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Abstract  12 

This paper presents a Lagrangian formulation of elastoviscoplasticity, based on the Particle 13 

Finite Element Method, for progressive failure analysis of sensitive clays. The sensitive clay 14 

is represented by an elastoviscoplastic model which is a mixture of the Bingham model, for 15 

describing rheological behaviour, and the Tresca model with strain softening for capturing 16 

the progressive failure behaviour. The finite element formulation for the incremental 17 

elastoviscoplastic analysis is reformulated, through the application of the Hellinger-Reissner 18 

variational theorem, as an equivalent optimization program that can be solved efficiently 19 

using modern algorithms such as the interior-point method. The recast formulation is then 20 

incorporated into the framework of the Particle Finite Element Method for investigating 21 

progressive failure problems related to sensitive clays, such as the collapse of a sensitive clay 22 

column and the retrogressive failure of a slope in sensitive clays, where extremely large 23 

deformation occurs.  24 
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1. Introduction 29 

Sensitive clay is characterized by a decrease in its shear strength when experiencing plastic 30 

deformation. A highly sensitive clay may possess sensitivity, defined as a ratio of the 31 

undisturbed shear strength and the remoulded shear strength, of the order of magnitude of a 32 

hundred. For example, the reported values of the sensitivity of the clay involved in the 1893 33 

Verdalen landslide and the 2012 Byneset landslide are 300 and 120, respectively [1]. Due to 34 

the strong strain-softening behaviour, geostructures built on a layer of sensitive clay often fail 35 

in a progressive manner. Moreover, unexpectedly catastrophic failure of the geostructure 36 

might also be induced by a small perturbation. Typical examples are the multiple 37 

retrogressive slides and spreads in sensitive clays observed in Canada and Scandinavia [2], 38 

which occurred suddenly, covered large areas (more than 1 hectare) and were caused by an 39 

initially small slope failure.  40 

 41 

Reliable prediction of the progressive failure behaviour of sensitive clays is of critical 42 

importance. It can provide guidelines for relevant engineering practice, for example 43 

construction on sensitive clays, and also assist in minimizing the degree of destruction caused 44 

by potential geohazards (such as the fore-mentioned large landslides). Although numerical 45 

simulation is a powerful tool for analyzing complex geotechnical problems, robust modelling 46 

of the large deformations induced by progressive failure in sensitive clays is still a formidable 47 

task. Indeed, a major challenge is the complex behaviour that is typically exhibited by 48 

sensitive clays. An undisturbed sensitive clay usually behaves like a solid body, but may 49 

change to be a semi-liquid material after being remolded [1]. The transformation between 50 

these two states is caused by strain softening. Suitable constitutive models must be capable of 51 

describing the rheological behaviour of a sensitive clay, since this is crucial for estimating the 52 

run-out distance of landslides [3-5] as well as capturing the strain-softening behaviour that 53 



3 
 

contributes to the phenomenon of progressive failure [2, 6, 7]. Sensitive clays typically 54 

undergo extremely large deformation along localized shear zones due to strain-softening. 55 

This feature can cause severe mesh distortion when the traditional finite element method is 56 

adopted and result in computational difficulties. Additionally, the free-surface evolution 57 

induced by extreme deformation also challenges the use of the traditional FEM because of its 58 

use of a fixed mesh topology. Recently, some alternative numerical approaches have been 59 

proposed for modelling the progressive failure of sensitive clays involving large deformation. 60 

Wang et. al [8] studied retrogressive and progressive slope failure in sensitive clays using the 61 

material point method. Dey et. al [9-11] analyzed the spread in sensitive clay slopes due to 62 

progressive failure by implementing a strain-softening model into the ABAQUS Coupled 63 

Eulerian Lagrangian approach. Although these procedures reproduced the pronounced 64 

progressive failure behaviour of sensitive clays, it is notable that classical rate-independent 65 

models were utilised. However, ignoring the rheology of sensitive clays may lead to the 66 

inaccurate predictions. Analytical approaches, such as shear band propagation approaches 67 

[12-16], have also been used to study the progressive failure process in catastrophic 68 

landslides in nature. Recent developments in the shear band propagation approach for 69 

analyzing catastrophic and progressive failure are summarized in [17]. 70 

 71 

This paper provides an alternative Lagrangian computational approach for the analysis of 72 

progressive failure of sensitive clays involving extremely large deformation. An advanced 73 

elastoviscoplastic constitutive relationship, which is a combination of the Bingham model 74 

and the Tresca model with strain softening, is adopted for describing their complex behaviour. 75 

To solve the resulting elastoviscoplastic problem with strain softening, a generalized 76 

incremental Hellinger-Reissner variational theorem [18] is proposed which recasts the 77 

associated governing equations into an equivalent min-max program. After finite element 78 
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discretisation, the resulting problem can be converted into a standard second-order cone 79 

programming problem which may be solved efficiently using modern optimization 80 

algorithms (for example, the primal-dual interior point method [19]). Typical advantages of 81 

such a solution strategy include the possibility of analyzing the existence, uniqueness, 82 

sensitivity and stability of the solution [20], the natural treatment of the singularities in the 83 

Mohr-Coulomb and Drucker-Prager yield criteria [21-23], the straightforward extension from 84 

single-surface plasticity to multi-surface plasticity [21], and the straightforward 85 

implementation of contact between deformable and rigid bodies [24, 25]. The proposed 86 

solution algorithm is incorporated into the framework of the Particle Finite Element Method 87 

(PFEM) [26-28] for handling large deformation. The PFEM is a novel continuum approach 88 

suitable for simulating problems involving both solid-like and fluid-like behaviour [27, 29, 89 

