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The elastic moduli of a transversely isotropic model granular material, made of slightly polydis-
perse elastic-frictional spherical beads, in equilibrium along a one dimensional (oedometric) com-
pression path, as described in the companion paper [1], are investigated by numerical simulations.
The relations of the five independent moduli to stresses, density, coordination number, fabric and
force anisotropies are studied for different internal material states along the oedometric loading path.
It is observed that elastic moduli, like in isotropic packs, are primarily determined by the coordina-
tion number, with anomalously small shear moduli in poorly coordinated systems, whatever their
density. Such states also exhibit faster increasing moduli in compression, and larger off-diagonal
moduli and Poisson ratios. Anisotropy affects the longitudinal moduli, C11 in the axial direction,
and C22 in the transverse directions, and the shear modulus in the transverse plane, C44, more than
the shear modulus in a plane containing the axial direction, C55. The results are compared to avail-
able experiments on anisotropic bead packs, revealing, despite likely differences in internal states,
a very similar range of stiffness level (linked to coordination), and semi-quantitative agreement as
regards the influence of anisotropy. Effective Medium Theory (the Voigt approach) provides quite
inaccurate predictions of the moduli. It also significantly underestimates ratios C11/C22 (varying
between 1 and 2.2) and C55/C44 (varying from 1 to 1.6), which characterize elastic anisotropy, ex-
cept in relatively weakly anisotropic states. The bulk modulus for isotropic compression and the
compliance corresponding to stress increments proportional to the previous stress values are the
only elastic coefficients to be correctly estimated by available predictive relations. We discuss the
influences of fabric and force anisotropies onto elastic anisotropy, showing in particular that the for-
mer dominates in sample series that are directly assembled in anisotropic configurations and keep a
roughly constant lateral to axial stress ratio under compression.

I. INTRODUCTION

This is the second paper in a set of two, published
jointly, dealing with the macroscopic mechanical proper-
ties of a model granular material in anisotropic structural
and stress states, as investigated by discrete numerical
simulation. Specifically, the material is oedometrically
compressed, i.e., compressed in one direction, with no
strain in the orthogonal plane. Such a loading path, in
which principal stress directions are fixed and strains re-
main uniaxial, is one of the simplest ways to obtain ho-
mogeneous anisotropic granular materials, and is often
a suitable local description for layerwise assembling pro-
cesses under gravity.

The first paper [1], hereafter referred to as “Paper I”,
studies stress-strain relations and describes how state
variables evolve in oedometric compression. Paper I
clearly shows that the strain-stress relation in oedometric
compression or compression cycles is not elastic, but that
elastic moduli express stress-strain response in very small
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probes superimposed on previously well-equilibrated in-
termediate states, provided a very small creep phase
during configuration stabilization has suppressed friction
mobilization. The present paper, which might be read
independently, thus does not investigate the quasi-elastic
response domain any further. Rather, its objective is to
study how elastic moduli are related to microstructural
features of the same anisotropic granular packings, and
could be measured to infer useful information on such
variables as coordination number and fabric. The elastic
properties of anisotropic granular materials have quite of-
ten been studied experimentally, with sands [2–10], less
often with glass beads [7, 11]. They were also recently
addressed in simulations [12–14]. We exploit here the va-
riety of initial material states subject to oedometric com-
pression histories, as introduced and studied in Paper I,
to compare the tensor of elastic moduli to this literature,
and to test modeling schemes.

The paper is organized as follows: first we recall the
basic material properties, the method by which elastic
properties are computed for each equilibrated configura-
tion (Sec. II), and the material state variation along the
oedometric loading paths, explored in paper I, for the dif-
ferent initial packing arrangements (Sec. III). Then we
present the evolution of all 5 independent elastic moduli
in the transversely isotropic states along the compression
curves in Sec. IV, confront our observations to experi-
ments and previous numerical works (Sec.V), and corre-



2

late them to state variables in Sec. VI (which involves
testing the performance of simple predictive schemes),
before a final discussion (Sec. VII).

II. MODEL MATERIAL AND NUMERICAL
METHODS

A. Particles and contact laws

The model material, as defined in Paper I, is composed
of elastic-frictional spherical beads, with diameter dis-
tribution, uniform by volume (whence 〈D〉 = 2D1D2

D1+D2
),

ranging from D1 to D2 = 1.2 × D1. Contact elas-
ticity is modeled with a suitably simplified version of
the Hertz-Mindlin laws [15], such that, with notation

Ẽ = E/(1−ν2), combining the Young modulus E and the
Poisson ratio ν of the solid material the beads are made
of, the normal contact force transmitted in the contact
between beads i and j of respective diameters Di and Dj

relates to the contact deflection hij as

FNij =
Ẽ
√
dij

3
h

3/2
ij (1)

with dij =
2DiDj

Di +Dj
. We use the elastic properties of

glass, E = 70 GPa and ν = 0.3 in our simulations (but
results, in non-dimensional form, apply to arbitrary ma-
terials). Eq. 1 defines a force- or deflection-dependent
normal stiffness as

KN
ij =

Ẽ
√
dij

2
h

1/2
ij =

31/3

2
Ẽ2/3d

1/3
ij

(
FNij
)1/3

. (2)

The tangential stiffness constant KT
ij , relating tangential

elastic force FTij to relative tangential displacement δuTij ,

is proportional [15] to KN :

dFTij = KT
ij(hij)d

(
δuTij

)
, with KT

ij =
2− 2ν

2− ν K
N
ij . (3)

We refer to [15] for some necessary rescaling of KT in
contacts being unloaded [16], and for implementations of
contact laws abiding by the objectivity requirement [17].

The Coulomb condition, applied with friction coeffi-
cient µ = 0.3, sets the maximum magnitude of the tan-
gential force to µFN .

B. Stiffness matrices and elastic moduli

Elastic moduli express the relations between small
stress increments ∆σ and small strains ε, assuming the
contact network, in equilibrium, behaves like a network
of elastic springs, with stiffnesses KN and KT varying
from contact to contact according to relations 2 and 3.

As we deal with systems enclosed in periodic cuboidal
cells, displacements considered in elastic problems (im-
plicitly assumed small) are conveniently parametrized,
for all grains i with position ri in the simulation cell, as

ui = ũi − ε · ri, (4)

where ũi’s are fluctuating, periodic displacements, while
the second, affine term represents the effect of global
strain ε, a symmetric tensor (the minus sign results from
our convention of positive compressive strains). Sup-
plementing the displacements of the N particle centers,

(ui)(1≤i≤N) with their (small) rotations ~θi, this results in
Nf = 6N + 6 degrees of freedom, which we gather in a

single displacement vector U = (Ũ, ε), the coordinates of

Ũ comprising all those of (ũi, ~θi)1≤i≤N . The conjugate
load, denoted as Fext, contains all components of exter-
nal forces Fext and torques Γext applied to the grains as
well as the 6 independent components of external stress
σ, such that

σαβ =
1

Ω

∑
i<j

F
(α)
ij r

(β)
ij . (5)

In (5), r
(β)
ij denotes the coordinate β of the vector joining

the center of grain i to the center of the nearest image,
by the group of translations associated to the periodic
boundary conditions, of its contacting neighbor j, and Ω
is the cell volume. On probing elastic properties, small
stress increments ∆σ and contact force increments ∆Fij
are considered, related by (5).

The small displacements associated with a load incre-
ment ∆Fext should satisfy (to first order in U)

∆Fext = K ·U. (6)

(6) is the system ofNf linear equations one has to solve to
find the Nf unknowns contained in vector U, expressing
the linear elastic response about a prestressed equilib-
rium configuration. It involves the Nf ×Nf symmetric,
positive definite stiffness matrix K. More details on the
structure of matrix K, as discussed in Ref. [18], are pro-
vided in Appendix A.

In the present case we determine the 5 independent
moduli corresponding to the transversely isotropic gran-
ular systems under oedometric compression along axis
1. Those are defined by the following macroscopic rela-
tion between stress increments and small strains about
an equilibrium prestressed state:

∆σ11

∆σ22

∆σ33

∆σ23

∆σ31

∆σ12

 =


C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C55 0
0 0 0 0 0 2C55

 ·

ε11

ε22

ε33

ε23

ε31

ε12


(7)

Eq. 7 introduces the so-called Voigt notation, in which
∆σ and ε appear as 6-dimensional vectors, and the elastic
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moduli are gathered in a second-rank tensor, denoted
as C, writing C11 for C1111, etc... Symmetries about
all three planes of coordinates and isotropy within the
transverse plane (2,3) require some moduli to coincide,
as already written in (7) (e.g., C66 = C55), others to
vanish (e.g., C14 = 0), and the following relation to hold:

C22 − C23 = 2C44. (8)

(8) expresses the identity of shear response along all di-
rections within the transverse plane.

