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Abstract

Hashin–Shtrikman type bounds are proposed for nonlinear isotropic composite conductors
in two dimensions. Those bounds are obtained by combining the translation method with
the idea of embedding the original two-dimensional problem in an extended problem of
dimension 6. Invariance properties allow the evaluation of the bounds to be dramatically
simplified. Explicit results are obtained for the problem of dielectric breakdown. Numerical
results are given for two-phase composites governed by power-law energy functions. The
obtained bounds are shown to improve on the linear comparison bounds of the Hashin–
Shtrikman type that are delivered by the Talbot–Willis (1985) approach and the Ponte
Castañeda (1991) variational method.

Keywords: composite materials, nonlinear homogenization, conductivity, bounds,
translation method

1. Introduction

This paper is concerned with bounding the effective energy of a nonlinear composite con-
ductor in terms of the properties of its constitutive phases. A lot of work has been devoted
to that topic, especially for linear composites (see e.g. the monograph by Milton (2002)).
Wiener (1912) proposed general bounds on the effective conductivity that hold for any mi-
crostructure. For statically isotropic microstructures, tighter bounds have been obtained
by Hashin and Shtrikman (1962) using a variational approach that employs a homogeneous
’linear comparison’ medium. The Hashin–Shtrikman bounds are known to be optimal, i.e.
they are achieved by certain isotropic microstructures. The variational approach of Hashin
and Shtrikman (1962) has later been extended by Willis (1977) and further generalized to
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nonlinear composites by Talbot and Willis (1985). A related approach for bounding the ef-
fective energy of nonlinear composites has been advanced by Ponte Castañeda (1991). The
method of Ponte Castañeda (1991) makes use of a linear comparison composite with the
same microstructure as the given nonlinear composite. Most crucially, any bound on the
effective energy of the linear comparison composite can be used to generate a corresponding
bound on the energy of the nonlinear composite. In particular, nonlinear bounds that take
3-point statistics into account can be obtained (Ponte Castañeda, 1992). When used in
conjunction with the linear Hashin-Shtrikman bounds, the approach of Ponte Castañeda
(1991, 1992) recovers1 the bounds of Talbot and Willis (1985). Those bounds will be re-
ferred to as the linear comparison bounds in the following. In contrast with the linear
case, the linear comparison bounds are generally not optimal and can a priori be im-
proved. For viscoplastic composites, Ponte Castañeda (2012) has shown that improved
bounds could be obtained via incremental homogenization. Strictly speaking, the bounds
of Ponte Castañeda (2012) hold only for a special class of isotropic microstructures that are
compatible with the incremental homogenization procedure (see Ponte Castañeda (2012)
for details). Aside from rigorous bounds, the issue of finding estimates of the effective
behavior has also received a lot of attention (Maxwell-Garnett, 1904; Bruggeman, 1935;
Norris et al., 1985; Ponte Castañeda and Kailasam, 1997; Ponte Castañeda, 2002; Idiart and
Ponte Castañeda, 2013). As pointed out notably by Idiart and Ponte Castañeda (2013),
bounds and estimates are complementary. In particular, bounds allow for the validity of
estimates to be gauged.

In this paper, we use the ’translation’ method (Milton, 1990) to derive rigorous bounds
that hold for the whole class of isotropic two-dimensional composites and improve on the
linear comparison bounds. Originally introduced by Lurie and Cherkaev (1984) and inde-
pendently by Tartar (1985); Murat and Tartar (1985), the translation method has proved
to be a powerful tool in various nonlinear homogenization problems, such as bounding
the stress-strain curve of composites (Milton and Serkov, 2000; Talbot and Willis, 2004;
Peigney, 2005) or bounding the recoverable strains in shape memory alloys (Bhattacharya
and Kohn, 1997; Peigney, 2008, 2016). For linear composites, the Hashin–Shtrikman
bounds can be elegantly recovered from the translation method by embedding the orig-
inal problem in a problem of higher dimension (namely, d2 where d is the dimension of
the physical space). That embedding is achieved by considering simultaneously d loading
orientations. For nonlinear composites, combining the translation method with the idea
of embedding has proved to be a successful approach notably for bounding the breakdown
limit of dielectric composites or the yield limit of ideally-plastic polycrystals (Kohn and
Little, 1998; Nesi et al., 1999, 2000; Garroni and Kohn, 2003). Nesi et al. (1999) proved
that the linear comparison bound cannot be better than the bounds obtained from the

1except in the unusual case where the constitutive phases are governed by non strongly convex energy-
functions (Ponte Castañeda and Willis, 1993).
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translation method. Those authors compared the two bounds on some examples of two-
dimensional composites and observed that they actually coincide. In those comparisons,
Nesi et al. (1999) used the translation bound obtained by embedding the original problem
in R4, as considered originally by Lurie and Cherkaev (1984) and Tartar (1985); Murat and
Tartar (1985) in the linear setting. In this paper, we consider an embedding of the original
two-dimensional problem in R6, instead of R4. This is achieved by considering 3 loading
orientations, instead of 2. The corresponding bounds are expected to be stronger than the
earlier translation bounds (using 2 loading orientations) because they actually apply to a
smaller class of composites (namely the class of composites having the same response along
3 loading orientations, rather than 2). Although the calculations become more difficult,
the bounds obtained are shown to often improve on the linear comparison bounds.

The general methodology is introduced in Sect. 2, with special emphasis on the problem
of deriving lower bounds on the effective energy. The relevance of the proposed approach
is demonstrated in Sect. 3 by considering some examples for which explicit results can
be obtained. Embedding in R6 has the critical downside of dramatically increasing the
complexity of the calculations. In Sect. 4 we use invariance properties to show that major
simplifications occur when the individual phases are isotropic. The developments of Sect.
4 are essential to make the approach tractable and to be able to evaluate the bounds in
practice. The proposed approach is applied in Sect. 5 to power law composites. In Sect.
6, the methodology is adapted to bound the effective energy from above.

2. A general lower bound on the effective energy

Consider a two-dimensional inhomogeneous electric conductor occupying a domain Ω
of unit volume. The electric field e and the current density j are related by the local
constitutive law

j =
∂w

∂e
(e,x) (2.1)

where w is the convex energy-density function, depending both on e and on the location
x. Denoting by ē (resp. ̄) the spatial average of e (resp. j), it can be shown (Hill, 1963;
Willis, 1986) that ē and ̄ are related by the effective constitutive law

̄ =
dweff

dē
(ē) (2.2)

where weff is the effective energy function of the composite material, defined by

weff (ē) = inf
e∈K(ē)

∫
Ω
w(e,x)dω (2.3)

with

K(ē) = {e : Ω 7→ R2|e = ∇V for some V : Ω 7→ R verifying V (x) = ē.x on ∂Ω}.
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Determining weff (ē) formally amounts to solve the set of local equations

div j = 0 in Ω , j =
∂w

∂e
(e,x), e ∈ K(ē). (2.4)

The problem (2.1)-(2.4) arises in many physical contexts, such as thermal conductivity,
magnetic permeability or diffusion. Alternatively, the local constitutive law (2.1) can be
rewritten as

e =
∂w∗

∂j
(j,x)

where the complementary energy-density function w∗ is the Legendre dual of w. Similarly,
the effective constitutive law (2.2) can be expressed as

ē =
dw∗eff

d̄
(̄)

where the effective complementary energy function w∗eff is the Legendre dual of weff and

satisfies

w∗eff (̄) = inf
j∈S(̄)

∫
Ω
w∗(j,x)dω (2.5)

with
S(̄) = {j : Ω 7→ R2|div j = 0 in Ω; j(x) · n = ̄ · n on ∂Ω}.