30]. It makes use of particles to represent the material, as in meshfree particle methods, but 90 

solves the governing equations via a standard finite element procedure. Consequently, the 91 

PFEM inherits both the solid mathematical foundation of the traditional FEM as well as the 92 

capability of meshfree particle methods for handling extremely large deformation and free-93 

surface evolution.  94 

 95 

The paper is organized as follows. Section 2 presents the governing equations for dynamic 96 

analysis of an elastoviscoplastic problem. An incremental mixed variational principle is then 97 

proposed in Section 3 for recasting the governing equations into a min-max problem. Finite 98 

element discretisation is performed in Section 4, and the Particle Finite Element Method is 99 

described briefly in Section 5. Numerical examples are given in Section 6, before conclusions 100 

are drawn in Section 7. 101 

 102 

2. Governing equations for elastoviscoplasticity 103 
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Consider a medium with volume   and surface u t    , where u  and t  are the 104 

kinematic and traction boundaries, respectively. The partition of the surface obeys the 105 

constraint u t    where   is a null set. The momentum conservation equation, the 106 

kinematic equations for displacement gradients, and the corresponding boundary conditions 107 

read  108 

T in  σ b u                                                         (1) 109 

T in ε u                                              (2) 110 

uon u u                                                          (3) 111 

  T

ton N σ t                                                         (4) 112 

where σ  and ε  are the Cauchy stress and the strain, b  is the body force, u  is the 113 

displacement, u  and t  are the prescribed displacements and external tractions, N  consists 114 

of components of the outward normal to the boundary t , and   is the usual linear operator 115 

taking the form of  116 

T

0 0

0 0

x y

y x

  
  
 

  
   

                                                                (5) 117 

in a plane-strain case. A superposed dot represents differentiation with respect to time. 118 

 119 

Assuming the material is elastoviscoplastic, the total strain rate ε  can then be split into an 120 

elastic strain rate 
eε and a viscoplastic strain rate 

vpε  121 

e vp ε ε ε                                                    (6) 122 

The elastic strain rate is determined through Hook’s law as 123 

e ε σ                                                             (7) 124 
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where  is the elastic compliance matrix. The material is elastic if the stress state is inside 125 

the yield domain, namely  126 

vp( ) 0F   σ ε 0                                                  (8) 127 

where F  is the yield function. In contrast, stress states satisfying ( ) 0F σ  lead to a 128 

viscoplastic strain rate. The classical Bingham model is utilized in this paper for describing 129 

the rheological properties of the sensitive clay. Despite its simple form, it performs well for 130 

approximating the plastic flow behaviour of these soils, especially Canadian clays [5]. The 131 

total stress thus is rewritten as 132 

 
vp σ τ ε                                                                (9) 133 

where   is the viscosity coefficient, τ  is the stress lying on the boundary of F  so that  134 

( ) 0F τ , and the quantity σ τ  is called the overstress. The viscoplastic strain rate is also 135 

normal to the yield surface at τ : 136 

 
vp ( )F τε τ   (10) 137 

where   is the rate of the non-negative plastic multiplier and τ  is the gradient operator. It is 138 

clear that the above elastoviscoplastic model reduces to the classical elastoplastic model in 139 

the limiting case of 0  .  140 

 141 

Laboratory tests show that the undrained shear strength of a sensitive clay decreases with 142 

increasing plastic shear strain. For materials exhibiting softening/hardening behaviour, the 143 

yield criterion function is expressed by ( , ) 0F  τ , where  is a set of hardening/softening 144 

variables which relate to the viscoplastic strain in the form of  145 

( )vpH  ε                                                                      (11) 146 

Specifically, for the Tresca yield criterion, we have 147 
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2 2

u( , ) = ( ) 4 2 ( )xx yy xyF c      σ                                           (12) 148 

where cohesion softening is adopted to capture the basic post-failure behaviour. Following 149 

[31, 32], strain-softening is accounted for by reducing the cohesion uc  using a bilinear 150 

function (Figure 1) of the equivalent deviatoric plastic strain, dt  , where 151 

vp vp0.5 ij ije e   and 
vp
ije  is the rate of deviatoric viscoplastic strain tensor given by  152 

vp vp vp1

3
ijij ij kke                                                           (13) 153 

in which ij  is the Kronecker delta. 154 

 155 

3. Variational principle 156 

3.1 Hellinger-Reissner variational principle  157 

The Hellinger-Reissner (HR) variational principle is of a mixed kind. Unlike the principle of 158 

minimum potential energy, in which displacements are considered as the only master field, 159 

the Hellinger-Reissner variational principle treats both the displacements and the stresses as 160 

the master fields [18]. 161 

 162 

For an elastostatic boundary-value problem, the Hellinger-Reissner functional [18] may be 163 

expressed as 164 

 
t

T T T T T1
( , ) ( )d d d

2
          σ u σ σ σ S u b u t u    (14) 165 

The stationary value for the Hellinger-Reissner functional cannot be shown to be an 166 

extremum. Instead, the point obtained by ( , ) 0 σ u  is a saddle point and, consequently, 167 

the problem becomes one of a min-max optimisation: 168 
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t

T T T T T1
min  max  ( )d d d

2
        

u σ
σ σ σ S u b u t u                   (15) 169 

where the internal work is maximised with respect to the stresses and the total potential 170 

energy is minimised with respect to the displacements.  171 

 172 

3.2 Generalised Hellinger-Reissner variational principle 173 

A generalised Hellinger-Reissner variational principle is proposed for incremental analysis of 174 

elastoviscoplasticity. The governing equations summarised in section 2 are first discretized in 175 

time using the standard  -method. Details of the time discretisation, as well as the resulting 176 

incremental equations, are documented in Appendix A.    177 

  178 

We present here the generalized incremental Hellinger-Reissner variational principle for 179 

incremental elasto-viscoplastic analysis. As for elastostatics, the principle is expressed in the 180 

form of a min-max program: 181 

n+1

t

T T T T T1
n+1 n

( , , )
1

2
T T

n+1 n+1 n+1

T T3
n n

T T T

n n

1 1
min  max  d ( )d ( )d

2

1
d d

2

1
( ) ( )d ( )d

2

( ) d d d

subject to (

t

t t

t

F









 



