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Abstract

This paper presesti Lagrangian formulation of elastoviscoplasticiyased on the Particle
Finite Element Methodor progressive failure analysis of sensitivays. The sensitive clay
is represented by an elastoviscoplastic model whichnsxture of the Bingham moddbr
describing rheological behaviquand the Tresca model with strain softenfog capturing
the progressive failure behavioulhe finite element formulation forthe incremental
elastoviscoplastianalysisis reformulated throughthe application of the HellingeReissner
variational theorem, as an equivalent optimization program that can be sfficéehtly
using modern algorithra such as tb interiorpoint method The recastformulation isthen
incorporated into the framework of thHearticle Finite Element Method for investigating
progressive failurproblemsrelated tasensitive clayssuch as the collapse of a sensitive clay
column and thaetrogressive failure of a slope in sensitive claybere extremdy large
deformationoccuss.

Keywords: Sensitive clays Progresive failure Elastoviscoplasticity Strain softening;
PFEM;Mathematical programmingOCP
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1. Introduction
Sensitive clay is characterized lydecrease in itshearstrength wherexperiening plastic
deformation A highly sensitive claymay possessensitivity defined as a ratio of the
undisturbed shear strethgand the remoulded shear strengththe order of magnitude of a
hundred. Br examplethe reported values of the sensitivity of the clay involveth@l893
Verdalen landslide anthe 2012 Byneset landslide are 300 and 120, respectjtglypueto
thestrong strairsofteningbehaviouy geostructurs built ona layer ¢ sensitive clay often fail
in a progressive mannelMoreover, unexpectely catastrophic failureof the geostructure
might also be induced by asmall perturbation Typical examples arghe multiple
retrogressive slideand spreads sensitive clay®bserved inCanada and Scandinaig],
which occured suddenly coveed large areas (morthan 1hectare)andwere caused by an

initially small slope failure

Reliable pretttion of the progressive failurdehaviourof sensitive claysis o critical

importance It can provide guidelines for relevant engineering practice, for example

congruction on sensitive clays, aatsoassistin minimizing thedegree oflestructiorcaugd
by potential geohazasd(such asthe forementionedlarge landslides Although rumerical
simulation is a powerful tool for analyzimm@mplex geotechnical problem®pbustmodelling
of thelarge deformatiogsinduced by progressive failure sensitive taysis still aformidable
task. Indeed, amajor challengeis the complex behaviouthat is typically exhibited by
sensitive clag. An undisturbed sensitive claysually behaves like a solid bodyput may
changeto be a semiliquid materialafter being remolded [1]. The transformation between
these two states aused bytrain softeningSuitableconstitutive modedmust be capable of
describing theheologicalbehaviourof a sensitive claysince this igrucid for estimating the

run-out distance of landslidg8-5] as well ascapturingthe strainsoftening behaviour that
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contributes tothe phenomenorof progressive faire [2, 6, 7]. Sensitive claystypically
undergo extremg large deformationalong localized shear zoneslue to strainsoftening
This feature can causevere mesh distortion wheime traditionalfinite element methods
adoptedand result in computational difficultieg\dditionally, the freesurface evolution
induced by extreme deformatiaiso challenges the use of tinaditional FEMbecausef its

use of afixed mesh topologyRecently, some lgernative numerical approachdsave been
proposedor modelling theprogressive failure of sensitive clays involvilagge deformation.
Wanget. al[8] studiedretrogressivend progressive slope failuire sensitive claysising the
material point methodey et. al [9-11] analyzed the spread in sensitive clay slopes due to
progressive failure by implementirgy strainsoftening model into the BAQUS Coupled
Eulerian Lagrangian approacllthough these proceduresreproducd the pronounced
progressive failurdbehaviour of sensitive clay# is notablethat classical ratendependent
modek were utilised However, gnoiing the rheology of sensitive claysmay lead tothe
inaccuratepredictiors. Analytical approaches, such as shear band prdépagapproaches
[12-16], have also been usewd study the progressive failure process in catastrophic
landslides in natureRecent developments in the shdsmnd propagation approach for

analyzing catastrophic and progressive failne summarizeoh [17].

This paper providesn alternative Lagrangian computatiomgdproachfor the analysisof
progressive failte of sensitive claysnvolving extremdy large deformation An advanced
elastoviscoplasticonstitutive relationshipwhich is a combination athe Bingham model
andthe Tresca model with strain softening,adoptedor describing thie complex behaviour
To solve theresulting elastoviscoplastic problemvith strain softening a generalized
incremental HellingeReissner variational theorerfl8] is proposedwhich recass the

associated governing equations into an equivalentmaix program. After finite element
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discretisation, theesulting problem can beconverted into a standard secesrder cone
programming problemwhich may be solved efficiently using modern optimization
algorithms(for example the primaldual interior point methofl19]). Typical advantages of
such asolution strategy include the possibility of analyzing the existence, uniqueness,
sensitivity and stability of the solutid20], the natural treatment of the singuliastinthe
Mohr-Coulomb and DruckelPrager yield criterig§21-23], the sraightforward extension from
singlesurface plasticity to muksurface plasticity [21], and the straightforward
implementationof contact between deformable and rigid bodi24, 25. The proposed
solution algorithm is incorporated into themework of the Particle Rite Element Mthod
(PFEM) [26-28] for handlinglarge deformationThe PFEMis anovel continuumapproach
suitable for simulating problems involving both selikle and fluidlike behaviour[27, 29,