This paper is concerned with deriving bounds on weff and w∗eff , with special emphasis on

the case where the overall behavior is isotropic. Since weff and w∗eff are Legendre duals

of each other, a lower (resp. upper) bound on weff translates as an upper (resp. lower)
bound on w∗eff , and vice versa. In order to simplify the presentation, we mainly focus on

lower bounds on weff . The issue of deriving upper bounds on weff is addressed in Sect. 6.

2.1. Extended effective energy

Consider n distinct values ē1, · · · , ēn and let ei(x) be the solution of (2.4) for ē = ēi.
It can be seen from (2.3) that the extended field E = (e1, · · · , en) solves the minimization
problem

inf
E∈K(Ē)

∫
Ω

n∑
i=1

w(ei,x) dω (2.6)

where Ē = (ē1, · · · , ēn) and

K(Ē) = {(e1, · · · , en) : ei = ∇Vi for some Vi : Ω 7→ R verifying Vi(x) = ēi.x on ∂Ω}.

In view of (2.6), it is convenient to introduce the extended energy W defined as

W (E,x) =
n∑
i=1

w(ei,x).
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Similarly, we define the extended effective energy Weff by

Weff (Ē) =

n∑
i=1

weff (ēi). (2.7)

Combining (2.3) and (2.6) leads to

Weff (Ē) = inf
E∈K(Ē)

∫
Ω
W (E,x) dω. (2.8)

The variational structure (2.8) is similar to that of weff in (2.3), except it is defined in
terms of higher dimensional fields.

2.2. Translated bounds on the extended energy

We now use the translation method to generate bounds on Weff . Let U(E) be a given
function (referred to in the following as a comparison potential) and consider the Legendre
transform

(W − U)∗(T ,x) = sup
E
E · T −W (E,x) + U(E) (2.9)

for any T in R2n. The dot · in (2.9) denotes the Euclidean scalar product in R2n. It follows
from (2.9) that

W (E,x) ≥ E · T + U(E)− (W − U)∗(T ,x) (2.10)

for any E and T in R2n. Taking T independent on x and integrating (2.10) over the
domain Ω, we find∫

Ω
W (E,x)dω ≥ Ē · T +

∫
Ω
U(E)dω −

∫
Ω

(W − U)∗(T ,x)dω (2.11)

for any E ∈ K(Ē). Assume now that the comparison potential U is quasiconvex, i.e.
satisfies ∫

Ω
U(E)dω ≥ U(Ē) for any E ∈ K(Ē). (2.12)

Replacing in (2.11) yields∫
Ω
W (E,x)dω ≥ Ē · T + U(Ē)−

∫
Ω

(W − U)∗(T ,x)dω (2.13)

for any E ∈ K(Ē). Since the right-hand side of (2.13) is independent on E, taking the
infimum over E ∈ K(Ē) gives

Weff (Ē) ≥ Ē · T + U(Ē)−
∫

Ω
(W − U)∗(T ,x)dω. (2.14)

The right-hand side of (2.14) is thus a lower bound on Weff . Each choice of comparison
potential U generates a corresponding bound. However, U should be carefully chosen
for the bound (2.14) to be meaningful. In that regard, a first requirement is that (W −
U)∗(T ,x) < +∞, which sets restrictions on the behavior of U at infinity.
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2.3. The isotropic case

The bound (2.14) applies to any microstructure. We assume from now on that the given
composite is isotropic, in which case weff only depends on the electric field ē through its
norm ē. In other words, there exists a function φeff such that

weff (ē) = φeff (ē). (2.15)

Take Ē = (ē1, · · · , ēn) such that ē1,· · · ,ēn have the same norm (denoted by ē), i.e.

ē1 = · · · = ēn = ē. (2.16)

We have
weff (ē1) = · · · = weff (ēn) = φeff (ē), (2.17)

hence Eq. (2.14) implies the following lower bound on φeff (ē):

φeff (ē) ≥ 1

n

(
Ē · T + U(Ē)−

∫
Ω

(W − U)∗(T ,x)dω

)
. (2.18)

In the derivation exposed, the isotropy is captured only by the relation (2.17), i.e. by
stating that the effective energy weff takes the same value along n prescribed directions
having the same norm. For linear materials, the condition (2.17) fully characterizes isotropy
as soon as n ≥ 2 (at least for well-chosen directions ei). For nonlinear behaviour, however,
the relation (2.17) is a necessary but not sufficient condition for isotropy to occur. In such
case, the bound delivered by (2.18) is expected to become tighter as n increases.

Nesi et al. (1999) studied bounds of the form (2.18) with n = 2. The comparison
potential U was chosen as the determinant in R2. The resulting translated bound was
shown by Nesi et al. (1999) to often coincide with the linear comparison bound. In this
paper, we take n = 3 i.e. we consider 3 loading orientations instead of 2. The resulting
bounds are expected to be sharper than the translation bounds of Nesi et al. (1999) because
they apply to a smaller class of composites, namely the class of composites having the
same response along 3 different orientations rather than 2. In more detail, we consider
comparison potentials of the form

U(E) = αV (E) (2.19)

where α is a parameter and

V (E) =

3∑
i, j = 1
i < j

(uivj − ujvi). (2.20)
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In (2.20), (ui, vi) denotes the components of the vector ei in R2, so that

E = (u1, v1, u2, v2, u3, v3).

For any fixed i and j, the determinant uivj − ujvi is known to be a null Lagrangian, i.e. it
satisfies (2.12) as an equality. Consequently, the function (2.19) is also a null Lagrangian
for any value of α. The potential U in (2.19) is quadratic in E and can be written in the
form

U(E) =
1

2
αE ·M ·E

where M is the symmetric matrix given by

M =



0 0 0 1 0 1
0 0 −1 0 −1 0
0 −1 0 0 0 1
1 0 0 0 −1 0
0 −1 0 −1 0 0
1 0 1 0 0 0

 . (2.21)

For later reference, we note that the eigenvalues of M are ±
√

3 and 0.