  


 

 

  

  

 

 

  


          


    

 
           


         

u σ τ r
σ σ σ u σ u

r r r u

σ τ σ τ σ σ τ

σ τ τ b u t u

τn+1) 0

             (16) 182 

where r  is a set of variables that can be interpreted as dynamic forces. To illustrate the 183 

equivalence between the program (16) and the incremental form of the governing equations 184 

presented in Appendix A, the Karush-Kuhn-Tucker (KKT) optimality conditions associated 185 

with (16) are now derived. Following [23, 33], the inequality constraint is first converted into 186 

an equality by adding a positively-restricted variable n+1s . Then, the inequality on n+1s  is 187 
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represented by introducing a penalty term in the objective function: 188 

n+1

t

T T T T T1
n+1 n

( , , )
1

2
T T

n+1 n+1 n+1

T T3
n n

T T T

n n n+1

1 1
min  max  d ( )d ( )d

2

1
d d

2

1
( ) ( )d ( )d

2

( ) d d d ln d

t

t t

t
s









 




  


 

 

   

  

 

 

   


          


    

 
           


           

u σ τ r
σ σ σ u σ u

r r r u

σ τ σ τ σ σ τ

σ τ τ b u t u

n+1 n+1subject to ( ) 0F s τ

 (17) 189 

where   is a sufficiently small positive constant. The penalty term n+1ln s  in the objective 190 

function imposes the non-negativity requirement on n+1s  naturally, and is known as a 191 

logarithmic barrier function. The Lagrangian associated with program (17) is 192 

t

n+1 n+1 n+1 n+1

T T T T T1
n+1 n

1

2
T T T 3
n+1 n+1 n+1

T T T T

n n n n

( , , , , , )

11
d ( )d ( )d

2

1 1
d d ( ) ( )d

2 2

( )d ( ) d d d

ln

s

tt

t t

s









 

 



  

  

   

  

  

   

 


          


        

 
          



u σ τ r

σ σ σ u σ u

r r r u σ τ σ τ

σ σ τ σ τ τ b u t u

n+1 n+1 n+1d ( ( ) )dF s     τ

       (18) 193 

The KKT optimality conditions are found by differentiating the above Lagrangian with 194 

respect to the optimisation variables, namely:  195 

T T1
n+1 n n+1

1

T 1
n+1 n t

1

1
in

1
( ) on










      

 
 

    


σ σ r b 0

u
N σ σ t

                                                (19) 196 

T 3
n n

n+1

( ) ( ) ( ) in
t t

 

 
          


u σ σ τ σ τ 0

σ
                         (20) 197 
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3
n n G n+1

n+1

( ) ( ) ( ) in
t t

F



 

 
        


σ τ σ τ τ 0

τ
                          (21) 198 

2

n+1

n+1

in
t



 
   


r u 0

r
                                                                              (22) 199 

n+1 n+1( ) 0 inF s



   


τ                                                                               (23) 200 

1

n+1 n+1

n+1

0 ins s
s

   
      


                                                            (24) 201 

It is apparent that the KKT conditions (19)-(22) are equivalent to the corresponding 202 

incremental equations presented in Appendix A. The last two conditions recover the yield 203 

condition and the complementarity condition shown in (50) when 0  , given that the 204 

penalty multiplier 0  , and n+1 0s  . The essential boundary condition (40) is assumed to 205 

hold a priori, and thus is not reflected in the KKT conditions. From condition (22) we can 206 

also see that the newly introduced variables r  are dynamic forces.  207 

 208 

3.3 Material hardening/softening 209 

The variational principle (16) can also be extended to handle more complex models involving 210 

hardening/softening yield surfaces following [34]. More specifically, the min-max program 211 

considering material hardening/softening is expressed as: 212 
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n+1

T T T T T1
n+1 n

( , , )
1

2
T T

n+1 n+1 n+1

T T3
n n

T 1 2 T T

n n

11
min  max  d ( )d ( )d

2

1
d d

2

1
( ) ( )d ( )d

2

1
( ) d d d d

2
t

t

t t

t









 




  


 

 


   

  

 

 

  


         


   

 
        


         

u σ τ r
σ σ σ u σ u

r r r u

σ τ σ τ σ σ τ

σ τ τ b u t u
t

n+1 n+1subject to ( , ) 0F 



τ

       (25) 213 

The underlined term is the newly introduced one with t being a new constitutive modulus 214 

associated with hardening/softening. The according KKT condition related to the variable   215 

is 216 

1

n+1 n+1 n+1 n+1

n+1

( , ) 0 ( , )t tF F      



          


τ τ         (26) 217 

which is the hardening/softening law, i.e. the evolution law, for the variable  . The 218 

constitutive modulus, t , can be derived by first expanding Eq. (11) using a Taylor series 219 

vp vp
vp vpn n

n+1 n vp vp

( ) ( )dH dH

d d
        

ε ε
ε ε

ε ε
                               (27) 220 

Since Eq. (26) cannot be brought to be equal to the actual hardening/softening law (27) using 221 

a constant modulus, we therefore use the following tangent modulus as in [34]  222 

vp

n nn

vp

n n

( , )( )