To obtain C from the numerical data, one may solve
linear system (6) with appropriate values for the right-
hand side load vector, e.g., setting all its coordinates to
zero except one component of ∆σ. This yields one line of
the inverse of tensor C. One may also directly determine
the elements of C on imposing appropriate values of ε,
rather than imposing ∆σ. To do so, one exploits the
block structure of matrix K, writing

K =

[
K̃ TL
L k

]
, (9)

with a 6N×6N matrix K̃ associated to particle displace-
ments and rotations and a 6×6 matrix k associated with
global degrees of freedom, while the nondiagonal block,
L, of dimension 6 × 6N , couples stresses to grain dis-
placements and rotations. Stress increments are related
to imposed strains as

∆σ = L · Ũ + k · ε,

with Ũ satisfying

K̃ · Ũ = − TL · ε,

so that the measured elastic moduli are given by

C = k− L · K̃−1 · TL. (10)

Both methods yield the same results within numerical
accuracy.

It should be recalled that the very existence of an elas-
tic response involving symmetric matrix K requires sev-
eral approximation steps [18]. The present paper deals
with elastic moduli as identified through the stiffness ma-
trix approach. In paper I, it was explicitly checked that
this expresses the material response to small stress incre-
ments about well equilibrated configurations with very
good accuracy. A dynamical simulation with all ingre-
dients of intergranular interactions produces, for small
stress increments and small strains, the same results as
the elastic stiffness matrix approach.

III. EQUILIBRATED CONFIGURATIONS
ALONG OEDOMETRIC LOADING PATH

We recall here the characteristics of the systems sim-
ulated in paper I, which were subjected to oedometric

compression along direction 1: axial strain ε11, simply
denoted as ε1, varies with no lateral strain, ε22 = ε33 = 0,
and no shear. Equilibrated configurations are stored for
different levels of axial stress σ11, simply denoted as σ1

(while lateral stress σ22 = σ33 is denoted as σ2). Equi-
librated packs are labelled according to the initial state
in which they were assembled, and properties are aver-
aged over 3 statistically equivalent samples of 4000 grains
each. Values of σ1 specified in kPa correspond to glass
beads with Ẽ = 76.9 GPa. Using, as a control parameter,
stiffness level

κ =

(
Ẽ

σ1

)2/3

,

such that typical contact deflections are of order 1/κ rel-
ative to the grain diameter [15], all results are valid for
grains with arbitrary elastic properties.

A. Initial states

Initial states, prepared on gently applying a low stress
σ1 = 10 kPa (κ ' 39000) to a loose “granular gas” con-
figuration until it compresses into a stable equilibrated
prestressed solid pack, differ by their solid fraction Φ, co-
ordination number z, and anisotropy. They are labelled
with three letters: D or L for dense or loose, followed by
H or L for high or low coordination numbers, and then
by i or o for isotropic or oedometric compression in the
assembling stage (e.g. systems of type DLo are prepared
in a dense initial state with a low coordination number
by an oedometric packing procedure). Solid fraction Φ
in dense initial states (D) is close to the maximum value
achieved in random close packing, from 0.634 for DLo
to 0.639 for DHo (to prepare such dense packs one sup-
presses the effects of friction at some stage [15]). Φ is
reduced to values of 0.584 (LLo) to 0.589 (LLi) in loose
states. Coordination z is rather low in all loose systems,
about 4.1 or 4.2 (meaning that we cannot prepare LHi
or LHo states). Such loose configurations contain a sig-
nificant proportion x0 of rattlers, i.e., grains which do
not carry any contact force, typically 10%. Thus the
coordination number, if evaluated on the force carrying
contact network, involving only N(1−x0) grains, reaches
somewhat larger values z∗ = z/(1−x0) ' 4.6. Dense sys-
tems exhibit as many rattlers and as few contacts as loose
ones, if the ultimate stages of their assembling history in-
volves friction: values of z, z∗, x0 are similar in DLo and
DLi states as in LLo, LLi ones. If, on the other hand,
the effects of friction are suppressed all the way to static
equilibrium, dense systems have very few rattlers (1-2
%) and very large coordination numbers (z∗ ' 6). DHo,
DLo, LLo states differ from their isotropic counterparts
DHi, DLi, LLi by the ratio of lateral to axial stresses,
denoted as K0. Oedometrically assembled samples have
K0 = 0.94 for DHo, 0.51 for DLo and 0.72 for LLo, while
isotropic preparations naturally enforce K0 = 1.
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B. Evolution under oedometric compression cycle

The response of all six initial states to a compres-
sion cycle in which σ1 gradually increases to 31.2 MPa
(κ = 181) and then slowly decreases back to its initial
value 10 kPa was extensively studied in paper I. For the
relevant variables Φ, z, and K0, it can be summed up as
follows. Φ increases by a notable amount, especially for
large σ1 in the MPa range, reaching values larger than
the initial ones by 0.01 to 0.02 (with a larger difference in
loose states) under the highest axial stress. Remarkably,
upon reducing σ1, Φ almost reverts to its initial value,
meaning that the compression is to a large extent re-
versible. A small residual density increase is nevertheless
observed, more notably in loose systems. Coordination
number z increases to values above 5 (5.5 for DLo-DLi
under high σ1) in initially poorly coordinated systems
(while x0 decreases to ' 1%); it reverts to a low value
as σ1 decreases to its initial value. The behavior of DHi
and DHo systems is more surprising: z is not monotonic
in compression (it first decreases slightly, then increases
again to reach about 6.2), and decreases to a low value
along the decompression branch of the cycle (a behavior
previously reported in isotropic compression [19]).

As to stress ratio K0, it stays roughly constant, under
growing σ1, in states LLo and DLo, which are the most
anisotropic. It steadily decreases – the system gaining
anisotropy– for initially isotropic systems DLi, DHi, LLi
as well as in DHo (which is nearly isotropic) down to the
range 0.6–0.8 under the highest σ1 values. Upon grad-
ually reducing σ1 to its lowest value 10 kPa, K0 grows
in all systems, moderately (up to 0.7–0.9) for LLo and
DLo, and to a much larger extent for all three “XYi”
systems and for DHo, in which case the major principal
stress becomes σ22 = σ33, as K0 exceeds 1 (reaching 1.6
for DHi).

C. Fabric and force anisotropy

As in many previous numerical studies [12], the analy-
sis of packing anisotropies in paper I distinguishes fabric
from force anisotropies, which pertain to two different
angular distributions. Fabric anisotropy refers to the an-
gular distribution p(n) of the unit vectors n normal to
the contacts, which solely depends on |n1|, or on the an-
gle between the normal direction and the compression
axis. The most relevant fabric anisotropy parameter is
defined as

c̃2 = 〈n2
1〉 −

1

3
(11)

Force anisotropy exists because the average force car-
ried by the contacts correlates to their orientation, it
characterizes the angular dependence of F(n), defined as
the average normal force amplitude for contacts with nor-
mal direction n, normalized by the global average 〈FN 〉.
To leading order, the anisotropy of F(n) is characterized

by parameter f̃2:

f̃2 =
1

4π

∫
Σ

F(|n1|)n2
1d

2n− 1

3
. (12)

Like c̃2, f̃2 vanishes in isotropic systems.
As a very good approximation in all systems and

all stages of oedometric compression cycles, stress ratio
K0 is observed in paper I to relate to fabric and force
anisotropy parameters as

K0 =
σ22

σ11
' 2− 3(c̃2 + f̃2)

2 + 3(c̃2 + f̃2)
. (13)

In both states with significant initial anisotropies, LLo
and DLo, c̃2 and f̃2 first contribute about equally (with

c̃2 ' f̃2 ' 0.04 in LLo and c̃2 ' f̃2 ' 0.08 in DLo),
and then slowly change under compression. In initially
isotropic (DHi, DLi, LLi) systems, both parameters in-

crease, quite fast in the case of f̃2. On reducing σ1 from
its maximum back to its initial value, c̃2 and f̃2 decrease
to low values in LLo and DLo, and change sign in the
four other states.