30]. It makes use oparticles to represent the material, as in meshfree particle methods, but
solves the governing equations via a standard finite element proc&hnsequentlythe
PFEM inherits both the solid mathematical foundation of the traditional FEM@ell asthe
capability of meshfree particle methods for handling extriymarge deformation and free

surface evolution.

The paper is organized as followSection2 presentghe governing equationfer dynamic
analysis ofan elastoviscoplastic problerAn incrementamixed variational principle is then
proposed in Section 3 for recasting the governing equaitbos minmax problem. Finite
element discretisation isegformed in Section 4, and the Particle Finite Elemeathdd is
described briefly in Section 5. Nwncal examples are given in Section 6, before kkmmns

are drawn in Section 7.

2. Governingequationsfor elastoviscoplasticity



104 Consider a mediunwith volume : and surface * *, *, where *

u

, and * are the
105 kinematic and traction boundaries, respectively. The partition of the surface thisey

106 constraint*, * I where 1 is a null set.The momentum conservation equatjotine

107 kinematic equations for displacement gradieatsd the corresponding boundary conditions

108 read

109 'T1 E UXin: (1)
110 0 in 2)
111 u u on 3
112 N1 t on

t (4)

113 where 1 and C are the Cauchy sés and the strajnb is the body force u is the
114 displacementt and t arethe prescribed displacemerdad external tractionsN consists
115 of components of the outward normal to tloeidary *,, and ’ is the usual linear operator

116 taking the form of

W a
1 T X Wy«
117 « (5)
0o — o X«
y  wx§

118 in a planestrain caseA superposed dot represents differentiation with respect to time.
119

120 Assuming the material islastwiscoplastic, thdotal strain rate Ccanthenbe split into an
121 elastic strain ratédand a viscoplastic strain raté®

122 0 0 " (6)

123 7KH HODVWLF VWUDLQ UDWH LV GHWHUPLQHG WKURXJK +RF

124 0 7)
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where is the elastic compliance matrix. The material is elastic if the stress state is inside

the yield domain, namely
F() oY O (8)
where F is the yield function.In contrast, stress states satisfyirg 1) t0 lead toa

viscoplastic strain ratélhe classical Bingham model is utilized this paperfor describing
the rheologicalpropertiesof the sensitive clayDespite its simple formt performs well for
approximating the plastic flow baviour ofthese soilsespecially Canadian clayS]. The

total stresshusis rewrittenas

1 2 KX 9)
where k is the viscosity coefficient, Z is the stresdying on the boundary of so that
F(2 O, andthe quantity 1 is called theoverstress The viscoplastic strain rate is also
normal to the yield surface ag:

* OF0) (10

where Cis therate of thenon-negativeplastic multiplierand ' , is the gradient operatdlt is
clear that the above elastoviscoplastic model reduces to the classical elastoplastim model

the limiting case of K 0.

Laboratory tests show that the undrained shear strevigihsensitive clay decreases with
increasingplastic shear strain. For materials exhibiting softening/hardening behaviour, the

yield criterion function is expressed (2 /Y 0, where Ais a set of hardening/softig

variables which relate to the viscoplastic strain in the form of
N H(O) 11

Specifically,for the Tresca yield criterigrwe have



148 F(AN=JCY W 42vx.() (12

149 wherecohesion softening is adopted to capture libsic posfailure behaviour. Following

150 [31, 32, strainsoftening is accounted for by reducing the calres, using a bilinear

151 function Figure 1) of the equivalent deviatoric plastic strain, A/dt , where

152 N «fo.Eeijqu and € is the rae of deviatoric viscoplastic strain tensor given by
vp 1 V]
153 g 47 3 o (13

154  in which @ istheKronecker delta.

155
156 3. Variational principle
157 3.1HellingerReissner variational principle

158 TheHellingerReissne(HR) variational principle ioof a mixedkind. Unlike the principle of
159 minimum potential energy, in which digggements are considered as the only master field,
160 the HellingerReissner variational principleeatsboth the displacementand thestresses as
161 the master fieldg1g].