We will use (2.18) with
Ē = ēN (2.22)

where

N =
1

2
(1,−

√
3,−1,−

√
3,−2, 0). (2.23)

The vector Ē = ēN satisfies (2.16) and the three corresponding directions ēi make a
π/3 angle between each other (Fig. 1). The main motivation for the choice (2.22) is that
it allows the linear Hashin–Shtrikman bound to be recovered, as will be seen in Sect. 3.1.
It can easily be verified that N is an eigenvector of M for the eigenvalue −

√
3. Therefore,

using (2.18) with Ē of the form (2.22), we obtain

φeff (ē) ≥ ē

3
N · T −

√
3

2
αē2 − 1

3

∫
Ω

(W − αV )∗(T ,x) dω. (2.24)

The bound (2.24) holds for any α ∈ R and T ∈ R6, hence

φeff (ē) ≥ sup
α∈R,T ∈R6

{
ē

3
N · T −

√
3

2
αē2 − 1

3

∫
Ω

(W − αV )∗(T ,x) dω

}
. (2.25)

Calculations can be made simpler if the vector T in (2.25) is restricted to be parallel to
N , i.e. of the form T = τN . This generates the following lower bound:

φeff (ē) ≥ sup
α∈R,τ∈R

{
ēτ −

√
3

2
αē2 − 1

3

∫
Ω

(W − αV )∗(τN ,x) dω

}
. (2.26)
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Figure 1: The three directions (ē1, ē2, ē3) constituting the vector Ē used in the calculation of the bounds.
For an isotropic composite, the effective energies weff (ē1), weff (ē2), weff (ē3) take the same value.

In general, the bound (2.26) is weaker than the bound (2.25). We will show in Sect.4
that the two bounds actually coincide if all the constitutive phases have an isotropic be-
havior. It should also be noted that the bounds (2.25) and (2.26) are meaningful only if
w(e,x) has faster than quadratic growth in e (so as to ensure that (W − αV )∗(τN ,x)
remains finite).

In the next section, the relevance of the bounds (2.25) and (2.26) is demonstrated on
some examples for which exact expressions can be obtained.

3. Exact results

3.1. The linear case

It is insightful to first consider the case where w(e,x) = 1
2e · σ(x) · e and σ(x) is

symmetric positive definite. The corresponding extended energy W (E,x) is equal to 1
2E ·

Σ(x) ·E where Σ(x) has the block structure

Σ(x) =

 σ(x) 0 0
0 σ(x) 0
0 0 σ(x)

 .

For an isotropic composite, the effective energy weff (ē) can be written as 1
2σeff ē

2 where
σeff is the effective conductivity. A lower bound on σeff can be obtained by using the
prescription (2.25) with ē = 1. Provided that Σ(x) − αM is positive definite, (W −
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αV )∗(T ,x) is finite and given by

(W − αV )∗(T ,x) =
1

2
T · (Σ(x)− αM)−1 · T .

It follows from (2.24) that

σeff ≥
2

3
N · T −

√
3α− 1

3
T ·
[ ∫

Ω
(Σ(x)− αM)−1dω

]
· T . (3.1)

Maximizing the right hand side of (3.1) with respect to T , we obtain

σeff ≥
1

3
N ·

[ ∫
Ω

(Σ(x)− αM)−1dω
]−1
·N −

√
3α. (3.2)

We note that the value of T realizing the maximum in (3.1) is

T =
[ ∫

Ω
(Σ(x)− αM)−1dω

]−1
·N . (3.3)

Let us specialize the bound (3.2) in the case where σ(x) is isotropic, i.e. of the form
σ(x)1 where σ(x) > 0 and 1 is the identity matrix in R2. Since (Σ(x) − αM) ·N =
(σ(x) +

√
3α)N , a direct calculation from (3.2) leads to

σeff ≥
[ ∫

Ω

1

σ(x) +
√

3α
dω
]−1
−
√

3α. (3.4)

The relation (3.4) holds provided that Σ(x)− αM is positive definite. As noted in Sect.
2.3, the eigenvalues of M are 0 and ±

√
3. Hence Σ(x) − αM is positive definite if

|α| < σ(x)/
√

3. Letting α tend towards infx σ(x)/
√

3 from below in (3.4), we obtain

σeff ≥
[ ∫

Ω

1

σ(x) + infx σ(x)
dω
]−1
− inf
x
σ(x). (3.5)

The formula (3.5) corresponds to the celebrated bound of Hashin and Shtrikman (1962).
For instance, in the case of a two-phase composite, (3.5) specializes as

σeff ≥ c1σ1 + c2σ2 −
c1c2(σ1 − σ2)2

σ1 + c2σ1 + c1σ2
(3.6)

where σi and ci are respectively the conductivity and the volume fraction of phase i. In
(3.6), the phases are labelled in such fashion that σ1 < σ2.

The fact that the linear Hashin–Shtrikman bound is recovered allows us to check that
the choice (2.22) of Ē is consistent with the potentials U considered. Others choice would
do, but Ē cannot be taken in a completely arbitrary fashion (the important point is that
M · Ē = −

√
3Ē).

In the case of linear isotropic constitutive materials, observe from (3.3) that the optimal
value of T is parallel to N , hence nothing is lost by considering (2.26) instead of (2.25).
As will be shown in Sect. 4, that property remains true in the nonlinear case.
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3.2. Dielectric breakdown in a two-phase composite

Consider a two-phase nonlinear composite in which the energy wi of phase i (i = 1, 2)
is given by

w1(e) =

{
0 if e ≤ 1,
+∞ if e > 1.

(3.7)

w2(e) =

{
0 if e = 0,
+∞ otherwise

(3.8)

Phase 1 behaves as a perfect dielectric so long as e ≤ 1, and breaks down when e reaches
1. Phase 2 is a perfect conductor. Assuming overall isotropy, the effective energy weff (ē)
takes the form

weff (ē) =

{
0 if ē ≤ keff,

+∞ if ē > keff;
(3.9)

i.e. the composite material behaves as a perfect dielectric as long as ē < keff and breaks
down when the magnitude of the electric field ē reaches the critical value keff. For later
reference, we note that (3.9) corresponds to an effective complementary energy w∗eff of the

form
w∗eff (̄) = keff ̄. (3.10)

where ̄ is the magnitude of ̄. The parameter keff in (3.9) and (3.10) is referred to as the
effective strength of the composite dielectric. The formula (2.26) is now use to bound keff.
Denoting the volume fraction of phase i by ci, Eqs. (2.26) and (3.9) imply that any k in
[0, keff] satisfies

0 ≥ kτ −
√

3

2
αk2 −

2∑
i=1

ci
3

(Wi − αV )∗(τN) ∀α > 0, τ ≥ 0; (3.11)

with

(Wi − αV )∗(τN) = sup
E=(e1,e2,e3)

τN ·E +
1

2
αE ·M ·E −

3∑
j=1

wi(ej)

 . (3.12)

From (3.7) and (3.8) we have

(W1 − αV )∗(τN) = sup
E = (e1, e2, e3)

ei ≤ 1

{
τN ·E +

1

2
αE ·M ·E

}
(3.13)
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and (W2 − αV )∗(τN) = 0. We can easily get rid of the parameter α in (3.11): For any
non-negative α, observe indeed from (3.13) that (W1−αV )∗(τN) = α g∗(τ/α) where g∗ is
defined for τ ′ > 0 by

g∗(τ ′) = sup
E = (e1, e2, e3)

ei ≤ 1

{
τ ′N ·E +

1

2
E ·M ·E

}
. (3.14)

Further setting

P (k, τ) = kτ −
√

3

2
k2 − c1

3
g∗(τ),

we have

sup
α>0,τ≥0

kτ −
√

3

2
αk2 −

2∑
i=1

ci
3

(Wi − αV )∗(τN) = sup
α>0,τ≥0

αP (k,
τ

α
)

= sup
α>0,τ ′≥0

αP (k, τ ′)

=


+∞ if 0 < sup

τ ′≥0
P (k, τ ′)

0 if 0 ≥ sup
τ ′≥0

P (k, τ ′).