D. Implications for elastic moduli

Elastic moduli, expressing the macroscopic stiffness of
a spring network, should tend to vary proportionally to
the density of contacts and to the average contact stiff-
ness. The density of contacts is conveniently written as

Nc
Ω

=
3zΦ

π〈D3〉 . (14)

The average stiffness, as in the isotropic, monodisperse
case [18], can be related to the average normal contact
force 〈FN 〉. Assuming no correlation between forces and
grain diameters, 〈FN 〉 relates to the average pressure P =
trσ/3 as

〈FN 〉 =
πP 〈D3〉
zΦ〈D〉 . (15)

From (15) and (2), the average normal stiffness is given as
(still overlooking correlations between forces and radii)

〈KN 〉 =
(3π)1/3Z(1/3)

2(zΦ)1/3

〈D3〉1/3〈d̃1/3〉
〈D〉1/3 Ẽ2/3P 1/3, (16)

where we introduced the notation d̃ for dij as outlined in
(1) and definition

Z(1/3) =
〈F 1/3
N 〉

〈FN 〉1/3
. (17)

The small level of polydispersity implies that all charac-
teristic diameters are close to the average 〈D〉 = 2D1D2

D1+D2
:

thus 〈D3〉1/3 ' 1.003×〈D〉, while 〈d̃1/3〉 ' 1.0006〈D〉1/3.



5

The ratio Z(1/3), which is a characteristic of the force
distribution, varies little between samples and along the
loading paths, remaining between 0.92 and 0.945. We
directly checked that prediction (16) is correct to within
1%.

A naive prediction is that moduli should be propor-
tional to (zΦ)2/3 [11], obtained on multiplying contact
density, or zΦ, by average contact stiffness as written in
(16). A power law stress dependence is also expected,

as P 1/3 = σ
1/3
1 (1 + 2K0)1/3. Since z varies more (from

nearly 4 to about 6.2 between different states and ac-
cording to the stress level) than Φ (here, 0.58 ≤ Φ ≤
0.65), one should observe, like in the isotropic systems
of Refs. [18, 20], that macroscopic moduli classify the
different granular packings by their coordination number
rather than their density.

Anisotropy should influence the tensor of elastic mod-
uli both through contact orientations – the geometry of
the elastic network is not isotropic, with more bonds
being oriented nearly parallel to axial direction 1 than
near the transverse plane – and through contact stiff-
nesses – the bonds oriented near the axial direction bear
larger forces and, by Eq. 2, are consequently stiffer. To
a large extent, these effects are respectively encoded in
coefficients c̃2 and f̃2. Unlike the stress ratio K0, which
is directly related to fabric and angular force distribu-
tion, whence relation 13, elastic moduli are not expressed
by such explicit formulae, and we thus have to corre-
late them to anisotropy parameters. We also test, in
Sec. VI A, the performance of approximate expressions
predicting the moduli, which could be used to directly
relate them to anisotropy parameters, if sufficiently ac-
curate.

Our study covers a rather wide variety of equilibrium
states, in which the coordination number varies from 4 to
6, stress ratioK0 from 0.5 to 1.6 and c̃2 reaches 0.08. This
should ease comparisons with laboratory observations, as
experimentally probed material states are likely to fall
within the range of numerically investigated ones. This
should also provide more stringent tests to theoretical
attempts at predicting some of the elastic properties of
spherical bead packs [13, 14].

IV. ELASTIC MODULI

A. Representativity and symmetry.

For each of the six system types and each value of
axial stress σ1, results are averaged over the 3 statistically
similar samples of 4000 spherical grains obtained with
the preparation and oedometric compression procedures
described in paper I. Sample-to-sample differences do not
exceed 5% for poorly coordinated systems, in which the
fluctuations tend to be the largest, and decrease to 1%
for large coordination numbers.

The full 6× 6 matrix C as defined by (7) is obtained,
line by line, using relation 10 and imposing independently

the value of each one of the six coordinates of ε, while
setting the others to zero. The 6 × 6 matrix is exactly
symmetric (within numerical precision).

As to the material symmetries, i.e., transverse isotropy,
imposing the matrix to depend on 5 independent coeffi-
cients as written in Eqs. 7–8 (with, e.g., C14 = 0, or
C33 = C22), it is satisfied to the extent that the sample
set is statistically representative. In our case, we observe
that relative differences between coefficients that should
be equal (such as C55 and C66) do not exceed 2–3% in the
worst cases (those, again, of low coordination systems).

To improve the accuracy and representativity of the
results, averages are taken over all equivalent moduli or
moduli combinations: thus C66, C13 and (C22 − C23)/2
are respectively regarded as independent measurements
of C55, C12, and C44.

B. Stress dependence

1. Longitudinal moduli

The dependence of the longitudinal moduli C11 and
C22 on the axial stress σ1 in oedometric loading (leaving
aside, for now, the moduli observed in the decreasing
axial stress branch of the cycle) are shown in Fig. 1 for
all 6 studied systems, on doubly logarithmic plots. As

(a)

101 102 103 104

σ1 (kPa)

10−2

10−1

100

101

C
1
1

(G
Pa

)

LLo
LLi
DHo
DHi
DLo
DLi

(b)

101 102 103 104

σ1 (kPa)

10−1

100

C
2
2

(G
Pa

)

LLo
LLi
DHo
DHi
DLo
DLi

FIG. 1. (Color online) Longitudinal moduli: (a) C11 and (b)
C22 versus σ1 in systems DHo, DLo, LLo, DHi, DLi, and LLi.
Dashed lines in plot (a) have slopes 1/3 and 0.42.
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observed previously in isotropic systems [18], moduli are
systematically larger in better coordinated systems, and
increase with confining stress σ1, roughly as a power law,
with an exponent slightly larger than the value 1/3 that
results from a naive averaging of the Hertz law. A fit of
the C11 data by a power law,

C11 ∝ σα1
1 (18)

yield exponents α1, in range 0.4-0.46, depending on the
system and, actually, on the stress range over which the
power law is identified (there is no reason to expect an ex-
act power law over the wide σ1 range investigated here).
The observation of an exponent α > 1/3 is, in part, due
to the increase of coordination number under compres-
sion, as new contacts are created between approaching
grains. Thus, Fig. 1 shows that the moduli increase faster
in systems DLo and DLi, in which the large density and
the low initial coordination number entail the most sig-
nificant increase in z, from nearly 4 to about 5.5 in the
compression to the largest σ1 value. In Fig. 1a the slope,
on the logarithmic plot of C11 versus σ1 in DHi and DHo
systems, appears to decrease in some interval (compris-
ing the first 4 or 5 data points), which is to be related
to the slight decrease of the coordination number in that
range (see Paper I). Plots of C22 (Fig. 1b) are farther
from straight lines on the logarithmic scale, but a plot
versus σ2 = K0σ1 (Fig. 2) shows that C22 is slightly bet-
ter represented as a power law of lateral stress σ2:

C22 ∝ σα2
2 (19)

This scaling of longitudinal moduli (or of longitudinal

101 102 103 104

σ2 (kPa)

10−1

100

C
2
2

(G
P

a
)

LLi

DHi

DLi

FIG. 2. (Color online) C22, in DHi, DLi and LLi systems
(same data as in Fig. 1b) versus σ2. Data corresponding to
unloading of DHi systems (as shown by arrows) are added in
this graph. Straight line slopes are 1/3 and 0.4.

elastic wave velocities) along principal stress directions
with the stress component in the same direction is re-
ported in experimental studies on sands and spherical
bead packs [6, 11].

The effect of the decrease of coordination number upon
unloading from the highest σ1 value in sample series DHi

is also shown in Fig. 2: initially high (' 6) coordina-
tion numbers gradually decrease to low values (hardly
exceeding 4, or 4.5 if rattlers are excluded) after one
compression cycle. Consequently, elastic moduli, along
the unloading branch of the cycle, are close to those of
poorly coordinated states.

2. Shear moduli

Shear moduli, as shown in Fig. 3, exhibit similar stress
dependences, approximately varying as power laws of σ1,

(a)

101 102 103 104

σ1 (kPa)
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C
5
5

(G
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)

KuJa

LLo
LLi
DHo
DHi
DLo
DLi

(b)

101 102 103 104

σ2 (kPa)

10−1

100

C
4
4

(G
Pa

)

KuJa

LLo
LLi
DHo
DHi
DLo
DLi

FIG. 3. (Color online) Shear moduli: (a) C55 versus σ1 and
(b) C44 versus σ2. In both graphs upper and lower straight
lines have slopes 1/3 and 1/2. Comparison with experimental
data of Kuwano and Jardine [7] (shown as thick straight lines
marked “KuJa”) to be discussed in Sec. V.

with exponents somewhat larger than 1/3, approaching
1/2 in low coordination systems. According to the liter-
ature on sands [9], it could be more appropriate to ex-
press C44, the shear modulus in the transverse plane, as
a power law function of σ2, the isotropic stress in this
plane, while C55, associated to shear within planes con-
taining the axial direction, should scale as a power of√
σ1σ2. While our data, for which stress components do

not vary independently, do not enable accurate tests of
those predictions, a graph of shear modulus C44, using a
doubly logarithmic scale, does appear straighter if plot-
ted versus σ2, rather than versus σ1.
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3. Off-diagonal moduli

C12 and C23, coupling stresses in one direction to nor-
mal strains in orthogonal directions, vary with σ1 some-
what similarly to diagonal elements of the elastic tensor,
as shown in Fig. 4. However, it should be noted that

101 102 103 104

σ1 (kPa)

10−1

100

C
1
2

(G
Pa

)

LLo
LLi
DHo
DHi
DLo
DLi

FIG. 4. (Color online) Modulus C12 versus σ1. Dashed line
has slope 1/3.

those moduli, as opposed to diagonal terms of tensor C,
tend to be smaller in systems with large coordination
numbers, and that their growth with axial stress is slower

than power law σ
1/3
1 .