( , )
t

FdH

d F






 



τ τε

ε τ
                                                (28) 223 

which is updated at the beginning of each time step. Such a treatment of material 224 

hardening/softening behaviour in mathematical programming has been used successfully for 225 

approximating the hardening/softening behaviour in the Cam clay model [34].  226 

 227 
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4. Finite element formulation 228 

The min-max program (25) can now be discretized using finite elements. For the sake of 229 

convenience, an intermediate variable  
e  σ σ τ  (overstress) is introduced, which enables 230 

the optimization problem (25) to be expressed as 231 

     

e
n+1

t

T T T T T1
n+1 n

( , , , )
1

2
T T

n+1 n+1 n+1

eT e eT e3
n

1 2 T T

e

n+1

1 1
min  max  d ( )d ( )d

2

1
d d

2

1
d d

2

1
d d d

2

subject to

(

t

t

t t

F









 



  


 

 



  

  

 

 

  


          


    

 
      

        

    

u σ τ σ r
σ σ σ u σ u

r r r u

σ σ σ σ

b u t u

σ σ τ

τ n+1, ) 0 

   (29) 232 

Using standard finite element notations, we have 233 

 

e

e e

T

ˆ ˆ ˆ( ) , ( ) , ( ) ,

ˆ ˆ ˆ( ) , ( ) , ,

ˆ( ) 

  

   



σ τσ

r u u

σ x N σ σ x N σ τ x N τ

r x N r u x N u u B u

x N κ

                                     (30) 234 

where σ̂ , eσ̂ , τ̂ , r̂ , û , and κ̂  are vectors containing the values of the corresponding field 235 

variables at interpolation points, N  is a matrix consisting of shape functions, and 
T

u u B N236 

. The mixed finite element shown in Figure 2 is adopted in this study, where the distribution 237 

of the interpolation points for the different variables is depicted. Substituting the above 238 

equations into the program (29) leads to  239 
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                     (31)  240 

where 241 
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                      (32) 242 

The yield conditions are enforced at all Gauss integration points, with GN  being the total 243 

number of such points. After solving the minimization part over u  of program (31), and 244 

transforming the maximum into a minimum with an opposite sign, we obtain 245 

  

e
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n+1 n+1
ˆ ˆˆ ˆ ˆ( , , , , )

T eT c

T T T e1
n+1 n n+1

1

e

n+1 n+1

1 1 1
ˆ ˆˆ ˆ ˆ ˆmin

2 2 2

1
ˆ ˆ ˆ

2

1
ˆˆ ˆsubject to

ˆ ˆ ˆ

ˆˆ( , ) 0, 1, 2, ,j GF j N





     

    


   

   

 

σ τ σ r κ
σ C σ r Dr σ M σ

κ H κ σ f

B σ B σ A r f 0
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                                 (33) 246 

The natural boundary condition (44) has been included through the terms 
ef , whereas the 247 

imposition of essential boundary conditions for the displacements requires the introduction 248 

of a new variable u

n+1r̂  since the displacement increment u  is a field variable for the dual 249 
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problem of program (33). More specifically, the program turns out to be 250 
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 (34) 251 

where the essential boundary condition (44) are enforced, E  is an index matrix consisting of 252 

entries equal to 0 and 1, 
dU is a vector consisting of the prescribed displacements at mesh 253 

nodes, and the newly introduced u

n+1r̂  represents the nodal reaction force. As shown, both the 254 

objective function and the constraints of program (34) are altered (the underlined terms) due 255 

to the imposition of the essential boundary conditions. The validity of the above can be 256 

checked by differentiating the Lagrangian associated with the program (34) with respect to 257 

u

n+1r̂ , resulting in  258 

 
d

n+1u

n+1

ˆ
ˆ


   


EU E u 0

r
  (35) 259 

 This is obviously the discretised form of the displacement boundary conditions (45). 260 

 261 

Interaction between a deformable body and a rigid surface can be achieved in a 262 

straightforward manner in the above program according to [35]. The classical Coulomb 263 

model for frictional contact is adopted in this study, which is   264 

0, 0, = 0,

| | 0

N Ng p pg

q p

 

 
                                          (36) 265 

As shown in Figure 3, Ng  is the gap between the material and the rigid surface, p is the 266 
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contact pressure which is positive corresponding to compression, q is the tangential stress, 267 

and   is the friction coefficient between the material and the surface. After enforcing the 268 

conditions in (36) on finite element nodes, the principle reads 269 

e u
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k k k

j G
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F j N

 
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                         (37) 270 

where 
T

1 2= ( , ) ρ  are the nodal forces, 
T

1 2= ( , )n nn  and 
T

2 1
ˆ = ( , )n nn  are the normal and 271 

the tangent to the rigid boundary, c
E  is an index matrix of zeros and ones, and cn  is the 272 

number of potential contacts. The above program is the final optimization problem to be 273 

solved. While it may be solved in a number of ways using either general or specialized 274 

methods, it is transformed here into a second-order cone program (SOCP) and then resolved 275 

using the high performance optimization solver MOSEK [4]. The transformation of 276 

programs of the same type as (37) into a SOCP is straightforward, and has been 277 

documented in detail in [23, 34]. The main operation is to recast the quadratic terms in the 278 

objective function to linear ones, subject to a quadratic constraint, and to reform the yield 279 

function as a cone. Due to the attractive advantages presented in the introduction,  a variety 280 

of mechanics problems have been formulated and solved in such a manner, including 281 

computational limit analysis of solids and plates [36-38], static/dynamic analysis of 282 
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elastoplastic frames and solids [21, 35, 39, 40], analysis of steady-state non-Newtonian 283 

fluid flows [41], consolidation analysis [23], and the analysis of granular contact dynamics 284 