Hence the condition (3.11) is equivalent to

0 ≥ sup
τ≥0

P (k, τ).

Any k verifying 0 < supτ≥0 P (k, τ) is necessary above keff. Therefore, an upper bound k̃
on keff is given by

k̃ = inf

{
k : 0 < sup

τ≥0
P (k, τ)

}
. (3.15)

Evaluating k̃ requires some details on the function g∗ introduced in (3.14). Note that
g∗ is convex because it is defined as the pointwise supremum of a family of linear functions.
The constrained quadratic optimization problem (3.14) can be solved in closed form as
detailed in Appendix A. Setting τ0 = 1 +

√
3, it is shown in Appendix A that:

g∗(τ) =

{
τ(cos θ −

√
3 sin θ + 1) + 2(cos θ + 1) sin θ if 0 ≤ τ ≤ τ0,

3(τ −
√

3
2 ) if τ ≥ τ0,

(3.16)

where θ is characterized by the conditions

sin θ =


√

3

2
if τ = 0,

2

τ
(2 cos2 θ − 1 + cos θ)−

√
3 cos θ if τ > 0,

cos θ = z − 1

2
+

τ

2
√

3
,

(3.17)
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and z is the largest root of the cubic equation

8z3 − 6z +

√
3τ3

9
− 2 = 0. (3.18)

0 1 2 3 4
2

4

6

8

10

τ

g
∗

0 1 2 3 4
0

1

2

3

4

τ0

τ0

τ

∂
g
∗

Figure 2: Plots of the function g∗ and of its subdifferential ∂g∗.

The function g∗ is depicted in Fig. 2(left). It follows from (3.16)-(3.18) that g∗ is
differentiable for τ 6= τ0, with a derivative given by

dg∗

dτ
(τ) =

{
cos θ −

√
3 sin θ + 1 for 0 ≤ τ < τ0,

3 for τ > τ0.
(3.19)

At τ = τ0, g∗ is subdifferentiable (Rockafellar, 1970) and we have

∂g∗(τ0) =
[

lim
τ−→τ−0

dg∗

dt
(τ), lim

τ−→τ+0

dg∗

dt
(τ)
]

= [τ0, 3]. (3.20)

The subdifferential ∂g∗ is represented in Fig. 2(right). The nondifferentiability of g∗ at
τ = τ0 corresponds to a (hardly noticeable) discontinuity in the slope of the curve τ 7→ g∗(τ)
shown in Fig. 2(left).

We are now in a position to evaluate the bound k̃ in (3.15). By (3.16) we have

sup
τ≥τ0

P (k, τ) =

{
+∞ if k > c1,
P (k, τ0) if k ≤ c1.

12



Hence (3.15) can be rewritten as

k̃ = inf

{
k ≤ c1 : 0 < sup

0≤τ≤τ0
P (k, τ)

}
. (3.21)

Since P is continuous in (k, τ), the function sup0≤τ≤τ0 P (k, τ) is continuous in k. In such
condition, (3.21) implies that

sup
0≤τ≤τ0

P (k̃, τ) = 0. (3.22)

Noting that τ 7→ P (k̃, τ) is concave, the values τ∗ reaching the supremum in (3.22) are
fully characterized by the relation 0 ∈ ∂P (k̃, τ), i.e.

3

c1
k̃ ∈ ∂g∗(τ∗). (3.23)

As a consequence of (3.19) and (3.20), Eq. (3.23) can be rewritten as
τ∗ = τ0 if k̃ ≥ c1

3
τ0,

τ∗ < τ0, 3
k̃

c1
=
dg∗

dτ
(τ∗) if k̃ <

c1

3
τ0.

(3.24)

We first consider the case k̃ ≥ c1
3 τ0. In such case, the requirement (3.22) is equivalent

to P (k̃, τ0) = 0. Since g∗(τ0) = 3(1 +
√

3/2), we obtain

0 = (1 +
√

3)k̃ −
√

3

2
k̃

2 − c1(1 +

√
3

2
)

which yields

k̃ =
1√
3

(
1 +
√

3−
√

1 + (3 + 2
√

3)(1− c1)
)
. (3.25)

That expression holds provided it is compatible with the restriction k̃ ≥ c1
3 τ0, i.e. for

c1 ≥
√

3/2.
Let us now consider the case k̃ < c1

3 τ0. We have P (k̃, τ∗) = 0, i.e.

0 = k̃τ∗ −
√

3

2
k̃

2 − c1

3
g∗(τ∗) (3.26)

where τ∗ < τ0 satisfies (3.24), i.e.

3

c1
k̃ = cos θ∗ −

√
3 sin θ∗ + 1. (3.27)

In (3.27), cos θ∗ and sin θ∗ are obtained by setting τ = τ∗ in (3.17). Using (3.27) and the
expression (3.16) of g∗, Eq. (3.26) simplifies as

0 = −
√

3

2
k̃

2 − 2

3
c1(cos θ∗ + 1) sin θ∗. (3.28)
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Let a = 1 + cos θ∗ and b = −
√

3 sin θ∗. From (3.27) and (3.28) we have

a+ b =
3

c1
k̃ , ab =

9

4c1
k̃

2
.

It follows that

a =
3k̃

2c1
(1 + ε

√
1− c1), b =

3k̃

2c1
(1− ε

√
1− c1) (3.29)

for ε ∈ {−1, 1}. Rewriting the equality cos2 θ∗ + sin2 θ∗ = 1 in terms of (a, b) leads to

k̃ =
c1(1 +

√
1− c1)

2− c1 +
√

1− c1
. (3.30)

The right-hand side of (3.30) is a monotonically increasing function of c1 and is equal to
c1τ0/3 for c1 =

√
3/2.

In summary, the final expression of the bound k̃ on the effective strength of the dielectric
composite is thus

k̃ =


c1(1 +

√
1− c1)

2− c1 +
√

1− c1
for c1 ≤

√
3/2,

1√
3

(
1 +
√

3−
√

1 + (3 + 2
√

3)(1− c1)
)

for c1 ≥
√

3/2.