C. Anisotropy of elastic moduli

The data of Fig. 1 also reveal the effects of anisotropy
on the moduli: at low σ1, close to the initial states, C22

is smaller for DLo than for DLi, while C11 is larger. DLo
and DLi have very nearly the same density and coordi-
nation number. They differ by their fabric and stress
anisotropy, initially absent for DLi. Anisotropy makes
DLo-type samples stiffer in direction 1, hence a larger
C11 than in isotropic systems DLi, while the depleted
population of contacts oriented in the transverse direc-
tions, as well as their smaller stiffness entail smaller C22

values. Similar differences are visible between LLo and
LLi. Fig. 5 shows that the ratio of longitudinal moduli
in the axial and in transversal directions reaches values
larger than 2 in DLo states and about 1.4 in LLo ones,
while it increases from 1 in initially isotropic systems
as elastic anisotropy reflects the growing stress and mi-
crostructural anisotropies.

Anisotropy is also reflected by the shear moduli, which
are larger when the shear plane contains the major prin-
cipal stress direction 1. Thus ratio C55/C44 is larger in
more anisotropic systems, reaching nearly 1.6 in the DLo
sample series, and about 1.25 for LLo systems, as shown
in Fig. 6, with values in initially isotropic packings follow-
ing a similar trend as for the longitudinal moduli (Fig. 5).

Remarkably, some moduli are not sensitive to stress

(a)
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2
2

LLo
DHo
DLo

10−4 10−3
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(b)
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2
2

LLi
DHi
DLi
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FIG. 5. (Color online) C11/C22 versus σ1 or κ−1 in initially
anisotropic (a) or isotropic (b) sample series. Dashed lines de-
pict the prediction of the Voigt approximation to be discussed
in Sec. VI A.

and fabric anisotropy, such as shear modulus C55, shown
in Fig. 3, as well as modulus C12, plotted in Fig. 4 (but
C44 and C23 do exhibit anisotropy effects). The bulk
modulus, expressing the response of average stress P to
an isotropic strain, ε = δ1, as ∆P = 3Bδ, is given by

B =
C11 + 2C22 + 4C12 + 2C23

9
. (20)

A plot of B versus average pressure P = (σ1 + 2σ2)/3
does not distinguish material states according to their
anisotropy. As shown in Fig. 7, it simply distinguishes
large (DHi, DHo) from small (DLi, DLo, LLi, LLo) co-
ordination numbers.

V. COMPARISONS WITH EXPERIMENTAL
AND NUMERICAL LITERATURE

The six different sample series subjected to oedometric
compression were chosen with the objective of exploring a
rather wide variety of initial states, with large differences
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FIG. 6. (Color online) C55/C44 versus σ1 or κ−1 in initially
anisotropic (a) or isotropic (b) sample series. Dashed lines:
Voigt approximation (Sec. VI A).
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FIG. 7. (Color online) Bulk modulus B versus average stress
P . Dashed line slopes: 1/3 (top) and 0.4 (bottom).

in density, coordination number and anisotropy. This
should ease comparisons with different available experi-
mental and numerical results, and enable tests of exist-
ing theoretical models or empirical descriptions of stress
and internal state dependences of anisotropic elastic ten-

sors. Theoretical attempts to relate moduli to micro-
scopic state variables are tested in Sec.VI A. The present
section first confronts our results to available numerical
and experimental data.

A. Experiments on sands

Most experiments carried out on granular materials in
geomechanics laboratories use devices in which stresses,
rather than strains, are imposed. Thus, in the classical
triaxial compression test, σ1 and ε1 are slowly increased,
while lateral stress σ2 = σ3 is maintained constant (as
opposed to strains ε2 = ε3 = 0 in oedometric compres-
sion), and lateral strain ε2 = ε3 is measured.

Consequently, quasistatic measurements of small
strains provide direct access to the tensor of elastic com-
pliances, the inverse of the tensor of elastic moduli,
M = C−1. Denoting as C̃ and M̃ the upper left blocks,
of dimension 3× 3, in C and M, the corresponding com-
pliances are usually written in terms of Young moduli
E1, E2 and Poisson ratios ν12, ν23 as

M̃ =


1

E1

− ν12

E1

− ν12

E1
− ν12

E1

1

E2

− ν23

E2
− ν12

E1

− ν23

E2

1

E2

 (21)

Empirical formulae have been proposed to relate those
compliances to material state and stresses [9]. They of-
ten involve a certain function f(e) of void ratio e =
−1+1/Φ [4], in which the contact network properties are
summed up. The correspondence between Young mod-
uli and stress along the same direction was clearly es-
tablished [6], and expressed as power laws with a single
exponent, as

E1 = f(e)σm1 independently of σ2;

E2 = f(e)σm2 independently of σ1.
(22)

Experiments on sands usually record a significant elastic
anisotropy under anisotropic stresses (E1/E2 reaching 2)
while the effect of fabric anisotropy, as created by the
assembling process in isotropically compressed packs, is
often smaller (causing, typically, ratios E1/E2 between
0.9 and 1.1) [10]. Such pure fabric effects are ignored in
simple relations (22). Such formulae, with a unique fac-
tor f(e), assume that, for a given material, the contact
network density is determined by the packing density.
This is contradicted by the numerical observation of sys-
tems of equal density but different coordination numbers,
in the present study as well as in previous numerical in-
vestigations of isotropic bead assemblies [15, 20, 21].

Ref. [9] proposes a 3-parameter fit of elastic tensors ap-
plicable to transversely isotropic granular systems, pre-
dicting stress-independent values of Poisson ratio ν23,
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while ν12 should be proportional to 1 +Km
o . Poisson ra-

tios ν12 and ν23 of all six numerical sample series of the
present study, under oedometric compression, are shown
in Fig. 8. Both ν12 and ν23 vary with σ1 in the present
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(b)
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FIG. 8. (Color online) Poisson ratios (a) ν12 and (b) ν22
versus σ1 or κ−1. Data points connected by dashed lines
show results of linear contact model, discussed in Sec. VI B 2.

numerical study, especially in poorly coordinated systems
(as in the isotropic case [18]), even in those systems (DLo,
LLo) for which K0 is approximately constant in oedo-
metric compression – thereby contradicting the model of
Ref. [9]. (It should be recalled, though, that most ex-
perimental studies do not explore such a wide confining
stress range as the present set of numerical results.) Pois-
son ratios are related to moduli as

ν12 =
C12

C22 + C23
and ν23 =

C11C23 − C2
12

C11C22 − C2
12

, (23)

and thus tend to decrease under compression in poorly
coordinated states, just like the ratios of the off-diagonal
elements of the tensor of elastic moduli, C12 and C23 to
the diagonal ones C11 and C22 (see Sec. IV B 3).

B. Experiments on bead packs

Young moduli E1 and E2, as obtained in our numerical
simulations, expressing response to uniaxial stress varia-
tions in direction 1 or in the transverse plane, exhibit ax-
ial stress dependence along the oedometric loading path
quite similar to those of longitudinal moduli, as shown
in Fig. 9. They can be directly confronted to the mea-
surements published by Kuwano and Jardine [7] on glass
bead samples (Fig. 9). Those authors measured elastic
moduli of bead samples initially assembled in rather loose
(Φ ' 0.59), anisotropic states, under isotropic pressures
ranging from P = 100 to P = 400 kPa. While the load-
ing history is different, similar trends are to be expected,
from relation (22). Furthermore, our results (anticipat-

(a)
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(b)
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FIG. 9. (Color online) Young moduli: (a) E1 versus σ1, and
(b) E2 versus σ2. Results of Ref. [7] are shown as thick lines
marked “KuJa”.

ing on Sec. VI) indicate that fabric anisotropy, which is
present in those experimental results, is quite an impor-
tant (possibly dominant) source of elastic anisotropy.

