similarly to (7.71), on setting χ∆t,+
δ,h = G′

δ

(
1− ̺

∆t,+
α,δ,h

b

)
πh

[
βδ(σ

∆t,+
α,δ,h)

]
,

we have from (6.7a) that

T4 ≤
(∫

DT

πh

[∥∥∥[χ∆t,+
δ,h ]

1
2

∥∥∥
2
]
dxdt

) 1
2
(∫

DT

πh

[
χ

∆t,+
δ,h

]
:: (v vT ) dx dt

) 1
2

(7.73)

≤ C

(∫

DT

πh

[
χ

∆t,+
δ,h

]
:: (v vT ) dx dt

) 1
2

,

where we have noted from (1.3b), (1.4b), (1.8), (6.51), (3.6) and (7.50i) that
∫

DT

πh

[∥∥∥[χ∆t,+
δ,h ]

1
2

∥∥∥
2
]
dx dt ≤ C

∥∥∥πh

[ ∥∥∥χ∆t,+
δ,h

∥∥∥
]∥∥∥

L1(DT )
(7.74)

≤ C
∥∥∥πh

[
χ

∆t,+
δ,h

]∥∥∥
L1(DT )

≤ C
∥∥∥πh

[
χ

∆t,+
δ,h

]∥∥∥
L

8
5 (DT )

≤ C + C
∥∥∥πh

[
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]∥∥∥
L

8
5 (DT )

≤ C.

We will now show, on possibly extracting a further subsequence of {(σ∆t
α,δ,h,

̺∆t
α,δ,h)}δ>0,h>0,∆t>0, that

πh

[
G′

δ

(
1−

̺∆t,+
α,δ,h

b

)
βδ(σ

∆t,+
α,δ,h)

]
→
(
1− ρα

b

)−1

σα weakly in L
8
5 (0, T ; [L

8
5 (D)]2×2).(7.75)

as δ, h, ∆t → 0+ with h = o(δ). It follows immediately from (7.74) and our definition of χ∆t,+
δ,h

that πh

[
χ

∆t,+
δ,h

]
converges weakly in L

8
5 (0, T ; [L

8
5 (D)]2×2) to some limit for a subsequence. We

just need to show it is the limit stated in (7.75). We have from (7.53e), (7.54d) and (3.1) that

χ
∆t,+
δ,h →

(
1− ρα

b

)−1
σα a.e. on DT , for a subsequence, as we have already established that ρα =

tr(σα) < b a.e. on DT . So it remains to establish that (I − πh)
[
χ

∆t,+
δ,h

]
converges to zero a.e. on

DT . As G
′
δ ∈ C0,1(R) is monotonic, it follows from (6.9b), (6.53), (6.4), (3.2) and (7.50b,c) that

∥∥∥(I − πh)
[
χ

∆t,+
δ,h

]∥∥∥
L1(DT )

≤
∥∥∥∥∥(I − πh)

[
πh

[
G′

δ

(
1−

̺∆t,+
α,δ,h

b

)]
πh

[
βδ(σ

∆t,+
α,δ,h)

]]∥∥∥∥∥
L1(DT )

(7.76)

+

∥∥∥∥∥(I − πh)

[
G′

δ

(
1−

̺∆t,+
α,δ,h

b

)]∥∥∥∥∥
L2(DT )

∥∥∥πh

[
βδ(σ

∆t,+
α,δ,h)

]∥∥∥
L2(DT )

≤ C h

∥∥∥∥∥∇πh

[
G′

δ

(
1−

̺∆t,+
α,δ,h

b

)]∥∥∥∥∥
L2(DT )

∥∥∥πh

[
βδ(σ

∆t,+
α,δ,h)

]∥∥∥
L2(DT )

≤ C δ−1 h.

Hence, we have for a subsequence that (I−πh)
[
χ

∆t,+
δ,h

]
converges to zero a.e. on DT as δ, h, ∆t →

0+ with h = o(δ). Therefore we have established (7.75).