[42-44].  285 

 286 

5. Particle Finite Element Method 287 

The Particle Finite Element Method (PFEM) is a Lagrangian approach capable of handling 288 

general large deformation problems without any real limitation on the magnitude of the 289 

deformation [27, 29, 45, 46].  Its major characteristic is to treat mesh nodes as ‘particles’ that 290 

can move freely, and even separate from, the computational domain to which they originally 291 

belong. The basic steps of the utilized PFEM are summarized (see also Figure 4) in the 292 

following, with more details given in [35]: 293 

(1) Suppose that we have a cloud of particles, nC , at time 
nt   ; 294 

(2) Identify the computational domain using the  -shape method [47] on the basis of  nC ; 295 

(3) Create a finite element mesh, nM , through a triangulation of the recognized domain 296 

and discretize governing equations on nM ; 297 

(4) Map the state variables such as stresses, strains, velocities, etc. from the old mesh, 298 

n-1M , to the new mesh, nM ; 299 

(5) Solve the discrete governing equations on the new mesh, nM , through a standard 300 

finite element procedure; 301 

(6) Update the position of mesh nodes to arrive at n+1C  and repeat. 302 

To date, a number of challenging problems involving large deformation and free-surface 303 

evolution have been tackled by the PFEM. These include the modelling of granular flows [24, 304 

25, 35, 48, 49], landslides [29, 50], landslide-generated waves [30, 46], multi-fluid flows [51-305 

53], fluid-structure interaction [27, 54, 55], soil-structure interaction [35, 40], bubble 306 
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dynamics [56], the melting and spreading of polymers [57], industrial forming processes, and 307 

the flow of fresh cement [58]. In this paper, the solution algorithm for elastoviscoplastic 308 

analysis with strain softening is incorporated into the PFEM for progressive failure analysis 309 

of sensitive clays. It is notable that the governing equations proposed are on the basis of the 310 

infinitesimal strain theory which may lead to several errors for large deformation analysis. 311 

The most serious one is the generation of strains as a result of rigid body motion. However, it 312 

has been shown in [35, 59] that this and related errors are relatively minor when the time 313 

steps used are small. As such, the price to pay for the convenience of being able to operate 314 

with usual infinitesimal strain theory appears to be very small. Indeed, such a strategy has 315 

been verified against analytical solutions for penetration problems [60] and validated 316 

qualitatively as well as quantitatively against both quasi-static and dynamic collapse of a 317 

granular column [24, 25] and the penetration of shallowly embedded pipelines [61]. 318 

Furthermore, it succeeds in reproducing a real-world flow-like landslide [29].  319 

 320 

6. Numerical Examples 321 

This section discusses numerical results for progressive failure analysis of sensitive clays 322 

using the proposed approach. Note that finite element analysis of strain-softening materials 323 

encounters issues of mesh sensitivity when using rate-independent models because the field 324 

equations that describe the motion of the body may lose hyperbolicity. Indeed, the 325 

corresponding boundary-value problem becomes ill-posed, with pathologically mesh-326 

dependent solutions in which the width of the shear bands depends on the mesh size. The 327 

application of rate-dependent models is an effective way to circumvent this problem. It has 328 

been shown that viscous terms introduce a length scale effect into the initial boundary-value 329 

problem, even the rate-dependent model does not explicitly contain a parameter with the 330 

dimension of length [62, 63]. Consequently, viscoplastic models result in solutions where the 331 
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shear bands have a finite width when strain localization occurs. It should be noted, however, 332 

that the main objective of this work is to capture the entire failure process in sensitive clays 333 

involving large deformation, rather than to predict the thickness of localized shear bands. As 334 

noted by Moore [64], the typical thickness of a shear band in clay at failure is between 0.01 335 

and 2 cm, and thus it is impractical to predict both the microscopic and macroscopic soil 336 

response using a purely continuum model where a large earth structure is considered. One 337 

possible way of accounting for the responses on both the macro and micro levels is through 338 

the multiscale computational modelling technique [65-68]. 339 

   340 

6.1 One-dimensional elasto-viscoplastic problem 341 

To verify the proposed variational principle, we consider an axial bar subject to a prescribed 342 

load (Figure 5(a)). The material is represented by a one-dimensional elastoviscoplastic model 343 

(Figure 5(b)). If the mass of the bar is sufficiently small, so that any induced inertial forces 344 

are negligible, the load produces a uniform stress and strain along the bar and an analytical 345 

solution is available. In the following, the material parameters of the bar are assumed to be: 346 

Young’s modulus 45 10E   Pa, the initial yield stress 
0

100Y  Pa, and the viscosity 347 

coefficient 1000  Pa s .   348 

The ability of the proposed formulation to capture the strain-rate dependence of the stress 349 

response and stress relaxation behaviour is examined first. To this end, we set the prescribed 350 

strain increase at a constant rate   until time * 0.4t  s and then hold the strain constant, 351 

leading to stress relaxation. The analytical solution of this problem is available [69] and we 352 

consider three different load rates, namely  =0.2, 0.4, and 0.6, respectively, to produce a 353 

rate-dependent response (Figure 6(a)). The yield stress is set to be constant (
0Y Y  ) in this 354 

case (Figure 6(b)) and the time increment is 32 10t    s in all simulations. Figure 7 355 
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illustrates the simulated stress response for different load rates as well as the corresponding 356 

analytical solutions. For all cases, the resulting stresses increase in a stable manner until their 357 

maximum values are reached. A higher load rate results in a larger maximum stress reflecting 358 

the effect of viscosity. At the time *t t , the stresses for all three cases drop sharply 359 