Fig. 9 shows a good agreement between those experi-
mental results and the numerical ones obtained in loose
systems (or, more precisely, in poorly coordinated sys-
tems, which all share similar values of moduli), as re-
gards the absolute values of Young moduli in the avail-
able stress range. Both data sets also show a power law
increase of moduli with stress, as in (22), with some ex-
ponent m exceeding 1/3. The value of m fitted to the
experimental points in [7] (0.61 for E1 and 0.64 for E2)
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is however larger than the one observed in simulations
(about 0.42). Ratios E1/E2 vary between 1.2 and 1.15
in those experiments, similar to their values in sample
series LLi in the same stress range, while we observe val-
ues near 1.4 in sample series LLo (which would be more
appropriate as a model for the experiment). As to shear
moduli, as shown in Fig. 3, a good agreement is also to
be noted between their values in poorly coordinated nu-
merical systems and in the experiments of Kuwano and
Jardine, although the experimental moduli also tend to
increase a little faster with stress (with exponent 0.55, as
opposed to slightly below 0.5 in simulations) and differ
in terms of anisotropy (C44 > C55 is reported in [7], in-
stead of the opposite inequality in the present numerical
results).

Another way to obtain elastic moduli is through ultra-
sonic (or seismic) waves. In a transversely isotropic ma-
terial, still denoting with index 1 the direction of the axis
of rotational symmetry, longitudinal waves (or P waves)
and transverse ones (or S waves) propagate in axial or in
tranverse directions at velocities given by:

V
(1)
P =

√
C11

ρ∗
; V

(2)
P =

√
C22

ρ∗

V
(1)
S =

√
C55

ρ∗
; V

(2)
S =

√
C44

ρ∗

(24)

In (24), index P or S indicates the nature of the wave
and index 1 or 2 its propagation direction, while ρ∗ is
the mass density of the granular material. Khidas and
Jia [11] measured all four velocities written in (24) in
oedometrically compressed glass bead assemblies. They
used two different modes of preparation, resulting in dif-
ferent densities, Φ ' 0.605 and Φ ' 0.642, and sound
velocities were recorded for 100 kPa≤ σ1 ≤ 900 kPa. In
both states the stress dependence of sound velocities were
fitted, for axial stresses between 300 and 900 kPa, as a
power law with exponent 1/6, corresponding to moduli

increasing as σ
1/3
1 . Sound velocities corresponding to the

numerical results of the present study can be obtained
on using relations (24), with ρ∗ deduced from the mass
density of glass, ρ ' 2.5×103kg.m−3, as ρ∗ = ρΦ(1−x0)
(the rattlers do not belong to the elastic network in which
waves are propagated). Comparisons between sound ve-
locities obtained in numerical results and reported by
Khidas and Jia are shown in Figs. 10 and 11. Obvi-
ously, those experimental results resemble the numeri-
cal ones obtained with highly coordinated states DHi or
DHo, in two respects: the large value of wave velocities

and the apparent proportionality to σ
1/3
1 . In the other

sample series, Fig. 10 and Fig. 11 (which only considers
the looser laboratory samples, with the better quality
power law fit) clearly show that a power law fit would
yield a notably larger exponent. The level of stiffness
probed by the wave speed measurement in the looser
state investigated by Khidas and Jia seems somewhat
surprising. The discrepancy between numerical and ex-
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FIG. 10. (Color online) (a) Velocity of longitudinal sound

waves propagating in axial direction, V
(1)
P , normalized by

σ
1/6
1 , versus σ1; and (b) velocity of longitudinal sound waves

propagating in transverse directions, V
(2)
P , normalized by

σ
1/6
2 , versus σ2. Results by Khidas and Jia [11] are shown

as thick lines marked “KhJi” for the two different experimen-
tal packings.

perimental results could be due, in part, to the observed
decrease of coordination number in DLi and DLo systems
between the first equilibrium stress 10 kPa at assembling
stage and the experimental stress range ∼ 100 kPa. On
directly compressing agitated grains (the initial granu-
lar gas) under larger σ1, it is likely that slightly better
coordinated contact networks could be observed above
100 kPa. Anyway, the comparison implies that granular
samples with internal states similar to our dense, well
coordinated numerical samples of types DH are observed
in the laboratory. One may also note that the level of
elastic anisotropy recorded in this experimental study, as
expressed by ratios C11/C22 (reaching up to 1.4 in denser
systems, about 1.25 in looser ones) and C55/C44 (with
a maximum value near 1.15 for both sample types) are
compatible with the numerical results on systems DHo
for σ1 in the same stress range, as shown in Figs. 5-6.

Khidas and Jia mainly attribute the anisotropy of elas-
tic properties to the anisotropy of stresses. The vertical
to horizontal stress ratios measured in their experiments
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FIG. 11. (Color online) (a) Velocity of transverse sound waves

propagating in axial direction, V 1
S , normalized by σ

1/6
1 , versus

σ1; and (b) velocity of transverse sound waves propagating

in transverse directions, V 2
S , normalized by σ

1/6
2 , versus σ2.

Results by Khidas and Jia [11] are shown as thick lines marked
“KhJi(L)” for their looser type of packing.

reach 2.5 in the looser investigated state, and exceeds 3.2
in the denser one – which seems very large in an assembly
of elastic-frictional beads. There are other questions aris-
ing in relating the results of Ref. [11] to micromechanics,
in particular in relation to the experimental control of
the stress state. Some influence of the lateral walls on
stress homogeneity might be suspected, given the aspect
ratio of the samples, and the apparent influence of a prior
stress cycle (up to 400 kPa) on the results. Furthermore,
the transversely isotropic symmetry appears not exactly
satisfied, since a significant difference is observed between
shear moduli C55 and C66. In view of those difficulties
of interpretation of the experiments, we did not strive to
improve the quantitative agreement with such laboratory
results, which should be deemed already satisfactory for
dense systems with large coordination numbers.

C. Numerical results on anisotropic bead packs

Our results should be compared to those obtained by
La Ragione and Magnanimo, who carried out simulations

on anisotropic glass bead assemblies and proposed some
schemes to predict elastic anisotropy. One study [13] con-
siders different systems prepared with anisotropic fabric,
with a large density and coordination numbers varying
from 4.9 to 5.6 (intermediate between DLo and DHo in
this respect), under isotropic compression, keeping devi-
ator stress to zero. Fabric anisotropy parameter c̃2 stays
constant as isotropic compression proceeds (from 50 to
500 kPa). and varies from sample to sample, between
about 0.008 and 0.022, while z varies from 4.9 to 5.6.
In the second study [14] a dense system with isotropic
fabric (corresponding to our DHi state) is subjected to
triaxial compression up to a principal stress ratio of 1.4,
and its elastic moduli recorded a different stages of grow-
ing stress deviator. Those two papers thus address sep-
arately either the influence of stress anisotropy, or that
of fabric anisotropy, on elastic moduli. Both advocate
an approach to predict the anisotropy of the tensor of
elastic moduli, based on the Voigt estimation scheme.
Our results from oedometric compression inevitably mix
up both sources of anisotropy. However, as our study
covers a significantly wider range of state parameters
(see Sec. III), the theoretical approach of Refs. [13, 14]
can be tested in more demanding conditions than the
ones explored by their authors. The issue is discussed in
Sec. VI A 1 below.

VI. ELASTIC MODULI AND INTERNAL
STATE VARIABLES

We now strive to establish relations between the
anisotropic tensor of elastic moduli and the internal state
variables characterizing granular samples under oedomet-
ric compression, first by testing available theoretical ap-
proaches (Sec. VI A), then by resorting to simple “exper-
imental” tests and correlations (Sec. VI B).