Similarly to (7.72), we have that (7.73), (7.75) and our definitions of χ∆t,+
δ,h and v yield that

T4 = 0. Hence it follows from (7.70) with T3 = T4 = 0 that |D0
T | = 0, and so σα is positive definite

a.e. in DT ; that is, the first desired result in (7.59). �

Lemma 7.4. Under all of the assumptions of Lemma 7.3, a further subsequence of the subsequence
of {(σ∆t

α,δ,h, ̺
∆t
α,δ,h)}δ>0,h>0,∆t>0 of Lemma 7.3 and the limiting function σα, satisfying (7.51b) and

(7.59), are such that, as δ, h, ∆t → 0+, with h = o(δ),

πh

[
κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]
→ σα strongly in L2(0, T ; [L2(D)]2×2),(7.77a)
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πh

[
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]
→ A(σα)σα weakly in L

8
5 (0, T ; [L

8
5 (D)]2×2),(7.77b)

πh

[
κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]
→ A(σα)σα(7.77c)

weakly in L2(0, T ; [L2(D)]2×2).

Proof. It follows from (6.7a), (1.3b), (1.4b), (5.2), (1.8), (3.3), (6.8) and (7.50b) that
∥∥∥πh

[
κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]
− πh

[
βδ(σ

∆t,+
α,δ,h)

]∥∥∥
2

L2(DT )
(7.78)

≤
∫

DT

πh

[
(κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)− 1)2 tr(βδ(σ

∆t,+
α,δ,h))

]
πh

[
tr(βδ(σ

∆t,+
α,δ,h))

]
dxdt

≤ C

∫

DT

πh

[ ∣∣∣βb
δ(̺

∆t,+
α,δ,h)− tr(βδ(σ

∆t,+
α,δ,h)

∣∣∣
] (

πh

[
‖σ∆t,+

α,δ,h‖
]
+ δ
)
dxdt

≤ C
∥∥∥πh

[
βb
δ(̺

∆t,+
α,δ,h)− tr(βδ(σ

∆t,+
α,δ,h)

]∥∥∥
L2(DT )

.

The desired result (7.77a) then follows immediately from (7.78), (7.53e) and (7.58).
The desired result (7.77b) follows immediately from (3.6), (3.2), (7.75) and (1.2) as ρα = tr(σα).
Similarly to (7.78), it follows from (6.7a), (1.3b), (1.4b), (5.2), (6.8), and (7.50d) that

∥∥∥πh

[
κδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]
− πh

[
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]∥∥∥
L1(DT )

(7.79)

≤ C

∫

DT

(
πh

[ ∣∣∣βb
δ(̺

∆t,+
α,δ,h)− tr(βδ(σ

∆t,+
α,δ,h)

∣∣∣
]) 1

2

×
(
πh

[∥∥∥∥Aδ(σ
∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)

[
βδ(σ

∆t,+
α,δ,h)

] 1
2

∥∥∥∥
2
]) 1

2

dxdt

≤ C
∥∥∥πh

[ ∣∣∣βb
δ(̺

∆t,+
α,δ,h)− tr(βδ(σ

∆t,+
α,δ,h)

∣∣∣
]∥∥∥

1
2

L1(DT )
≤ C

∥∥∥πh

[
βb
δ(̺

∆t,+
α,δ,h)− tr(βδ(σ

∆t,+
α,δ,h)

]∥∥∥
1
2

L2(DT )
.

It follows immediately from (7.79), (7.53e), (7.58) and (7.50h) that the weak limits in (7.77b,c)
are the same. Hence, the desired result (7.77c). �

Theorem 7.3. Under all of the assumptions of Lemma 7.3, the limiting functions (uα,σα) sat-
isfying (7.51a,b) and (7.59) solve the following problem:

(Pα) Find uα ∈ L∞(0, T ; H)∩L2(0, T ; V)∩W 1, 4
ϑ (0, T ; V′) and σα ∈ L∞(0, T ; [L2(D)]2×2