representing stress relaxation behaviour. Eventually, the residual stresses for all cases 360 

asymptote towards the initial stress strength of the material, 
0Y . All the simulated results 361 

agree with the analytical solutions, which verifies the proposed variational formulation and 362 

finite element implementation. 363 

 364 

We now consider the details of strain-softening behaviour. The prescribed strain in this case 365 

increases with a constant rate  =0.2 (Figure 8(a)); however the yield stress strength 
Y , 366 

which equals 
0

100Y  Pa at the beginning, reduces to its residual value 
0

30%YR Y   when 367 

the accumulated plastic strain reaches 7% (Figure 8(b)). Such a phenomenon of reduction has 368 

been widely observed for materials undergoing plastic deformation. The initial and residual 369 

yield stress strengths can be interpreted as strengths of a material at undisturbed and 370 

remoulded states. The simulation is conducted using a total of 20, 30, and 40 time increments, 371 

respectively, and again the agreement between the numerical and analytical solutions is 372 

satisfactory (Figure 9). 373 

 374 

6.2 Collapse of a sensitive clay column 375 

As the second example, we consider the collapse of a sensitive clay column (Figure 10) in a 376 

container which is 50 cm wide and 100 cm high. The container is lifted up quickly leading to 377 

the spread of the sensitive clay. Such an experimental test has been widely used for 378 

investigating the behaviour of granular matter [70-74], but has also been adopted for studying 379 
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the quickness of sensitive clays [1]. Here, the problem is considered to deform under plane-380 

strain conditions and only half of the geometry is modelled due to the symmetry. The 381 

material parameters are as follows: Young’s modulus 65 10E    Pa, Poisson’s ratio 0.49  , 382 

density 
31.8 10    kg/m

3
, viscosity coefficient 100  Pa s , undisturbed shear strength 383 

up 5c   kPa, remoulded shear strength 
ur 1c   kPa, and 25%  . The frictional coefficient 384 

between the clay and the rigid surface is taken as 0.3 and the gravitational acceleration 385 

9.8g    m/s
2
. The column is discretized using 7,962 6-node triangular elements with 16,199 386 

nodes, and the time step utilized is 0.01t   s. 387 

 388 

The collapse procedure of the column obtained from the simulation is illustrated in Figure 11, 389 

in which the colour is proportional to the accumulated equivalent plastic strain. The 390 

normalized time t  refers to 
02 /g

t

h
 with 

0h  being the initial height of the column. For 391 

initially undisturbed sensitive clays, lifting the container results in two shear bands dividing 392 

the column into three parts (Figure 11(a)). The upper part moves downward while the middle 393 

part, which is in the shape of a triangle, is pushed out horizontally. After a considerable 394 

movement of the middle part, a shear band is formed in the lower part (Figure 11(b)) and then 395 

one more shear band appears in the upper part (Figure 11(c)). The second shear band in the 396 

upper part deforms another layer of sensitive clay and the lower part, which was intact, is 397 

disturbed significantly because of the shear band formed (Figure 11(d)). Further collapse of 398 

the column leads to two more layers being squeezed out (Figure 11(e) and (f)). Localized 399 

shear bands can be observed clearly in the final deposit, with some parts of the column 400 

remaining undisturbed throughout the failure process. The collapse of remoulded sensitive 401 

clay is also simulated for comparison (Figure 11). As shown, the collapse mechanism for this 402 

case is quite different to the previous case of an undisturbed sample. Rather than fail 403 
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progressively, nearly all the material experiences plastic deformation with the material near 404 

the bottom possessing the maximum equivalent plastic strain. Figure 12 shows the curves of 405 

the front location and centre height against normalized time for columns of both initially 406 

undisturbed and remoulded sensitive clays. The collapse of the column of remoulded clay 407 

results in a final deposit with a much smaller height and considerably larger length. Both the 408 

sensitive and remoulded clay columns reach their maximum run-out distance at around 409 

2.15t  . However, the final centre height for the remoulded case is obtained earlier ( 1.4t  ) 410 

than that for the initially undisturbed case ( 2.15t  ). Notably, the final centre height and 411 

length are obtained simultaneously for the undisturbed sample, which differs from that for the 412 

remoulded sample. The final mesh topology for both cases, illustrated in Figure 13, verifies 413 

that the proposed approach can handle the extreme mesh distortion that accompanies failure 414 

for this problem. A video of the collapse of both the remoulded and undisturbed sensitive 415 

clay columns is provided in the supplementary materials.  416 

 417 

To estimate the mesh sensitivity, the collapse of the initially undisturbed clay was also re-418 

analyzed using three different mesh sizes, where the length of the element edge was set to 419 

1.0h   cm (1,934 triangles ), 0.75 cm (3,528 triangles) and 0.5 cm (7,962 triangles). The 420 

cases are referred to as coarse, medium, and fine meshes. As shown in Figure 14, the curves 421 

of locations against time for all three tests agree well with each other. Moreover, all three 422 

simulations result in very similar final deposits and shear bands (Figure 15), which proves 423 

that a further decrease in the  mesh size will not alter the form of the predicted failure mode.  424 

 425 

6.3 Retrogressive collapse of a slope in sensitive clay 426 

As observed in Scandinavia and eastern Canada, a fast and significant retrogressive collapse 427 

of a slope in sensitive clay may be triggered by a small initial slide [2]. To illustrate the 428 
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ability of the proposed approach for modelling such a geohazard, we consider the sensitive 429 

clay deposit shown in Figure 16. Here, collapse is triggered by removing a rigid triangular 430 

block at the toe of the slope (which may be caused by erosion or excavation). The material 431 

parameters of the sensitive clay are as follows: Young’s modulus 65 10E    Pa, Poisson’s 432 

ratio 0.33  , density 
31.8 10    kg/m

3
, viscosity coefficient 100  Pa s , undisturbed 433 

shear strength 
uu 22c   kPa, remoulded shear strength 

ur 1.2c   kPa, and 25%  . The 434 

frictional coefficient between the sensitive clay and the rigid bottom surface is set to 0.1 and 435 

the gravitational acceleration 9.8g    m/s
2
. A total of 18,420 6-noded triangular elements 436 