(3.31)

The bound k̃ given by (3.31) is represented in Fig. 3, along with the Wiener bound kW
and the linear comparison bound kLC , respectively given by (Ponte Castañeda, 1992)

kW = c1 , kLC =
c1√

2− c1
.

We can observe that k̃ strictly improves on the linear comparison bound. The maximum
improvement is about 6%.

4. Case of isotropic constituents

In general there are substantial difficulties in evaluating the bound in (2.25). For any
given T and α, the formula (2.25) indeed requires to evaluate the quantity (W−αV )∗(T ,x)
defined in (2.9), i.e. to solve a nonlinear optimization problem in R6. Since V is nonconvex,
local optima do not necessarily coincide with global optima and multiple solutions can exist.
In addition, as illustrated in Sect. 3, the 6-dimensional vector T in (2.25) as well as the
scalar parameter α should be optimized upon in order to get relevant bounds.

We show that major simplifications occur when the constituent materials of the com-
posite are isotropic, i.e. when the local energy function w(e,x) can be written as

w(e,x) = φ(e,x) (4.1)
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Figure 3: Upper bounds on the effective strength keff of a two-phase dielectric composite: Wiener bound

kW (dotted line), linear comparison bound kLC (red dashed curve), proposed bound k̃ (solid curve).

where e denotes the norm of the vector e. Under such assumption, we show in Sect.
4.2 that the values of T reaching the supremum in (2.25) are necessarily parallel to the
vector N introduced in (2.23). A first consequence is that the optimization with respect
to T in (2.25) is reduced from a 6-dimensional to a 1-dimensional problem. As a second
consequence, only the values taken by (W − αV )∗(T ,x) for T parallel to N are needed
for evaluating the optimized bound. For such values of T , the nonconvex optimization
problem that defines (W − αV )∗(T ,x) can be considerably simplified, as explained in
Sect. 4.3. In all the developments presented next, a central role is played by a group of
linear transformations that leave V , W and N invariant. Those transformations are first
introduced in Sect. 4.1.

4.1. Invariance properties

Consider the linear transformations defined on R6 by

R1 · (e1, e2, e3) = ( r(π3 ) · e2 , r(π3 ) · e3 , r(−2π
3 ) · e1 )

R2 · (e1, e2, e3) = ( r(2π
3 ) · e3 , r(−π3 ) · e1 , r(−π3 ) · e2 )

S1 · (e1, e2, e3) = ( s(−2π
3 ) · e1 , s(π3 ) · e3 , s(π3 ) · e2 )

S2 · (e1, e2, e3) = ( s(2π
3 ) · e3 , s(2π

3 ) · e2 , s(2π
3 ) · e1 )

S3 · (e1, e2, e3) = ( s(π) · e2 , s(π) · e1 , s(0) · e3 )

(4.2)
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· I R1 R2 S1 S2 S3

I I R1 R2 S1 S2 S3

R1 R1 R2 I S2 S3 S1

R2 R2 I R1 S3 S1 S2

S1 S1 S3 S2 I R2 R1

S2 S2 S1 S3 R1 I R2

S3 S3 S2 S1 R2 R1 I

Table 1: Group table of G.

where

r(α) =

(
cosα − sinα
sinα cosα

)
is the two-dimensional rotation with angle α, and

s(α) =

(
cosα sinα
sinα − cosα

)
is the two-dimensional reflection through the axis (cos(α/2), sin(α/2)). The transforma-
tions in (4.2) form a group G whose table is shown in Table 1. The action of G on a vector
(e1, e2, e3) is represented in Figure 4.

It can be verified that the function U in (2.19) is invariant by G, i.e. that

Gt ·M · G = M for all G ∈ G, (4.3)

where the superscript t denotes the transpose operator. There are other linear transforma-
tions satisfying (4.3) but those in G have the additional property of leaving N invariant,
i.e. we have

G ·N = N for all G ∈ G. (4.4)

Also observe that W is invariant under G as the transformations in G have the effect of
permuting the norms of the vectors e1, e2, e3.

We further note that all the transformations in G are isometries of R6, i.e. they satisfy
the relation Gt · G = I. More precisely:

• R1 and R2 are ’rotations’, i.e. detRi = 1. Their invariant space is vect(N ,N ′)
with

N ′ =
1

2
(−
√

3,−1,−
√

3, 1, 0, 2). (4.5)

• S1, S2 and S3 are ’reflections’, i.e. Si · Si = I. We have already noted that
Si ·N = N , and it can be checked that

Si ·N ′ = −N ′ for i = 1, 2, 3. (4.6)
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e′1

e′2

e′3

R1

e1

e2

e3

e′1

e′2

e′3

S1

e′1

e′2

e′3

S2

e′1

e′2
e′3

S3

e′1

e′2

e′3

R2

Figure 4: Action of G on a vector (e1, e2, e3) (shown in upper left). The vector (e′
1, e

′
2, e

′
3) shows the

transformed of (e1, e2, e3) for each transformation in G. The transformations Ri involve some rotations
(with angle in {±π/3,±2π/3}) and some permutations of the vectors (e1, e2, e3). The transformations
Si involve some reflections (through axis shown as dashed lines) and some permutations of the vectors
(e1, e2, e3).

For our purpose, an important observation is that

I + R1 + R2 + S1 + S2 + S3 = 2N ⊗N . (4.7)

We close this section with a justification of the identity (4.7). Take any arbitrary E in
R6 and set E′ = (I + R1 + R2) ·E. It follows from Table 1 that

R1 ·E′ = (R1 + R2
1 + R1 ·R2) ·E = (R1 + R2 + I) ·E = E′,

i.e. that E′ is invariant by R1. Hence E′ ∈ vect(N ,N ′). This shows that I + R1 + R2

takes values in vect(N ,N ′) and therefore can be written as

I + R1 + R2 = N ⊗ a+N ′ ⊗ a′ (4.8)
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for some a and a′ in R6. Taking the transpose of (4.8) and noting from Table 1 that
Rt

1 = R−1
1 = R2, we obtain

I + R1 + R2 = a⊗N + a′ ⊗N ′. (4.9)

Applying I +R1 +R2 to N and observing that N ·N ′ = 0 shows that a = N . Similarly,
applying I + R1 + R2 to N ′ gives a′ = N ′. We thus arrive at

I + R1 + R2 = N ⊗N +N ′ ⊗N ′.