162

163 For an elastostatiboundaryvalue problem, the HellingdReissner functiongl18] may be

164 expressed as

165 3(1 X =(

N

1 171 B:X s T dE Xs7 d (14)

166 The stationary valuefor the HellingerReissnerfunctional cannot be shown to be an

167 extremum. Instead, the point obtained I/( 1 BXO0 is a saddle point andonsequently

168 the problem becomes one of a mm@ax optimisation:
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min max 2 (%f 1 176) 7 H X.3" *d (15

where the internal work is maximised with respecthe stressesand the total potential

energy is minimised wlit respect tahedisplacements.

3.2 GeneralisedHellingerReissnewariational principle
A generalsed HellingerReissner variational principis proposedor incremental analysis of
elastoviscoplasticityThe governing equations sumnsad in section 2 arfrst discretized in
time using the standard-method Details of theiime discretisationas well as theesulting

incremental equationaredocumentedn Appendix A

We presenthere the generalized incrementadfiellinger-Reassner variationalprinciple for
incremental elasteiscoplastic analysisAs for elaspstatics,the principle is expressedh the

form of a mirmax program:

H E ol T T . 1 Z—’T'T
mn max eI W s T ST ()X
1 't? ,
E rr;r+1_L/rn+p: :3"I+1Ud .8
' 16
Ter B e s A a2 W

2 (1 2)T—/t('d2 STEdX LT W X

subjectto F (2,,) dO

wherer is a set of variablethat can be interpreted as dynamic forcéko illustrate the
equivalence betweethe program(16) and the incremental formf the governing equations
presented in Appendix ,Ahe KarushKuhn-Tucker KKT) optimality conditions associated

with (16) arenow derived Following[23, 33], the inequality constrat is first converted into

an equality by adding a positivelgstricted variables,,,. Then, the inequality os,,; is



188 represented by introducing a penalty term in the objective function:

. 1 7
min max ' d s 1Yo e L LY
nn- max ST ) 7 o° )
|t2
r‘r;r+1_ljr n+1d: :3r -rl1—+'1u d .3

189

NI, NI NP

iy Ee oo s TR 10 @

n-;-ld

S (1 g)T—/t(' ® s EdX.:T W X#ns
subjectto F (2,,) S,.;, O
190 where Fis a sufficiently small positive constant. The penalty teffns,,, in the objetive

191 function imposes the nemegativity requirement ors,,, naturally, and is known as a

192 logarithmic barrier functionThe Lagrangian associated with progréi) is

(UL 20 4 G5 '

Looroa oo AL o ax
2 I8
1 T 't2 T 1 ) 1 ?;II' 1
193 Zar . — o1 ud = 1 =T 1:)@ 18
23 n+1 n+1d . n+1 2 3( f U ( ) ( )

3'f_t(11 nad :3( n]_ n)é/(—t' d 2:3"" ‘H X.13T* dv
Hnawld: :3' CG:(ZIH) sn+])d ;3

194 The KKT optimality conditions are found by differentiating the above &agian with

195 respect to the optimisation variables, namely:

196 w E@ f (19)
WO, 2 vene,
T
T o Boq wit :
197 W (uw 1 (1 2 P (1L 2) 0 in (20
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At gt o -
(13 (% ) OF(3) oin @

WPy
2 1
wtt r., 'u 0 in: (22
w, U
w .
VO F( 2\+1) Sn+1 0 in: (23)
W 1 , . . ;
/%n+1 O O Y Pﬁwl m: (24)
.,

It is apparent that the KKT condiis (19)-(22) are equivalent tothe corresponding

incrementh equationspresented in Appendix AThe last two conditions recover the yield
condition and the complementarity condition showr(58) when 2P0 O , given that the

penalty multiplier O O, ands,,, ! 0. Theessentiaboundary conditiorf40) is assumed to

hold apriori, and thus is not reflected in the KKT conditiofsom condition(22) we can

also see that the newly introduced varialslee dynamic forces.

3.3 Material hardening/softening

The \ariational principlg16) can also bextenedto hande more complex models involving
hardening/eftening yield surface$ollowing [34]. More specifically,the min-max program

considering materidlardening/softening expressed as

10
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227

min max 31 ' 1d =1 F (u)d :sl—z-’];'T (u)d

U (L2

utZ
r,—r..d: srliud .3

n+l U n+1~ - : n+1

(29

NIk, NI NP

oyl g v T 2

2 (1 g)T7t(' 20 %:stﬂ Nd BT ud  wtTaud

subjectto F @,, /A,,)d O

The underlined term is the newly introduced one withbeinga newconstitutive modulus
associated with hardening/softenifidne according KKT condition related tbe variable A
is

w

Wy,

N OF( Ly Y O N ' QFR ) (26)

which is the hardening/softening law, i.e. the evolution, lfov the variable A. The

constitutive modulus , , can be derivedy first expandind=q. (11) using a Taylor series

dH( xp) ' VDY ' H(O\r:p)l OVp

/y+1 AV d vp (D vp

(27)

SinceEq. (26) cannot be brought tbe equal to theactual hardeningofteninglaw (27) using

a constant modulusve therefore use the following tangent modwasn[34]

dH((P) " F (2. )
N )

(29)

which is updated at the beginning of each timepsSuch a treatment of material
hardening/softening behaviour in mathematical programming has beesucsessfullyfor

approximatinghe hardening/softening behaviour the Cam clay mod¢B4].