(37,355 mesh nodes) is used to discretize the initial computational domain. The time step is 437 

0.025t   s and the simulation proceeds until the final deposit is obtained.  438 

 439 

The retrogressive failure process from the simulation is illustrated in Figure 17, with the 440 

colour being proportional to the accumulated equivalent plastic strain. As illustrated, the 441 

erosion leads to the first retrogressive collapse C1 in the slope (Figure 17(b)). Two shear 442 

bands initiate from the bottom and propagate towards the top surface and the front inclined 443 

surface, respectively, resulting in a graben. During the sliding, one more shear band is 444 

generated in the graben dividing it into two elastic parts (Figure 17(c) and (d)). As the 445 

disturbed mass due to collapse C1 moves far away from the new slip surface, the second 446 

retrogressive collapse C2 occurs (Figure 17(e) and (f)). This mimics the first criterion for the 447 

occurrence of retrogressive failure, that the slide debris should be able to flow out of the slide 448 

area [1]. The same as that in C1, two plastic shear bands, also originating from the slope base, 449 

are formed in C2 which results in a graben and a horst. The mass in front of the new slope 450 

surface continues to move forward leading to the third retrogressive failure of the slope, C3 451 

(Figure 17(g)). After this, a considerable amount of mass is deposited in front of the new 452 

slope surface, resisting further collapse (Figure 17(h)). The final configuration of the slope, 453 
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shown in Figure 17(i), indicates that most of the clay involved in C2 and C3 has been 454 

remoulded. This reflects the other criterion for the occurrence of retrogressive failure, which 455 

states that the slide debris should be completely remoulded [1]. Eventually, the retrogressive 456 

failure results in a deposit with a run-out distance of 28.71 m and a retrogression distance of 457 

14.76 m (Figure 17(i)). A video of the entire failure process of the slope is available in the 458 

supplementary materials. 459 

 460 

The velocity of the sliding front and the maximum velocity were also recorded and are 461 

depicted in Figure 18. As illustrated, the maximum velocity is not always located at the 462 

sliding front. This can be explained by examining the velocity contour (Figure 19).  The first 463 

retrogressive failure results in the transformation of a part of the gravitational potential 464 

energy of the mass into kinetic energy, with the remaining energy being dissipated by plastic 465 

shearing (Figure 19(a)). The sliding front thus possesses the maximum velocity due to this 466 

transformation. The second retrogressive collapse further releases potential gravitational 467 

energy (Figure 19(b) and pushes the materials in front of it, consequently increasing the 468 

velocity of the corresponding mass. In contrast, the velocity of the sliding front decreases 469 

because of the friction along the basal surface and the effects of plastic dissipation. After a 470 

while, the mass at the middle moves faster than the sliding front does as shown in Figure 471 

19(c). The third retrogressive collapse further releases potential gravitational energy (Figure 472 

19(d)). The velocity of the involved mass in collapse C3 is relatively low, however, because a 473 

considerable body of clay with low velocity is located in front of the new slope surface. Note 474 

that the sliding front already ceased at 11.4t   s (Figure 19(e)). However, the clay at the 475 

middle of the sliding mass continues to be pushed and moves forward, which eventually 476 

disturbs the sliding front (Figure 19(f) and (g)). 477 

 478 
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The value of viscosity, back-calculated from various subaerial and submarine slides by 479 

Edgers and Karlsrud [75] and Johnson and Rodine [76], is in the range of 100 to 1499 Pa s . 480 

We here investigate the effect of the viscosity on the retrogressive failure by analysing the 481 

problem with varying viscosity coefficients of 1  Pa s , 10 Pa s , 100 Pa s , and 1000 482 

Pa s . Other material parameters for these simulations are the same as in the previous case. 483 

As shown in Figure 20, retrogressive failure occurs four times for both 1  Pa s and 10 484 

Pa s . Thus, the retrogression distances for these two cases, 20.25 m and 20.13 m, are very 485 

close (Figure 21), although the run-out distance for 1  Pa s  (38.18 m) is slightly larger 486 

than that for 10  Pa s  (36.73 m). When   is increased further, fewer retrogressive 487 

failures are induced: for example three times for 100  Pa s and only twice for 1000 488 

Pa s  (Figure 20). This means that an increase of  ( 10   Pa s ) causes a decrease in the 489 

run-out and retrogressive distance, as illustrated in Figure 21, because a higher viscosity 490 

results in much more plastic dissipation and, consequently, less potential gravitational energy 491 

is converted into kinetic energy. Such a decrease in energy transformation not only leads to a 492 

smaller run-out distance, but also causes more clay to be deposited in front of the newly 493 

formed slope surface which resists the occurrence of further retrogressive failure.  494 

 495 

7. Conclusions 496 

The progressive failure process of sensitive clays is simulated using the Particle Finite 497 

Element Method with an advanced elastoviscoplastic model which is a combination of the 498 