Now right-multiplying that last equation by I + S3 gives

(I + R1 + R2).(I + S3) = N ⊗ (N + S3 ·N) +N ′ ⊗ (N ′ + S3 ·N ′) = 2N ⊗N

where the relation (4.6) has been used. Expanding (I + R1 + R2).(I + S3) and using
Table 1 shows that (I +R1 +R2).(I +S3) = I +R1 +R2 +S1 +S2 +S3, which gives
the identify (4.7). �

4.2. Optimization with respect to T

For a given α, the best bound available from (2.25) is

sup
T ∈R6

ē

3
N · T −

√
3

2
αē2 − F (T ) (4.10)

with

F (T ) =
1

3

∫
Ω

(W − αV )∗(T ,x) dω. (4.11)

The definition (2.9) shows that (W − αV )∗(T ,x) is the supremum of linear functions in
T . Hence (W − αV )∗(T ,x) in convex in T . Consequently, F is convex and the function
T −→ ē

3N ·T −F (T ) that appears in (4.10) is concave. It follows that the optimal values
of T in (4.10) are fully characterized by the relation

1

3
ēN ∈ ∂F (T ). (4.12)

Similarly, for a given α, the best bound available from (2.26) is

sup
τ∈R

ēτ −
√

3

2
αē2 − f(τ) (4.13)

where
f(τ) = F (τN). (4.14)

The optimal values of τ in (4.13) are characterized by

ē ∈ ∂f(τ). (4.15)
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Observe from the definition of f that

∂f(τ) = N · ∂F (τN). (4.16)

Consequently, if T satisfies the optimality condition (4.12) then the scalar τ = T · N
satisfies (4.15). We show in the following that the converse is true: If τ satisfies (4.15) then
the vector T = τN satisfies (4.12). This is not obvious at first sight because (4.15) is only
a trace of (4.12) on a particular direction (namely, N). The key arguments leading to the
claimed result lie in the invariance properties studied in Sect. 4.1. A first observation is
that the function F in (4.11) is invariant by G. Since any G ∈ G verifies Gt · G = I, we
have indeed

(W − αV )∗(T ,x) = sup
E
{GE · GT −W (E,x) + αV (E)}

= sup
˜E

{
Ẽ · GT −W (G−1Ẽ,x) + αV (G−1Ẽ)

} (4.17)

where Ẽ = G · E. As W and V are invariant by G, (4.17) gives (W − αV )∗(GT ,x) =
(W − αV )∗(T ,x). It follows that F is invariant by G. A notable consequence is that

G · ∂F (E) ⊂ ∂F (G ·E) (4.18)

for any E and G ∈ G. From the definition of the subdifferential, any A ∈ ∂F (E) indeed
satisfies the distinctive property

F (E′)− F (E) ≥ A · (E′ −E) (4.19)

where E′ is arbitrary. Since Gt ·G = I and F is invariant by G, (4.19) can be rewritten as

F (G ·E′)− F (G ·E) ≥ Gt · G ·A · (E′ −E) = (G ·A) · (G · (E′ −E))

which shows that G ·A ∈ ∂F (G ·E), thus proving (4.18). �

Now let τ be a scalar verifying the optimality condition (4.15). From (4.16) we have

ē ∈N · ∂F (τN). (4.20)

Since N is invariant by G, using (4.18) with E = τN gives

G · ∂F (τN) ⊂ ∂F (τN) for all G ∈ G. (4.21)

The function F being convex, ∂F (E) is a convex set for all E (Rockafellar, 1970). Hence
(4.21) implies that

1

6
(I + R1 + R2 + S1 + S2 + S3) · ∂F (τN) ⊂ ∂F (τN)
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which using the identity (4.7) can be rewritten as

1

3
(N · ∂F (τN))N ⊂ ∂F (τN). (4.22)

In view of (4.20), we thus obtain that

1

3
ēN ∈ ∂F (τN).

This proves that the vector T = τN satisfies (4.12) and therefore reaches the supremum
in (4.10). The conclusion is that the bounds provided by (4.10) and (4.13) coincide. Con-
sequently, the bounds (2.25) and (2.26) are identical. In practice, the prescription (2.26)
is simpler to use as it only involves 2 scalar parameters (τ, α) – instead of 7 in (2.25) .

4.3. Legendre transform for T parallel to N

In this section we address the evaluation of the quantity (W − αV )∗(τN ,x) in (2.9),
which is central for the evaluation of the bound (2.26). With proper rescaling, we can
assume that α = 1. For a given x, (W − V )∗(τN ,x) is obtained by the solving the
maximization problem

sup
E∈R6

F(E) (4.23)

where

F(E) = τE ·N −W (E,x) +
1

2
E ·M ·E. (4.24)

Eq. (4.23) is a nonlinear optimization problem in R6. Except in few special cases,
there is no hope to solve the problem (4.23) in closed-form and one needs to resort to
numerical techniques. Standard gradient algorithms are able to provide a local optimum
but not necessarily a global optimum as needed for our purpose. This issue is especially
sensitive as the function F in (4.24) is non convex and expected to have multiple stationary
points. Global maximization techniques are likely to overcome such difficulties, but those
algorithms are much more costly than gradient algorithms. This is especially critical as
the (numerical) optimization with respect to (α,T ) in (2.26) requires numerous evaluations
of (W − αV )∗(τN ,x). As a result, applying a global algorithm for solving (4.23) entails
prohibitive computational costs when evaluating the bound in (2.26). We show in the
following that the problem can actually be reduced to a nonlinear optimization problem in
R2, which makes the approach tractable.

Under the assumption (4.1) that w(.,x) is isotropic, the stationarity condition ∂F/∂E =
0 can be written as

(β1e1, β2e2, β3e3)−M ·E = τN (4.25)

where

βi =
1

ei

∂φ

∂e
(ei,x). (4.26)
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Projecting (4.25) on the canonical basis of R6 gives the 6 equations

β1u1 − v2 − v3 =
τ

2
, (4.27a)

β1v1 + u2 + u3 = −
√

3

2
τ, (4.27b)

β2u2 + v1 − v3 = −τ
2
, (4.27c)

β2v2 − u1 + u3 = −
√

3

2
τ, (4.27d)

β3u3 + v1 + v2 = −τ, (4.27e)

β3v3 − u1 − u2 = 0. (4.27f)

Since βi in (4.26) is a function of ei, the system (4.27) is nonlinear in ei and cannot
be solved in closed form. However, any solution of (4.27) can be written as an explicit
function of the two scalar components u3 and v3, as is now explained. We first rewrite the
two equations (4.27b-c) as a linear system in (v1, u2), namely(

β1 1
1 β2

)(
v1

u2

)
=

(
−
√

3
2 τ − u3

− τ
2 + v3

)
. (4.28)

Provided that β1β2 − 1 6= 0, the linear system (4.28) can be inverted to express v1 and
u2 as functions of (τ, β1, β2, u3, v3). The corresponding expressions are

v1 =
1

Y
(−β2p+

τ

2
− v3), u2 =

1

Y
(p− β1(

τ

2
− v3)); (4.29)

where

Y = β1β2 − 1, p = u3 +

√
3

2
τ. (4.30)

Similarly, we obtain from (4.27a) and (4.27d) that

u1 =
1

Y
(β2(

τ

2
+ v3)− p), v2 =

1

Y
(
τ

2
+ v3 − β1p). (4.31)

Substituting (4.29) and (4.31) in (4.27e) and (4.27f) gives two equations which can be
written in matrix form as(

p p
− τ

2 + v3
τ
2 + v3

)(
β1

β2

)
=

(
Y (β3u3 + τ) + τ

β3v3Y

)
. (4.32)
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Inverting (4.32) with respect to (β1, β2) gives, provided that pτ 6= 0,

β1 =
( τ2 + v3)(Y (β3u3 + τ) + τ)− β3v3pY

τp
,

β2 =
( τ2 − v3)(Y (β3u3 + τ) + τ) + β3v3pY

τp
.