A. Predictive schemes

1. Voigt approximation

The simplest estimate for the elastic moduli is the
Voigt approximation, also referred to as “effective
medium theory” (EMT), in which an affine field of par-
ticle displacements is assumed, as determined by the
macroscopic strain [11, 18, 22–24]. This amounts to ig-
noring the non-affine contribution to displacements in
Eq. 4, and discarding the second term in the right-hand-
side of relation 10, writing, with the notation introduced
in (9),

C = k. (25)

To write the Voigt estimates (denoted with superscript
V) for the 5 moduli of expression (7), we introduce no-
tations fN = FN/〈FN 〉 for the normal contact force di-
vided by its average, αT = KT /KN = (2 − 2ν)/(2 − ν)
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(see Eq. 3) for the ratio of tangential to normal contact

stiffnesses, and D̃ for a certain averaged diameter such
that (see Eq. 1)

D̃7/3 = 〈1
4

(Di +Dj)
2d

1/3
ij 〉. (26)

With the chosen diameter distribution one has D̃ '
1.1275〈D〉. We also introduce a certain factor C0, pro-
portional to the contact density and to a typical normal
contact stiffness:

C0 =
34/3

2π2/3

(zΦ)2/3D̃7/3

〈D3〉2/3〈D〉1/3 Ẽ
2/3P 1/3, (27)

and define useful averages over all contacts, involving any
coordinates α, β of unit normal vector n:

Aα = 〈f1/3
N n2

α〉; Bαβ = 〈f1/3
N n2

αn
2
β〉. (28)

Voigt estimates of elastic moduli are then written as: (no
summation over repeated indices)

Cαα = C0 [(1− αT )Bαα + αTAα] (1 ≤ α ≤ 3) (29)

Cαβ = C0(1− αT )Bαβ (1 ≤ α < β ≤ 3) (30)

C44 = C0

[
(1− αT )B23 +

1

2
αTA3

]
(31)

Beyond the simplest form of Voigt approximation, esti-
mates of moduli should be improved [18, 25, 26] on im-
posing a suitably chosen common spin to all particles.
This spin vanishes whenever the strain tensor commutes
with the fabric tensor F (defined by Fαβ = 〈nαnβ〉). In
the present case this spin effect is only present for shear
modulus C55, and results in a modified formula

C55 = C0

[
(1− αT )B12 + αT

A1A2

A1 +A2

]
(32)

These expressions of estimated moduli rely on decou-
pling averages over diameters on the one hand, and over
forces and fabric (which remain coupled), on the other
hand. For formula (16), we could check that this does
not entail any significant loss of accuracy. However,
one should avoid decoupling averages written in (28), as
forces and fabric are correlated: contacts oriented near
the axial direction are more numerous, and also tend to
carry larger forces, whence the inequality

〈f1/3
N n2

α〉 > 〈f1/3
N 〉〈n2

α〉, (33)

for which we could check the members to differ typically
by 10 to 20%. Assuming equality in (33) and decoupling
averages in (28) accordingly would reduce the values of
estimated moduli, and thus accidentally improve the pre-
dictions of longitudinal and shear moduli, which are too
large – an improvement based on a fortuitous compensa-
tion of errors.

A more accurate treatment of averages defined by (28)
is possible in terms of expansions of angular distributions

of contacts and of f
1/3
N in Legendre polynomials, leading

to some formula for Voigt-estimated moduli, analogous
to expression (13) of stress ratio K0. We did not however,
deem such a treatment justified, given the poor accuracy
of the Voigt scheme to estimate moduli.

As noted in a number of previous studies [13, 18, 23]
the Voigt approximation is quite inaccurate, and largely
overestimates, in particular, shear moduli. It fails par-
ticularly badly in poorly coordinated systems, in which
the fluctuating (or “non-affine”) part of the displacement
field contributes the most. This correlation between the
inaccuracy of the Voigt estimates and the coordination
number is made very conspicuous in plots of ratios of es-
timates to true moduli shown in Fig. 12. Only in well
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FIG. 12. (Color online) Ratios of Voigt estimates to true mod-
uli C11 (a) and C44 (b) versus rattler-corrected coordination
number z∗.

coordinated systems, due to a specific preparation (for
DHi and DHo) or to the effect of a large stress in a dense
sample (as in DLo, DLi), is the prediction of longitudi-
nal moduli, shown in Fig. 12(a), reasonably accurate. As
to shear moduli, Fig. 12(b) makes it clear that they are
always severely overestimated.

Another basic inadequacy of the Voigt scheme is its
poor treatment of moduli C12 and C23 coupling normal
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stresses and strains along different axes. In view of ex-
pression (30), proportional to 1− αT , estimates CV12 and
CV23 are considerably too small. Poisson ratios, from
Eq. (23), are consequently predicted to remain below
0.05, which considerably underestimates their true val-
ues shown in Fig. 8.

Despite the poor estimates of individual elements of
matrix C, the Voigt estimate BV of bulk modulus B, as
defined in Eq. 20, is, as in isotropic bead packs [18], in ex-
cess, but reasonably accurate (with ratios BV /B between
1 and 1.15), in all present anisotropic sample series, as
shown in Fig. 13. Given its expression (20), this results
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FIG. 13. (Color online) Ratio of Voigt estimate to measured
value of bulk modulus in all sample series, versus σ1, in oe-
dometric compression.

form the underestimation of C12 and C23 compensating
the overestimation of C11 and C22. Note that, on com-
bining Eqs. 20, written for Voigt estimates of moduli, and
28, a simpler expression of BV emerges,

BV =
C0

3
Z (1/3)

=
1

2

D̃7/3Z(1/3)

〈D3〉2/3〈D〉1/3

(
zΦẼ

3π

)2/3

P 1/3,

(34)

which is independent of fabric anisotropy, and coincides
(save for the slight polydispersity effect) with the esti-
mate written in the isotropic, monodisperse case [18].

While the Voigt scheme or EMT does not provide ac-
curate predictions for elastic moduli values, it has been
suggested by La Ragione and Magnanimo [13, 14] that it
could describe anisotropy effects. More precisely those
authors concluded that EMT could satisfactorily pre-
dict the ratios of moduli between anisotropic systems
and reference, isotropic ones. This would imply correct
Voigt estimates of ratios C11/C22 and C55/C44. Those
ratios, though, as shown in Figs. 5 and 6, are only ac-
curately predicted for longitudinal moduli in moderately
anisotropic systems: samples of types DHi, DLi, LLi,
and DHo, under moderate axial stress σ1, before fabric
and stress anisotropy increase due to oedometric com-
pression. Likewise the Voigt approach only provides ac-
curate predictions for ratio C55/C44 as long as it does

not exceed 1.1. The Voigt predictions for differences
C11/C22 − 1 and C55/C44 − 1, which are characteris-
tic of elastic anisotropy, remain fair (with an underes-
timation of ∼ 20%) in those initially isotropic systems,
but typically deviate from measured values by 50% in
strongly anisotropic sample series LLo and DLo. Our
results therefore contradict, in part, the conclusions of
Refs. [13, 14], which is likely due to our investigation of
larger domains of state parameters, as noted in Sec. V C.

The Voigt approach naturally incorporates the influ-
ence of stress-dependent average contact stiffness and
contact density. Its failure (except for B), particularly
in poorly coordinated systems, was discussed in Ref. [18],
and related to the properties of granular contact networks
with small force indeterminacy. The variations of shear
moduli with stress, faster than the expected power law
with exponent 1/3, or, correlatively, the variations, faster
than the expected z2/3, of the ratio plotted in Fig. 12,
were attributed to the tendency of moduli to vanish as
the limit of vanishing force indeterminacy, occurring at
z∗ = 4 (with a small correction due to 2-coordinated
grains), is approached. This phenomenon was first ob-
served [27] in nearly rigid (κ → ∞) frictionless systems,
for which it was explained [28] in connection with the
anomalous distribution of eigenmode frequencies of the
stiffness matrix defined in Eq. 6 [27]. While the absence
of force indeterminacy is spontaneously achieved for fric-
tionless grain packs in the limit of large stiffness level
κ [15, 27, 29, 30], it is usually not closely approached
in the presence of friction, except on setting the friction
coefficient to infinity (or a very large value) [15, 31]. How-
ever, anomalously low shear moduli are observed for the
smallest z∗ values [18, 32, 33], which increase faster than
expected from Voigt estimates as compression entails a
small increase of coordination numbers. In the present
study of anisotropic granular packs, similar trends are
visible in Fig. 3, with a faster variation of shear mod-
uli in poorly coordinated systems, and in Fig. 12, where
the strong increase of CV44/C44 for decreasing z∗ might
signal an incipient divergence near z∗ = 4. The only
non-anomalous modulus in poorly coordinated systems
with vanishing force indeterminacy is the one expressing
the response to a stress increment proportional to the
preexisting stress, whence a dominant eigenvalue in the
elastic moduli tensor (which is equal to the bulk modu-
lus in isotropic conditions). This is explicitly shown and
exploited in Ref. [12] for transversely isotropic assemblies
of nearly rigid, frictionless beads. In such extreme situ-
ations of vanishing force indeterminacy, ratios of moduli
C11, C22, C23, C12 are all directly related to stress ra-
tio K0, which is not the case for our data in the least
coordinated systems (as observed in Paper I). The rela-
tively larger values of off-diagonal elements C12, C23 in
those small z∗ systems, and the larger Poisson ratios,
are consistent with the approach of the vanishing force
indeterminacy limit.