11
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4. Finite element formulation
The minmax program(25) can now be discretized usinmife elemerd. For the sake of

convenience, an intermediate variabl® 1 (overstress)s introduced which enables

the optimization probler(25) to beexpressed as

H 1 14T T T 1 z—yTlT
min max —3'1 d 3 c— T (0 )X
in. max 2 BT T )
l2
S T fafl riud :
Loopft oy o gl g (29
2 ' K "
%% U Nd: T ud LT ud
subject to o1t 2

F( %+1’ /y+1) do

Using standard finite element notatspwe have

1)1 1@ )l A°Q@(RI[,
rx) INFQug) INu, " u|ByO (30)
Nx) IN,O

where £, ®, £ r(, £, and Care vectors containing the values of the corresponding field
variables at interpolation pointdl is a matrix consisting of shape functions, d&hd ™,
. The mixed finite element shown iRigure2 is adopted irthis study, where thdistribution

of the interpolation points for thelifferent variablesis depicted Substituting the above

eguatias intothe program(29) leads to

12



min  max Lope 1 XOp, 10 Tl dy
wWo(12A0ye 2 T

n

%rQlDrnQ 'u® b n+1C%‘ o0 £ C

240 T T % T4+0' kel O (31)
subject to '® 10 20

F (9200 0 jd 12 N,

241  where
C N Nd:, B" sBN¢ ,
|2
D N-UNd:, AT sNINd ,
U
242 : 32
Mo ONLEIN a1 Nt ENa (32
K t
f¢ aNbd: Ntk f°© :NI—/t(],‘jd

243 The yield conditions are enforced at &auss integration points, witN; being the total

244  number of such pointAfter solving theminimization part over 'u of program(31), and

245 transforming the maximum into a minimum with an opposite signobtain

mn L' Pe 1@1?,I+pq;p—]2‘ DO 0

(1290900 2 2
Lorvoe or 0
2
; T 1 Z— ac T ¢S e
246 subjectto B' 1,, —z_ 71 U (33
'® ' 10 20

F(Q:2Q.) 0, jd 12, Ng

247  The natural boundargondition (44) has been includethroughthe termsf®, whereas the
248 imposition of essdral boundary conditions for the displacements requires the introduction

249  of a new variable®, since he displacement incremenu is a field variable for the dual

13



250 problemof program(33). More specifically the pogram turns out to be

min ‘D& 1012 Tuo —]2‘ VO 0

(120 6%, © 2

%-m- OHF ((§ U0

251 subjectto B'1, $ U dQu ° I—Z_Z_OTODA (34)

'® ' 16 20
Fi(Q:2Q) 0, jd 12 Ng

252 where theessentiaboundary conditiorf44) areenforced,E is an index matrix consisting of

253 entries equal to 0 and U%is a vector consisting of the prescribed displacements at mesh

254  nodes, andhe newly introduced@®, represents the nodal reaction forés. shown both the

255 objective function and the constraimtsprogram(34) are alteredqthe underlined terms) due
256 to the imposition ofthe essentialboundary conditionsThe validity of the abovecan be
257 checkedby differentiaing the Lagrangiarassociated witlihe program(34) with respect to

258 1@, resulting in

w

259 .
Wk,

EU' E'W), O (35

260  Thisis obviously the discresed form of the displacement boundary conditi(t5).

261

262 Interaction between a deformable bog and a rigid surface can be achievemh a
263 straightforwardmannerin the above progranaccordng to [35]. The classical ©@ulomb

264  model for frictional contact iadopted in this study, which is

0, 0, =0,
265 On " POy (36)

lal A 0 d

266 As shown inFigure 3, gn is the gap between thmaterialand therigid surface p is the

14



267 contact pressure which is positive corresponding to compressisnthe tangentiastress
268 and Fis the friction coefficient between the material and the surfAéier enforcingthe

269 conditions in(36) on finite elenent nodesthe principle reads

. 1 . . 1 . )
D& 1& yoQu=- OO0 6 10
(ﬁzfgantl‘nr]d)m 2 2 oY QU 2

1 .. .. 2
5' O+ OOF ((H™Y Ojlzlgojpj

subjectto B"1,, $ U dAU °(!'° éTT Oy

270 '® ' 10 20 37

O = rﬂ!k' la.| A O d

F(9.2Q) 0 jd 12 N,

271 where !=( ,U,)" are the nodal forces)=(n,,n,)" andr&( n,,n)" are the normal and

272 the tangento the rigid boundaryE® is an index matrix of zeros and ones, ands the