(4.33)

The point of those algebraic manipulations is to express β1 and β2 as explicit functions
of (u3, v3). Multiplying the two equations in (4.33) indeed gives a relation in which β1

and β2 only appear through the product β1β2. That equation can be written in terms of
Y = β1β2 − 1 as

a(e3)Y 2 − 4b(e3)Y + 4c(e3) = 0 (4.34)

where
a(e3) = (β3u3 + τ)2 − v2

3(2−
√

3β3)2,

b(e3) = p2 − β3p
τ
2 − (2−

√
3β3)(1

4τ
2 − v2

3),
c(e3) = 1

4τ
2 − p2 − v2

3.

(4.35)

To simplify the presentation, we only consider the most general situation where a(e3) 6= 0.
Some manipulations on (4.35) show that b2(e3)− a(e3)c(e3) = p2q where

q = p2 + β3(τu3 + β3u
2
3 + 2

√
3v2

3 − 2β3v
2
3).

Therefore, if q ≥ 0, the solutions of (4.34) are

Yε = 2
b(e3) + ε|p|√q

a(e3)

where ε = ±1. Setting Y = Yε in (4.33) gives, after some simplification,

β1 =
p+ ε

√
q + β3v3

τ − 2v3 + β3(u3 +
√

3v3)
, β2 =

p+ ε
√
q − β3v3

τ + 2v3 + β3(u3 −
√

3v3)
.

Replacing in (4.29)-(4.31), we finally arrive at
u1 =

1

2
(β3v3 + p− ε√q), v1 =

1

2
(−β3u3 − τ + 2v3 −

√
3β3v3),

u2 =
1

2
(β3v3 − p+ ε

√
q), v2 =

1

2
(−β3u3 − τ − 2v3 +

√
3β3v3).

(4.36)

It can be verified that the expressions (4.36) remain valid if pτ = 0 or Y = 0. Through
(4.36), the components u1, v1, u2, v2 are all expressed as fully explicit functions of (u3, v3)
(we recall that β3 is related to (u3, v3) via (4.26)).

22



For a vector E = (u1, v1, u2, v2, u3, v3) of the form (4.36), a direct calculation shows
that

F(E) =
1

2

(√
3τ2 + β3u3(p+ ε

√
q) +

√
3β2

3v
2
3

)
−

3∑
i=1

w(
√
u2
i + v2

i ,x).

The analysis so far shows that stationary points of F are necessary of the form (4.36) and
therefore can be parameterized by (u3, v3). In order to evaluate supR6 F , we thus only need
to look at the values taken by F over E of the form (4.36), i.e. we are left with solving the
two optimization problems sup(u3,v3)F+(u3, v3) and sup(u3,v3)F−(u3, v3) where

F±(u3, v3) =
1

2
(
√

3τ2 + β3u3(p±√q) +
√

3β2
3v

2
3)−

3∑
i=1

w(
√
u2
i + v2

i ,x). (4.37)

At this point the optimization problem (4.23) in R6 has been reduced to two optimization
problems in R2. Observe from (4.36) that u2 +u3−u1 +

√
3τ/2 = ε

√
q. Hence maximizing

F+ amounts to look for solutions to (4.23) that lie in the half-space H+ of R6 defined by the
equation u2 +u3−u1 +

√
3τ/2 ≥ 0. Similarly, maximizing F− amounts to look for solutions

in the complementary half-space H− defined by the equation u2 + u3 − u1 +
√

3τ/2 ≤ 0.
Using invariance properties, the problem can further be simplified if w is strongly

convex, in the sense that the function φ in (4.1) is convex in e2. Observe indeed that the
function F in (4.24) is invariant by the group of transformations G introduced in Sect. 4.1.
Therefore, if E∗ reaches the supremum in (4.23) then so does R1E

∗ and R2E
∗. Assuming

that w is strongly convex, it can be proved that E∗, R1E
∗, R2E

∗ cannot be in the same
half-space H±: if (say) E∗ ∈ H+, then either R1E

∗ or R2E
∗ is in H−. This implies that

sup
E∈R6

F(E) = sup
(u3,v3)

F+(u3, v3) = sup
(u3,v3)

F−(u3, v3) (4.38)

Hence supE∈R6 F(E) can be obtained by solving indifferently one of the two optimization
problems sup(u3,v3)F+ or sup(u3,v3)F−. In most cases, numerical computations are needed
to carry out that optimization.

5. Results for power-law composites

In this section are presented some results for two-phase isotropic composites governed
by power-law energy functions. The energy function wi in phase i (i = 1, 2) is taken as

wi(e) =
σi

n+ 1
en+1 (5.1)

where n > 0 is a nonlinearity index and σi > 0 is a nonlinear conductivity parameter. The
limiting case σi → ∞ corresponds to a perfect conductor. The case n = 1 corresponds to
a linear behavior, whereas the limiting case n → ∞ corresponds to a perfect dielectric as
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considered in Sect. 3.2. By Legendre duality, the complementary energy functions w∗i is
given by

w∗i (j) =
χi

m+ 1
jm+1 (5.2)

where m = 1/n and χi = σ
−1/n
i is the nonlinear resistivity in phase i. In (5.2), j denotes

the norm of the vector j.
The index n in (5.1) is assumed to be the same for both phases. In such case, one can

show that the effective energy weff of the composite is of the form

weff (ē) =
σeff

n+ 1
ēn+1

where σeff is the effective nonlinear conductivity. Correspondingly, the complementary
effective energy w∗eff is given by

w∗eff (̄) =
χeff

m+ 1
̄m+1 (5.3)

where the effective resistivity χeff is related to the effective conductivity σeff by χeff =

σ
−1/n

eff .

Bounding the energy function weff (or the complementary energy function w∗eff ) thus

amounts to bounding the nonlinear conductivity σeff (or the nonlinear resistivity χeff ).
For n ≥ 1, the proposed methodology delivers a lower bound σ̃ on σeff that is given by

σ̃

n+ 1
= sup

α∈R,τ∈R

{
τ −
√

3

2
α− 1

3

2∑
i=1

ci(Wi − αV )∗(τN)

}
(5.4)

where (Wi − αV )∗ is defined as in (3.12). The normalized bound σ̃/σ1 is a function of the
volume fraction ci, of the ratio σ2/σ1 and of the nonlinearity index n. The (normalized)
linear comparison bound σLC/σ1 depends on the same parameters and is used as a reference
in the following. The linear comparison bound σLC can be obtained using either the Talbot
and Willis (1985) approach, or by combining the variational approach of Ponte Castañeda
(1991) with the Hashin–Shtrikman linear bound (3.6).