14

2. Reuss approximation for a specific load increment

One particular compliance SP , expressing the material
elastic response to a stress increment ∆σ proportional to
σ, might be evaluated via the Reuss estimate, as defined
in Refs. [12, 18]. The Reuss approach is based on an
evaluation (in excess) of the elastic energy written as a
function of force increments. SP , which we refer to as
the proportional load increment compliance, expressing
the response to ∆σ = δ × σ, is identified through the
elastic energy:

∆W = Ω
SP δ

2

2
σ : σ. (35)

Introducing principal stress ratio K0 and compliance ma-
trix elements, one has:

SP =
1− 4ν12K0

E1
+

2(1− ν23)K2
0

E2
. (36)

The Reuss estimate is based on trial force increments
∆Fij = δFij in all contacts i-j, and reads [12, 18]

SRP = 2

(
3π

zΦ

)2/3 〈D3〉2/3〈D̂−1/3〉
〈D〉5/3

Z̃(5/3)

Ẽ2/3P 1/3
(37)

Factor Z̃(5/3) is defined from the force distribution and
the friction mobilization as in [18]:

Z̃(5/3) =
〈F 5/3
N (1 +

r2T
αT

)〉
〈FN 〉5/3

, (38)

rT denoting, in each contact, the ratio ||FT||/FN . Val-

ues of Z̃(5/3) remain between 1.26 and 1.38 for the
whole data set. In (37) we also introduced notation

D̂−1/3 for the average of d
−1/3
ij . Compliance SP is better

101 102 103 104

σ1 (kPa)

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

S
R P
/
S
P

LLo
LLi
DHo
DHi
DLo
DLi

10−4 10−3

κ−1

FIG. 14. (Color online) Ratio of Reuss estimate of propor-
tional load increment compliance, defined in (36), to its mea-
sured value in all sample series, versus σ1.

approached by its estimate SRP for poorly coordinated
systems, since with little force indeterminacy the trial

force increments used in the Reuss approximation be-
come closer to the real ones. Remarkably [18], (SRP )−1

and BV (Eq. 34) only differ by factors of order 1, related
to polydispersity and force distribution. The Reuss esti-
mate of SP is accurate with a relative error below 16%,
as shown in Fig. 14. In isotropic systems (K0 = 1), upper
bound SVP to SP = 1/B provides a lower bound to bulk
modulus: B ≥ 1/SRP . For anisotropic systems, estimates
BV for B and SRP for SP are in general the only available
quantitatively accurate predictions.

More sophisticated estimation schemes, in which fluc-
tuations about the main strain field are dealt with self-
consistently, have been developed for isotropic pack-
ings [34] (and corresponding ideas, or generalizations
thereof, tested by numerical means [35]) with some par-
tial success for shear moduli in well-coordinated sys-
tems [18]. Such schemes are complex, and have yet to
be generalized to anisotropic systems.

B. Correlation of elastic, force and fabric
anisotropies

For lack of adequate predictive schemes, we resort
to systematic investigations of correlations between the
anisotropies of the tensor of elastic moduli, and struc-
tural and mechanical anisotropy parameters c̃2 and f̃2

(Sec. VI B 1). In order to sort out the effects of stiffness
(or force) anisotropy from those of fabric anisotropy, we
also compute the elastic moduli, keeping the same con-
tact network but assuming linear contact elasticity in-
stead of the Hertz-Mindlin behavior (Sec. VI B 2).

1. Correlations to c̃2 and f̃2

Fig. 15 shows how ratios C11/C22 and C55/C44 corre-

late to anisotropy parameters f̃2 for forces and c̃2 for fab-
ric. All values of those ratios of moduli are represented, in
oedometric compression as well as in decompression, the
latter leading to negative values of both anisotropy coef-
ficients. c̃2 varies between -0.05 and 0.08, while f̃2 cov-
ers a somewhat larger interval, from -0.06 to about 0.12.
However, the gradient of the level of elastic anisotropy,
as expressed by those ratios, clearly tends to be along
the c̃2 axis of the graphs, while a number of equal elas-
tic anisotropy (coded as color) data point clusters tend

to be oriented along the f̃2 axis. This implies that elas-
tic anisotropy is to a greater extent determined by fabric
anisotropy parameter c̃2 than by force anisotropy param-
eter f̃2. Note that some data points correspond to states
of “reversed anisotropy”, i.e. situations in which c̃2 and
f̃2 are negative, and ratios C11/C22 and C55/C44 smaller
than 1. Those data correspond to low stress states af-
ter an oedometric compression cycle has been applied to
initially well coordinated states DLo and DLi (see Paper
I).
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FIG. 15. (Color online) Color or grey-level-coded values of
ratios of moduli, characterizing elastic anisotropy, in plot with
coordinates c̃2, f̃2, with one round dot per simulated state,
in oedometric compression and unloading of all six sample
series. (a) ratio of longitudinal moduli, C11/C22; (b) ratio of
shear moduli, C55/C44.

2. Elastic moduli obtained with linear contact elasticity

One more direct way to assess the relative effects of
fabric and force anisotropy on moduli is to compute the
elastic response of the same contact networks with a lin-
ear elastic behavior in the contacts, i.e., on attributing
to stiffness KN the same value in all contacts, instead of
using the Hertz law (2). As to ratio KT /KN , it is main-
tained to the same fixed value αT as in the simplified
Hertz-Mindlin model used so far in the stiffness matri-
ces. Fabric anisotropy affects the elastic properties of
both the Hertzian and the linear models. However, force
anisotropy, by which Hertzian contacts oriented near the
axial direction tend to be stiffer, does not influence the
properties of the network of linear elastic contacts. A
quantitative comparison of the results of the Hertzian
and the linear models is presented in Figs. 16 and 17
for longitudinal moduli C11 and C22. Those figures show
the variations, versus zΦ (proportional to the contact
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FIG. 16. (Color online) Reduced modulus c11 versus zΦ in
(a) isotropically assembled and (b) oedometrically assembled
sample series. Data points joined by solid lines: Hertz model;
data points joined by dashed lines: linear model.

density) of dimensionless reduced moduli cαβ , defined as

cαβ =
Cαβ〈d〉
〈KN 〉

(1 ≤ α ≤ 3, 1 ≤ β ≤ 3), (39)

thereby eliminating the influence of the average stiffness
(which depends on P as in Eq. 16 in the Hertzian case).
The naive expectation that moduli increase linearly with
contact density appears to be nearly fulfilled (although
of course a proportionality of reduced moduli to zΦ, as
would be predicted by the Voigt approach, is not satis-
fied). Results pertaining to highly coordinated systems
DLo and DLi stand apart, because coordination number
does not grow monotonically with axial stress in those
cases. Results of Hertzian and linear elastic contact net-
works are quite close, showing that a fair approximation
of moduli would be obtained on attributing the aver-
age stiffness to all contacts: C22 would be almost ex-
act, and C11 somewhat underestimated. Comparing ra-
tios C11/C22 for Hertzian and linear elastic contacts, as
shown in Fig. 18, shows that similar values are reached
in both cases for systems LLo and DLo, which exhibit
the largest levels of elastic anisotropy. In those strongly
anisotropic systems, the difference (C11/C22)− 1 is a lit-
tle smaller, typically by 10% or 20%, with linear, com-
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FIG. 17. (Color online) Analog of Fig. 16 for reduced modulus
c22.

pared to Hertzian, contact elasticity. It is typically 50%
smaller in the other sample series, for which anisotropy
is acquired in the course of oedometric compression from
an isotropic (or nearly isotropic) initial states. Those
are the systems in which stress anisotropy is gradually
induced by compression. As discussed at the end of
Sec. VI A 1, the prediction of the Voigt approximation
for (C11/C22) − 1 in those systems, unlike in sample se-
ries LLo and DLo (which are strongly anisotropic from
the initial state), achieves about 20% accuracy.

Quite similar conclusions can be drawn for the
anisotropy of shear moduli, as expressed by difference
(C55/C44)− 1.

As to the values of Poisson ratios and their evolution in
oedometric compression, Fig. 8 shows them to be rather
well reproduced by the linear model, which yields nev-
ertheless a smaller difference between ν12 and ν23, espe-
cially in highly coordinated systems DHi and DHo.

VII. CONCLUSIONS

Using model granular systems initially differing by den-
sity, coordination number and anisotropy of fabric and
stress, we have been studying how elastic properties re-
flect the evolution of their internal state under oedomet-
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FIG. 18. (Color online) Difference C11/C22 − 1 versus σ1 or
κ−1 in oedometrically compressed, isotropically (a) or oedo-
metrically (b) assembled sample series. Data points joined
by continuous lines for Hertzian contacts, by dashed lines for
linear elastic ones.

ric compression. Although such a loading history does
not enable a strict separation of stress anisotropy from
fabric anisotropy effects, our study includes a large vari-
ety of possible microstructures and leads to a number of
quite clearcut conclusions.