S,>0,b)∩
L2(0, T ; [H1(D)]2×2

S )∩H1(0, T ; ([H1(D)]2×2
S )′), with A(σα)σα ∈ L2(0, T ; ([L2(D)]2×2

S )), such that
uα(0) = u

0, σα(0) = σ
0 and

Re

∫ T

0

〈
∂uα

∂t
,v

〉

V

dt+

∫

DT

[(1 − ε)∇uα : ∇v +Re [(uα ·∇)uα] · v] dxdt(7.80a)

=

∫ T

0

〈f ,v〉H1
0 (D) dt−

ε

Wi

∫

DT

A(σα)σα : ∇v dx dt ∀v ∈ L
4

4−ϑ (0, T ; V),

∫ T

0

〈
∂σα

∂t
,φ

〉

H1(D)

dt+

∫

DT

[(uα ·∇)σα : φ+ α∇σα :: ∇φ] dxdt(7.80b)

=

∫

DT

[
2 (∇uα)σα − 1

Wi
A(σα)σα

]
: φ dx dt ∀φ ∈ L2(0, T ; [H1(D)]2×2

S ),

where ϑ ∈ (2, 4).

Proof. The function spaces and the initial conditions for (uα,σα) follow immediately from
(7.51a,b), (7.59) and (7.77c). It remains to prove that (uα,σα) satisfy (7.80a,b). It follows from
(6.3), (7.52b–d), (7.77c), (4.11b), (7.9) and (4.14) that we may pass to the limit, δ, h, ∆t → 0+,
with h = o(δ), in (7.43a) to obtain that (uα,σα) satisfy (7.80a).
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It follows from (7.53b–f), (7.52b,d), (7.77a,b), (7.7), (6.9a,b), (1.5a) and as uα ∈ L2(0, T ; V)
that we may pass to the limit δ, h, ∆t → 0+, with h = o(δ), in (7.43b) with χ = πhφ to obtain
(7.80b) for any φ ∈ C∞

0 (0, T ; [C∞(D)]2×2
S ). For example, similarly to (7.62), in order to pass to

the limit on the first term in (7.43b), we note that

∫

DT

πh

[(
∂σ∆t

α,δ,h

∂t
+

Aδ(σ
∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

Wi

)
: πhφ

]
dx dt

(7.81)

=

∫

DT


∂σ∆t

α,δ,h

∂t
+

πh

[
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]

Wi


 : πhφ dx dt

+

∫

DT

(I − πh)


σ∆t

α,δ,h : πh

[
∂φ

∂t

]
−

πh

[
Aδ(σ

∆t,+
α,δ,h, ̺

∆t,+
α,δ,h)βδ(σ

∆t,+
α,δ,h)

]

Wi
: πhφ


dx dt.

The desired result (7.80b) then follows from noting that C∞
0 (0, T ; [C∞(D)]2×2

S ) is dense in L2(0, T ;

[H1(D)]2×2
S ).

Of course passing to the limit δ, h, ∆t → 0+, with h = o(δ), in (7.43c), using in addition
(7.54b–d,f), yields the weak formulation for tr(σα) consistent with (7.80b). �

Remark 7.2. Choosing 1
2 (φ+φT ) as a test function in (7.80b) for any φ ∈ L2(0, T ; [H1(D)]2×2)

yields, on noting the symmetry of σα, (7.80b) with the term 2 (∇uα)σα replaced by (∇uα)σα +
σα(∇uα)

T , which is consistent with (5.1c).
Finally, it follows from (7.50a,f,h), (7.52a–c) and (7.77c) that

sup
t∈(0,T )

‖uα‖2L2(D) +

∫ T

0

[
‖∇uα‖2L2(D) +

∥∥∥∥S
∂uα

∂t

∥∥∥∥
4
ϑ

H1(D)

+ ‖A(σα)σα‖2L2(D)

]
dt ≤ C,(7.82)

where ϑ ∈ (2, 4) and C is independent of the stress diffusion coefficient α. Of course, in addition,
it follows from (7.59) and (1.8) that ‖σα‖L∞(DT ) < b.
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