Bingham model (for describing rheological behaviour) and the Tresca model with strain-499 

softening (for capturing progressive failure behaviour). The resulting elastoviscoplastic 500 

analysis is reformulated as an optimization problem on the basis of a mixed variational 501 

principle and resolved in mathematical programming.  502 



25 
 

 503 

The proposed formulation is verified against the analytical solution of a one-dimensional 504 

elastoviscoplastic problem. The capability of the proposed computational approach for 505 

modelling progressive failure is illustrated by simulating the collapse of a column of sensitive 506 

clay. Additionally, the retrogressive failure of a slope in sensitive clay is reproduced 507 

successfully. The simulation results reflect the essential conditions for the occurrence of 508 

retrogressive collapse which are that the slide debris should be fully remoulded and flow 509 

away from the slide area. Furthermore, the effect of the viscosity of a sensitive clay on the 510 

nature of retrogressive collapse is also studied. Numerical results show that an increase of 511 

viscosity leads to a decrease in both the run-out distance and the retrogression distance due to 512 

the dissipation of a large amount of energy. 513 

 514 

Although the problem in this study is simulated under undrained conditions using total 515 

stresses, an effective stress analysis can also be performed. This can be achieved by merging 516 

the SOCP formulation for consolidation analysis of saturated porous media introduced in [23], 517 

where rate-independent models are utilised, with the mixed variational principle presented in 518 

this paper. The resulting formulation then can be incorporated into the particle finite element 519 

method for investigating the hydro-mechanical mechanism in the progressive failure of 520 

sensitive clays.   521 
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Appendix A. Time discretization 527 

The momentum conservation equation (1) is first discretized in time using the standard  -528 

method as:  529 

 
n+1 nT

1 n+1 1 n[ (1 ) ] =
t

  


  


v v
σ σ b                           (38) 530 

 
n+1 n

2 n+1 2 n(1 ) =
t

 


 


u u
v v                            (39)                               531 

where v  are velocities, 1  and 2  are parameters taking values in [0, 1], the subscripts n  and 532 

n+1  refer to the known and new, unknown states, and n+1 n=t t t   is the time step. 533 

Rearranging the above equations leads to  534 
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 with the displacement increments n+1 n= u u u  and  537 

 
1 2
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The natural boundary condition is approximated in an analogous manner leading to  540 

 
1T

n+1 n t

1

1
( ) = on






 N σ σ t     with 

1

1
=


t t                                     (44) 541 

and the discretised essential boundary condition is  542 

n+1 n+1 uon u u                                                               (45) 543 

By introducing another parameter  3 0,  1  , the incremental equations of the 544 

elastoviscoplastic model (Eqs. (6)-(10)) are 545 
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e vp   ε ε ε                                                                     (46) 546 

e  ε σ                                                                       (47) 547 

vp
vp

n 3 n 3 n n

3 3

1
( ) ( ) ( ) ( )

t t


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vp

n+1( )GF   ε τ                                                          (49) 549 

n+1 n+1( ) 0; 0; ( ) 0F F     τ τ                                        (50) 550 

In summary, the governing equations for incremental analysis of elastoviscoplasticity consist 551 

of Eqs. (40), (41), (44)-(50). 552 

 553 
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Figure 1. Variation of uc  with deviatoric plastic strain represented by parameter   762 
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Figure 2. The mixed triangular element used in the simulation 766 
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 768 
 769 
 770 
 771 
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 773 

Figure 3. The contact between a deformable body and a rigid surface 774 

 775 

Figure 4. Steps for the Particle Finite Element Method (after [35]) 776 

 777 
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 781 

Figure 5. (a) Schematic diagram of a bar subject to uniaxial loads; and (b) one-dimensional 782 

elastoviscoplastic model. 783 

 784 

 785 

 786 

 787 

 788 

 789 

Figure 6. Curves of (a) the applied strain rate and (b) the variation of the yield stress for the 790 

one-dimensional stress relaxation problem 791 
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  795 

Figure 7. Comparison of numerical and analytical solutions for the one-dimensional stress 796 

relaxation problem 797 

 798 

Figure 8. Curves of (a) the applied strain rate and (b) the variation of the yield stress for the 799 

one-dimensional strain-softening problem 800 
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 802 
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 804 

Figure 9. Comparison of numerical and analytical solutions for the one-dimensional 805 

elastoviscoplastic problem with strain softening 806 
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 808 

 809 

Figure 10. Schematic diagram for the collapse of a column of sensitive clays 810 
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 813 

Figure 11. Collapse evolution processes of the column of initially undisturbed sensitive clays 814 
and remoulded sensitive clays. Colours are proportional to accumulated equivalent plastic 815 

strain 816 

 817 
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 818 

Figure 12. Curves of the front location and the centre height of the column against 819 

normalized time 820 

 821 
 822 

 823 

 824 

Figure 13. Final configuration with mesh topology illustrated 825 
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 826 

Figure 14. Effects of the utilized mesh size on the curves for front location and centre height 827 

of the column against normalized time 828 

 829 
 830 

 831 

 832 

Figure 15. Final configurations and shear band distributions of the column collapse using (a) 833 
coarse meshes, (b) medium meshes, and (c) fine meshes. Colours are proportional to the 834 

accumulated equivalent plastic strain 835 
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 839 

 840 

Figure 16. Schematic diagram for the retrogressive failure of a slope in sensitive clays. 841 
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 843 

 844 

Figure 17. Retrogressive failure procedures of the slope. Colours are proportional to 845 

accumulated equivalent plastic strain 846 

 847 
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 848 

Figure 18. Velocity of the sliding front and the maximum velocity against time 849 
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 852 

Figure 19. Velocity contour during the retrogressive failure 853 
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 857 

Figure 20. Final deposits from the simulation using different viscosity coefficients for 858 

sensitive clays 859 

 860 
 861 
 862 

 863 

Figure 21. Curves of run-out distance and retrogression distance against viscosity 864 