273 number of potential contact¥he above progmm is the final optimization problem to be
274 solved. While it may be solved in a number of ways useither generalor specialized
275 methods, tiis transformechereinto a £condorder cone program (SOCP) and then resolved
276 using the high performance optimimat solver MOSEK [4]. The transformation of
277 programs of the sametype as (37) into a SOCP is straightforwarcand has been
278 documented in detail if23, 34]. The main operation is to recdle quadratic terms in the
279 objectve functionto linear ones,subject to eguadratic constrainind to reform the yield
280 function as a condueto the attractive advantaggsesentedn the introduction, a variety
281 of mechanics problembave ben formulatedand solvedin such a mannerincluding

282 computational limit analysis obolids and plated36-38], static/dynamic analysis of

15
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elastoplastic frames and solifil, 35, 39, 40], analysis of steadstate norNewtonian
fluid flows [41], consolidation analysi®3], andthe analysis of granular contact dynamics

[42-44).

5. Particle Finite Element Method

The Particle Finite Element &hod (PFEM) is a Lagrangian approach capable of handling
general large deformation problems without any real limitation on the magnitude of the
deformation[27, 29, 45, 46]. Its major charactesticisto WUHDW PHVK QRGHV DV uS
can move freelyand even separate fromhe computational domain to which they originally

belong. The basic steps of the utilized PFEM aummarized (see alségure 4) in the

following, with more details given if35):

(1) Suppose that we have a cloud of particle, at timet, ;

(2) Identify the computational domain using theshape methof#47] on the basis ofC";

(3) Createa finite elementmesh,M", through a triangulation of the recognized domain
and discretize governing equations M ;

(4) Map the state variables such as stresses, strains, velocities, etc. from the old mesh,
M™, to the new meshyl";

(5) Solve the discrete governing equations on the new mbkh, through a standard
finite element procedure;

(6) Update the position of mesh nodes to arriv€st and repeat.

To date, a number of challenging problems involving large deformation anduireee
evolution have been tackled by the PFEM. Theskidethe modellingof granular flowd 24,
25, 35, 48, 49, landslideg29, 50], landslidegenerated wavd$80, 46|, multi-fluid flows [51-

53], fluid-structure interaatin [27, 54, 55], soilstructure interaction35, 40], bubble

16
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dynamicq 56], themelting and spreang of polymerg[57], industrial forming processeand

the flow of fresh cemen{5§]. In this paper, the solution algorithm for elastoviscoplastic
analysis with strain softening is incorporated into the PFEM fogrpssive failure analysis

of sensitive clayslt is notable that the governing equations proposed are on the basis of the
infinitesimal strain theory which may lead to several errors for large deformation analysis.
The most serious one is the generatiostadins as a result of rigid body motion. However, it

has been shown i[85, 59] that this and related errors are relatively minor nvhiege time

steps used are small. As such, the price to pay for the convenience of being able to operate
with usual infinitesimal strain theory appears to be very small. Indeed, such a strategy has
been verified against analytical solutions for penetratiproblems [60] and validated
gualitatively as well as quantitativeggainst both quastatic and dynamic collapse of a
granular column[24, 25] and the penetration of shllowly embedded pipeline$61].

Furthermoreit succeeds in reproducirggreatworld flow-like landslide[29].

6. Numerical Examples

This section discusses numerical restitis progressive failure analysis of sensitive clays
using the proposed approadiote that fnite element analysis of stragsofteningmaterials
encounters issues of mesénsitivitywhen using raténdependentnodelsbecause the field
equations that describe the motion of the body may lose hyperboliodged, he
correspondingboundaryvalue poblem becomesill-posed with pathologically mesh
dependent solutions which the width ofthe shear bands depends on the mesh size. The
application of ratalependent modgis an effective way to circumvent this problem. It has
been shown that viscousrins introduce a length scale effect into the initial boundahye
problem eventhe ratedependent model does not explicitly contain a parameter with the

dimension of lengtli62, 63]. Consequently, viscoplastic models resulsatutions where the

17



332 shear bandbave dfinite width whenstrain localizatioroccurs It should be noted,dwever,
333 thatthe main ofective ofthis work is to capture thentirefailure processn sensitive clays
334 involving large deformationrather tharto predict the thickness of localizetiear band As
335 noted by Moord64], the typical thickness dd shear band in clagt failureis between 0.01
336 and 2 cmand thus it ismpractical to predict botlhe microscopic and macroscapsoil
337 response using a purely continuum model where a large earth strisctorsideredOne
338 possible wayof accountingfor theresponses on bothe macro and micro levels ihrough
339 themultiscale computationahodellingtechniqug 65-68].

340

341 6.1 Onedimensional elastwiscoplastigoroblem

342 To verify the proposed variational principlee consideran axial bar subject to a prescribed
343 load Figure5(a)). The material is represented by a-dimaensioml elastoviscoplastic model
344  (Figure5(b)). If the massof the bar is sufficiently smalko that any induced inertial forces
345 are negligible the load producea uniform stress andtrain along the bar aramh analyical

346 solution is availableln the following, the material parameters of the bar assumed to be

347 <RXQJTV PR GX1OURY¥, theinitial yield stress k¥ 100Pa, and the viscosity

348 coefficient K 100CPa’s.