First, it is amply demonstrated (Figs. 1 to 4) that the
elastic moduli are mostly sensitive to coordination num-
ber z. Poorly coordinated dense granular materials are
not stiffer than loose ones. With low z, moduli tend
to increase somewhat faster with confining stress, as a
power law with apparent exponents approaching 0.4 for
longitudinal moduli (Figs. 1 and 2) or 0.5 for shear mod-
uli (Fig. 3). Limited evidence suggest that longitudi-
nal moduli corresponding to compression along principal
stress directions are better fitted by a power law of the
stress in the same direction (Fig. 2), and that the modu-
lus in the transverse plane is better described as growing
like some power of the lateral stress (Fig. 3b). Anoma-
lously low shear moduli are controlled by the rattler-
corrected coordination number, z∗, and tend to vanish as
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the value signaling the disappearance of force indetermi-
nacy is approached (Fig. 12b). Poisson ratios (Fig. 8)are
larger than in well-coordinated states, and decrease un-
der compression as the system state moves farther away
from this singular limit. The Voigt estimates of moduli
are not accurate, except for the bulk modulus B (cor-
rectly predicted within 15%). Longitudinal and, espe-
cially, shear moduli are largely overestimated, especially
in states with low coordination numbers. Predictions for
off-diagonal moduli or Poisson ratios are much smaller
than measured values. A Reuss estimate can be written
which correctly predicts (with the same accuracy as the
Voigt estimate for B) the proportional load increment
compliance. All those observations are direct generaliza-
tions of the results previously obtained on isotropically
assembled and compressed granular packs [18].

The anisotropy of the tensor of elastic moduli stems
from the anisotropies of both the contact network (the
fabric) and the angular force distribution. In the set
of equilibrium configurations along the oedometric com-
pression curves studied here, both effects tend to vary si-
multaneously. As a direct consequence of the anisotropic
assembling process in dense (DLo) or looser (LLo) con-
figurations with small coordination numbers, the relative
difference of longitudinal moduli C11/C22−1 may be ob-
served in the range 0.5–1.2 in low stress states (Figs. 15
and 18); the same difference decreases to about -0.4 on
reversing the anisotropy after one oedometric compres-
sion cycle, from initially well coordinated states (Fig. 15).
Similar observations apply to the relative difference of
shear moduli, C55/C44 − 1 (for which values reach up
to about 0.25). Comparisons with moduli computed
with linear contact elasticity and direct correlations to
anisotropy parameters indicate that, among the range
of investigated material states of the present study, the
larger elastic anisotropies are determined by fabric more
than by force anisotropies. In moderately anisotropic
systems (say, for |c̃2| ≤ 0.02) both origins of elastic
anisotropy appear to have similar contributions, and the
Voigt estimates can be used, as a rough approximation,
to predict values of C11/C22−1 and C55/C44−1 (but not
the Poisson ratios). Those differences would be strongly
underestimated for larger anisotropy parameters.

To reach more complete conclusions on possible
anisotropic states and connections between elasticity,
fabric and force anisotropies, it would be necessary to
explore different states and microstructures, and to vary
stresses and fabric independently, using different (e.g.,
triaxial) loading paths. The observed strong, possibly
dominant effect of geometric (fabric) anisotropy, is en-
couraging as to the possibility of inferring the fabric
anisotropy from appropriate ratios of moduli, in the prac-
tically relevant case of transversely anisotropic materials.
Interestingly, some of the results, if the influence of the
Hertz nonlinearity is secondary to the one of the net-
work fabric, could bear some relevance for other types of
contact elasticity (e.g., through conical asperities [36]).

Comparisons with experimental data reveal interesting

convergences, but also raise a number of questions. The
relations, used in sands, between moduli and stresses, ap-
pear more suited to the cases in which stress anisotropy
is the major cause of elastic anisotropy, and ignore the
possibility, evidenced in numerical simulations, of obtain-
ing very different coordination numbers with the same
density. We compared our numerical data to those of
two experimental studies of elastic properties of glass
bead assemblies. Interestingly, the first one [7] measures
moduli in a loose state (similar to numerical state LLo),
while the second one [11] deals with dense, well coor-
dinated systems (analogous to numerical states DHi or
DHo): we thus found laboratory analogs for very differ-
ent numerical systems, among the wide range which we
numerically explored. While numerical and experimen-
tal values of moduli are in quite good agreement, some
features of the laboratory results, especially regarding
anisotropy, remain unexplained, such as the differences
between all three different longitudinal moduli [11], or the
sign of the difference between both shear moduli [7]. The
agreement between numerical and experimental results
for the level of anisotropy, as expressed by differences
(C11/C22)−1 or (C55/C44)−1, is only semi-quantitative
at best. More simulations investigating a wider range of
different states are certainly necessary, but it should be
pointed out that the role of the assembling procedures in
laboratory tests should also be clarified. For instance, as
remarked in [10], samples prepared by gravity deposition
(often referred to as ‘air pluviation’) are observed with
greater stiffness in the vertical direction (C11 > C22) in
some experimental studies, while the opposite sign of the
anisotropy (C11 < C22) is obtained in others, carried out
by different groups. A fuller understanding of anisotropic
initial states thus requires more accurate experimental as
well as numerical investigations.
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Appendix A: Structure of stiffness matrix

We provide here additional information on the defini-
tion and structure of stiffness matrix K, as introduced in
(6) and discussed in Ref. [18]. Contact force Fij transmit-
ted from i to j is split into its normal and tangential com-
ponents as Fij = FNij nij + FTij . Considering an equilib-
rium configuration with Nc force-carrying contacts, the
static contact law relates the 3Nc-dimensional contact
force increment vector ∆f , formed with the values ∆FNij ,

∆FTij of the normal and tangential parts of all contact
force increments, to relative displacements, gathered in
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3Nc-dimensional vector δu as

∆f = K · δu. (A1)

This defines the block diagonal local stiffness matrix K,
of dimensions (3Nc × 3Nc). K does not couple different
contacts. The 3× 3 block of K corresponding to contact
i, j, K

ij
, provided friction is not fully mobilized reads:

KE
ij

=

KN (hij) 0 0
0 KT (hij) 0
0 0 KT (hij).

 (A2)

Stiffnesses KN (hij) and KT (hij) are given by (2) and (3).
This simple form of K

ij
is an approximation, relying on

simplifications of the Hertz-Mindlin laws (see [18]).

The rigidity matrix [15], which should not be confused
with the stiffness matrix, relates the relative displace-
ments to the Nf degrees of freedom. Normal unit vector
nij pointing from i to j (along the line joining centers
for spheres), the relative displacement δuij , for spherical
grains with radii Ri, Rj writes

δuij = ũi + ~θi ×Rinij − ũj + ~θj ×Rjnij + ε · rij , (A3)

rij denoting the vector pointing from the center of the
first sphere i to the nearest image (by the periodic trans-
lation group of the boundary conditions) of the center of
the second one j. The normal part δuNij of δuij is the
increment of normal deflection hij in the contact.

The rigidity matrix G is 3Nc × Nf -dimensional, it is
defined by the linear correspondence expressed by rela-
tion (A3), which transforms U into the 3Nc-dimensional
vector of relative displacements at contacts δu:

δu = G ·U (A4)

The equilibrium equations – the statements that con-
tact forces f balance load Fext – can simply be written
with the transposed rigidity matrix, as [15]

Fext = TG · f . (A5)

Stiffness matrix K results from Eqs. A4, A1 and A5:

K = TG · K ·G (A6)

Note that the symmetry and the positiveness of the stiff-
ness matrix is immediately apparent in (A6), given the
diagonal form of K in (A2), and the positive signs of stiff-
nesses KN , KT . In Ref. [18], a correction to K is iden-
tified, which stems from the preexisting forces prior to
application of stress increments. This correction, which
is not symmetric in general, is however negligible as long
as K is positive definite, which is equivalent to the non-
existence of a non-trivial kernel of G, i.e. “mechanism
motions” or “floppy modes”. Such free motions are ab-
sent [15] in equilibrated packs of spherical balls, save
for global translations of all grains in the periodic cell,
and for (rare) two-coordinated balls. Global rigid-body
translations are readily eliminated in matrix computa-
tions on assuming one grain to be elastically tied to a
fixed “ground”, and two-coordinated grains are also in-
nocuous (see [15, 18]).
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38, 23 (1988).

[3] Y.-C. Chen, I. Ishibashi, and J. T. Jenkins, Géotechnique
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