349 The ability of the proposed formulatido captue thestrainrate dependence diie stress
350 response and stress relaxation behavi® examined first. To this end, we set the prescribed
351 strain increase at a constant rateuntil time t+ 0.4s and thenhold the strainconstant
352 leading to stress relaxatiomhe analytical solution of this problem is availapi®] and we
353 considerthree differentload rates, namely£=0.2, 0.4, and 0.6, respectively, pooducea

354 ratedependent respse(Figure6(a)). The yield stress iset to beconstant (, V') in this

355 case (Figure 6(b)) and he time increment is't 2ul0°®s in d simulations. Figure 7
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illustrates thesimulatedstress responder different load rates as well dise corresponding
analytical solution. For all cases, the resulting stresses increaastabke manneuntil their
maximum values are reached. A higher load rate results in a larger maximum stress reflecting
the effect of viscosityAt the timet t*, the stressedor all three cases drop sharply
representing stress relaxatidrehaviour Eventually, the residual stresses for all cases

asymptote towardghe initial stress strengtdf the material K . All the simulated results

agree with the analytical solutignshich verifies the proposed variatiorfarmulation and

finite elemenimplementation

We now consider thaletailsof strainsofteningbehaviour The prescribed strain in this case

increases with a constant rate=0.2 (Figure 8(a)), however theyield stress strengthy,
which equals i  100Pa at the beginningeducedo its residual value ., 30% , when

theaccumulategblastic strairreaches% (Figure8(b)). Such a phenomenon of reduction has
been widely observed for materials undergoing plastic deformation. The initial and residual
yield stress strengths can be interpreted as strengths of a material at undisturbed and
remailded statesThe simuation is conduted using a total of 20,03 and40 time increments,
respectively, and again the agreement between the numerical and analytical solutions is

satisfactory(Figure9).

6.2 Collapse ofasensitive clay domn

As the second example, we consider the collapse of a sensitive clay ¢fligome 10) in a
containemwhich is 50 cmwide and 100 crhigh. The container is lifted up quickly leading to
the spread of the sens@ clay. Such an experimental test has been widely used for

investigating the behaviour of granular mafi@-74], but hasalso been doptedfor studying
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the quikness of sensitive clay4]. Here, the problem is considereddeform undeplane

strain onditions and only half of the geometry isodelled due to the symmetry. The
material parameters are as followsR X QrdddvlusE 5 1 3D 3RLVVROQOIW UDWLR
density U 1.8 10 kg/m®, viscosity coefficient X 100Pa"s, undisturbed shear strength

Cp, © kPa, remalded shear strength, 1 kPa, and7v 25%. The frictional coefficient

between the clay and the rigid surfacetaken as0.3 and the gravitational acceleration

g 9.8m/<. The columns discretized using,962 6node triangular elements with ;189

nodes, and the time step utilized is 0.01s.

The collapse procedure of the column obtained from the simulation is illustrdtegline 11,

in which the colour is proportional to theaccumulatedequivalent plastic strainThe

normalized timet refers to\z;:'ﬁ with h, being the initial height of the column. For
g

initially undisturbed sensitive clays, lifty the container results in two shear bands dividing
the column into three par{Bigure11(a)). The upper part moves downward while the middle
part which is in the shap of a triangle,is pushedout horizontally. After a considerable
movement of the middle part, a shear band is formed in the loweFmauté11(b)) and then
one moreshear band appeairs the upper partKigure11(c)). The second shear bamdthe
upper partdeformsanother layer of sensitive clay and the lower paftich was intactis
disturbed significantly because of the shear banched (Figure 11(d)). Further collapse of
the column leads to two are layersbeing squeezed o(Figure 11(e) and (f). Localized
shear bands can be obsenwdarly in the final deposjtwith some pag d the column
remainingundisturbed throughouthe failure processThe collapse of remoulded sensitive
clay is also simulated for comparis@figure1l). As shown, lhe collapsenechanisnfor this

case is quite difirent to the previous case of an undisturbed sanffd¢her thanfail
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progressivelynearly all the material experiercplastic deformation with the material near
the bottompossessinghe maximumequivalentplastic strainFigure12 shows the curves of
the front location and centre height against normalized time for columns ofirtwealy
undisturbedand remoulded sensitive clayshel collapse of the column of remoulded clay
results in a final deposit wita mwch smallerheight andconsiderablyarger length Both the
sensitive and remoulded clagolumnsreach their maximum ruout distance at around
t 2.15. However, the final centre height for the remoulded case is obtained etrligr|
than that for the initially undisturbed case (2.15). Notably, the final centre height and
length are obtained simultaneousty the undisturbedamplewhich differs from thatfor the
remouldedsample The final nesh topology for both caseBustrated inFigure 13, verifies
that theproposed approaatan handlghe extrememesh distortiorthat accompanies failure
for this problem A video of the collapseof both the remouldedand undistuved sensitive

clay columrsis provided inthe supgementay materials.

To estimatehe mesh sensitivitythe ®llapse ofthe initially undisturbedclay was also re
analyzd usingthreedifferent mesh siz wherethe length of the element edgeas set to
h 1.0cm (1,934 triangles), 0.75 cm ($H28 triangleg and 0.5 cm (P62 triangleg. The
cases areeferredto as coarse, medium, and fine meshesshown inFigure 14, the curves
of locationsagainsttime for all three tests agreeell with each otherMoreover, all three
simulations result in very miilar final deposits and shear ban@sgure 15), which proves

that afurther decreasia the mesh sizevill not altertheform of the predictedailure mode

6.3 Retrogressive collapse of a slope in sensitive clay
As observed in Scandinavia and eastern Caraéist and significant retrogressive collapse

of a slope in sensitive clay ay be triggered by amall initial slide[2]. To illustrate the
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429 ability of the proposed approach forodellingsuch ageohazardwe consider theensitive
430 clay depositshown inFigure 16. Here, collapse is triggered by removiragrigid triangular

431 Dblock at the toe of the slogevhich may be caused ®rosion or excavationThe material
432 parameterof the sensitive clagrH DV IROORZV <RK@GJIHV3IPRGROXVRQTV
433 ratio x 0.33, density U 1.8 10 kg/m®, viscosity coefficientx 100Pa"s, undisturbed
434  shear strengthc,, 22 kPa, remoulded shear strength 1.2 kPa, and7v 25%. The

435 frictional coefficient between the sensitive clay and the figitomsurface isset t00.1 and

436 the gravitational acceleratiop 9.8 m/s’. A total of 18,4206-nodeal triangular elements

437 (37,355mesh nodeésis used to discretize thritial computational domairiThe time step is
438 t 0.025s and he simulation proceeds untie final deposit i®btained

439

440 The retrogressive failure geessfrom the simulationis illustrated inFigure 17, with the
441  colour being proportional to theaccumulatedequivalent plastic strain. As illustratethe
442  erosion leads to the firsetrogressive collapse C1 in the slofgegure 17(b)). Two shear
443  bandsinitiate from the bottom and propagate towards the top sudadéhe front inclined

444  surface respectively,resulting in a graben.During the sliding, one more shear band is
445 generated in the graben dividinginto two elastic partgFigure 17(c) and (d)) As the
446  disturbedmassdue tocollapse Clmovesfar away from the new slip surface, the second
447  retragressive collapse C2 occyisigure17(e) and (f)) This mimicsthe first criterion for the
448 occurrence of retrogressive failuthat the slide debris should be able to flow out of the slide
449 area[l]. The same as that in C1, two plastic shear §aaido originatingrom the slope base
450 are formed in C2 which resulis a graben and a hor&the mass in front of the new slope
451 surface continues to move forwdehding to tle third retrogressive failure of the slopie3

452  (Figure 17(g)). After this, a considerable amount of mass is deposited in front of the new

453 slope surfaceresisting further collaps@-igure 17(h)). The fnal configuration of the slope
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454  shown inFigure 17(i), indicates thatmost d the clay involved in C2 and C3 $&i&een
455 remoulded This reflectshe othercriterionfor the occurrence aktrogressive failurewhich
456 stateghat he slide debris should be completely remoulggdEventually, he retrogressive
457  failure results in a deposit withrun-out distance of 28.71 m amdretrogression diance of
458 14.76 m(Figure 17(i)). A video of the entirefailure processof the slopes availablein the
459  suppementay materials.

460

461 The velocity of the sliding front and the maximum velooitgre also recorded andhare
462 depictedin Figure 18. As illustrated the maximum elocity is not always located at the
463  sliding front This can beexplainedby examiningthe velocity contourKigure19). The first
464  retrogressive failre results in the transformation af part of the gravitationgbotential
465 energy of the mass into kinetic energyth the remaining energlyeing dissipatetdy plastic
466  shearing(Figure 19(a)). The sliding front thus possesses the maximum velogitg to this
467 transformation The second retrogressive collapse further releases potgnéaitational
468 energy(Figure 19b) and pshes the materials in fromf it, consequentlyincreasingthe
469 velocity of the corresponding mads. contrastthe velocity of thesliding front decreases
470 because othe frictionalongthe basal surface arnbe effects ofplastic dissipationAfter a
471 while, the mass at the middle moves faster than the sliding fl@megas shown inFigure
472  19(c). The third retrogressive collapse further releases potential gravitational €Rreygse
473  19(d)). The velocity of the involved mass collapse C3s relativel low, howeverpecausa
474  considerale bodyof clay with low velocityis located in front of the new slope surface. Note
475 that the sliding front already ceasedtatll.4 s (Figure 19(e)). However, the clay at the
476 middle of the slding masscontinues to bgushed and moves forwardhich eventually
477  disturbs the sliding frontFigure19(f) and (g))

478
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The value of viscositybackcalculated from various subaerial and submastides by
Edgersand Karlsrud 75] and Johnson and Rodifigg], is in the range of 100 to 1492a <.
We here investigatene effect of the viscosity on the retrogressive failbseanalysingthe
problemwith varying viscosity coefficierd of K 1Pa"s, 10 Pa"s, 100 Pa"s, and 1000
Pa"s. Other material parameters for these simulations are the aminethe previous case

As shown inFigure 20, retrogressive failure occumsur timesfor both K 1Pa™sand 10

Pa"s. Thus the retrogression distarstor these two case20.25 mand 20.13 mare very

close (Figure 21), althoughthe runout distance fork 1Pa"<(38.18 n) is slightly larger

than that for K 10 Pa"s (36.73 m).When &k is increasd further, fewer retrogressive
failures areinduced for example three times fox" 100Pa™sand only twice for K 100C

Pa "< (Figure 20). This meansthatan increase ofx( K!10 Pa"c) causesa decreasen the

run-out and retrogressivedistance as illustrated inFigure 21, because a higher viscosity
results in much more plastic dissipation and, consequentyyptasntial gravitational energy

is converted into kinetic energy. Such a decrease in energy transformation not only leads to a

smallerrun-out distance, but alscausesmore clayto be deposied in front of the newly

formed slope surfacghich resiss theoccurrence of further retrogressive failure.

7. Conclusions

The progressive failure process of sensitive clays is simulated using the Particle Finite
Element Method with an advanced elastoviscoplastic model whialtasnbinationof the
Bingham model (fordescribing rheological behaviour) and the Tresca model with strain
softening (for capturing progressive failure behaviour). The resulting elastoviscoplastic
analysis is reformulated as an optimization probl@mthe basis oh mixed variational

principle and resolved in mathematical programming.
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The proposed formulation is verified against the analytical solution of aliomnsional
elastoviscoplastic problem. The capability of the proposed computational approach for
modelling progressive failure is iktrated by simulating the collapse of a column of sensitive
clay. Additionally, the retrogressive failuref a slope in sensitive clay is reproduced
successfully. The simulation resultsflect the essential anditions for the occurrence of
retrogressive alapsewhich arethat the slide debris should be fully remoulded and flow
away from the slide area. Furthermore, the effect of the viscosaysenhsitive clay on the
nature ofretrogressive collapse is also studied. Numerical results show that arsenofea
viscosity leads to a decrease in both theagundistance and thetrogressiomlistance due to

the dissipation of a large amount of energy.

Although the problem in this study is simulated under undrained conditions using total
stressesan effective stress analysis can alsogerformed.This can be achieved by merging

the SOCP formulation for consolidation analysis of saturated porous media introd{28d in
where ratandependent models are utilisedth the mixed variational principle presented in
this paperThe resulting formulatiothencan be incorporated into the particle finite element
method for investiging the hydremechanical mechanism in the progressive failure of

sensitive clays.
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Appendix A. Time discretzation

The momentum conservation equatid) is first dscretizedin time using the standard-

method as:
T @ 7Y 8 B (39
le(lrgmpﬂﬁiﬂﬂ (39)

where v are velocities, { and § are parameters taking values in [0, 1], the subschijpisd

n+1 refer to the known and new, unknown states, atidtwi U, is the time step.

Rearanging the above equations leads to

" dha T I E U? (40
1 'u a
Vi1 = Tt (1 BV rk_<| (41)

with thedisplacement incremesit U=Un1  Un and

=Y (42)
2
1 n
==b " (43
T t
The natural boundary conditionapproximatedn an analogous manner leading to
1 _
N( Joa 1 I = Won ; witht :lt (44)
T T
andthe discretised essential boundary condition is
un+1 Un+1 on u (45)

By introducing another parameterf e ®, 1(, the incremental equations of the

elastoviscoplastic mod€Eqgs.(6)-(10)) are
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546 ‘0" 0" W (46)

547 S0 (47)
548 (1, T1(2 7)2 %Y '1)%(n1n>7as—"(tvp (49
549 P DF(2.) (49)
550 F(,,)do; ' to, OFe., O (50

551 In summary, the governing equations for incremental analysis of elastoviscoplasticity consist

552 of Eqgs.(40), (41), (44)-(50).
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Figurel8. Velocity of the sliding front and the maximum velocity against time

Figurel9. Velocity contour during the retrogressive failure
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Figure20. Final deposits from the simulation using different viscosity coefficients for
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Figure2l. Curvesof run-out distance and retrogression distance against viscosity
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