We first consider the case where phase 2 is a perfect conductor. In such case, the
contrast is infinite and the bounds only depend on the two parameters (c1, n). The case of
finite contrast is next addressed in Sect. 5.2.

5.1. Perfectly conducting inclusions in a power-law matrix

Consider a composite mixing a power-law matrix (phase 1) with a perfectly conducting
medium (phase 2). The energy w2 in the perfectly conducting phase 2 is given by (3.8).
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The exact expression of the linear comparison bound σLC can be obtained in closed-form
(Ponte Castañeda, 1992) and reads as

σLC
σ1

=
(2− c1)

n+1
2

cn1
. (5.5)

The corresponding upper bound χLC on the effective resistivity is given by χLC/χ1 =

c1/(2− c1)
n+1
2n .

Since (W2 − αV )∗(τN) = 0, the bound (5.4) simplifies as

σ̃

n+ 1
= sup

α∈R,τ∈R

{
τ −
√

3

2
α− c1

3
(W1 − αV )∗(τN)

}
. (5.6)

The bound σ̃ in (5.6) is estimated numerically. As mentioned earlier, the most sensitive
issue lies in the calculation of the Legendre transform (W1 − αV )∗(τN). Following the
developments of Sect. 4, the value of (W1 − αV )∗(τN) is obtained by maximizing the
function F+ in Eq. (4.37) over R2. Because of the growth behavior of w1, the search for
the supremum of F+ can be restricted to a disk of prescribed radius R (see Appendix B),
which is helpful for the numerical optimization.

As an illustration, the function F+ is plotted in Fig. 5 in the particular example n = 3,
σ1 = 1, τ = 9.2. The symmetry of the function F+ with respect to the axis v3 = 0 is
a direct consequence of the expressions (4.36) and (4.37). As can be observed in Fig. 5,
the function F+ has several local maxima so that special care must be taken when using
a gradient algorithm for finding a global maximum: Depending on the initial guess that is
used, a gradient algorithm may converge to a local maximum that does not correspond to
a global maximum. To overcome such difficulty, the numerical strategy that we have used
consists in discretizing the disk of radius R in a large (' 10000) number of sample points,
and looking at the sample point with the largest value of F+. That particular sample is
next used as the initial guess in a gradient algorithm. For the case depicted in Fig. 5, the
global maximum is indicated by the red arrows and is reached at two values of (u3, v3).

Some contour plots of the function f(τ, α) = τ −
√

3
2 α−

c1
3 (W1 − αV )∗(τN) are repre-

sented in Fig. 6 for a volume fraction c1 set to 0.7. Maximizing the function f with respect
to the two scalar parameters (τ, α) gives the best bound available from the proposed proce-
dure – see Eq. (5.6). The function f is convex in (τ, α) so there is no substantial difficulty in
estimating numerically its maximum. In the example considered, the maximum is reached
for (τ, α) ' (17.9, 1.94). The corresponding bound on σeff is approximatively equal to 5.58.

5.1.1. Influence of the nonlinearity index n

The bound σ̃/σ1 is plotted in Fig. 7(left) as a function of the nonlinearity index n, for
a volume fraction c1 = 0.7. The bound σ̃ is obtained by solving (5.6) numerically using the
procedure exposed previously. The linear comparison bound σLC is shown in dashed lines.
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Figure 5: Plot of F+(u3, v3) for n = 3, σ1 = 1, τ = 9.2.

As can be observed in Fig. 7(left) the bound σ̃ strictly improves on σLC – except in the
special case n = 1 where both σ̃ and σLC reduce to the linear Hashin–Shtrikman bound
(3.6). The relative improvement (σ̃ − σLC)/σLC is found to increase with n and reaches
13% for n = 3. In Fig. 7(right) is plotted the corresponding upper bound χ̃ on the effective
resistivity χeff as obtained through the relation χ̃ /χ1 = (σ1/σ̃)1/n. In terms of resistivity,
the relative improvement on the comparison bound remains small ( (χLC − χ̃ )/χLC ' 4%
for n = 3).

The bound k̃ obtained in Sect. 3.2 can be recovered from the asymptotic behavior of
χ̃ as n→∞. In the limit n→∞, the power-law energy w1 in (5.1) indeed reduces to the
energy (3.7) of a perfect dielectric with unit strength so that the composite behaves as in
Sect. 3.2. From the expressions (3.10) and (5.3) of the effective complementary energy, we
thus expect that χeff −→

n→+∞
keff and similarly that

χ̃ −→
n→+∞

k̃

where the expression of k̃ is given in (3.31). For c1 = 0.7, Eq. (3.31) gives k̃ = 0.5865.
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Figure 6: Contour plots of f(τ, α) for c1 = 0.7, n = 3, σ1 = 1.

As can be observed in Fig. 7(right), the convergence of χ̃ towards the asymptotic value k̃
(shown in dotted line) is relatively slow. The linear comparison bound displays a similar
behavior.

5.1.2. Influence of c1

The influence of the volume fraction c1 on the bounds is illustrated in Fig. 8(left) in
the case n = 3. The results are presented in terms of resistivity. For any given n > 1, the
relative improvement (χLC − χ̃ )/χLC decreases with the volume fraction c1 of the matrix,
as shown in Fig. 8(right). Values above 5% of the relative improvement (χLC −χ̃ )/χLC can
be reached as soon as n ≥ 2.5. Correspondingly, the relative improvement (σ̃ − σLC)/σLC
can exceed 10% for n ≥ 2.5.

5.2. Influence of the contrast

We now consider the situation where the nonlinear conductivities σ1 and σ2 take finite,
non-zero values. Without loss of generality, we can label the phases so that σ2/σ1 > 1.
The bound σ̃ in (5.4) is estimated using a numerical procedure similar to that presented in
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Figure 7: Bounds on the effective properties of a power-law composite, as a function of the nonlinearity
index n. Case of infinite contrast, with c1 = 0.7. Solid line: proposed bound. Dashed line: linear comparison
bound.
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Figure 8: Left: Upper bounds on the effective resistivity of a power-law composite, as a function of the
volume fraction c1. Case of infinite contrast, with n = 3. Solid line: proposed bound. Dashed line: linear
comparison bound. Right: relative improvement as a function of the volume fraction c1 for n = 2, 3, 5.

Sect. 5.1. Contrary to the case considered in Sect.5.1, there is no analytical expression of
the linear comparison bound σLC so the latter has to be evaluated numerically as well. The
bounds obtained are shown in Fig. 9 as functions of the contrast ratio, in the case n = 3.
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In a way similar to Fig. 8, the results in Fig. 9 are presented in terms of the resistivity
χ = σ−1/n. For the highest contrast considered in the calculations (σ1/σ2 = 100 i.e.
χ2/χ1 ' 0.2), the relative improvement (χLC − χ̃ )/χLC is in the range 2–3% (for volume
fractions c1 about 0.5). In terms of conductivity, the corresponding relative improvement
(σ̃ − σLC)/σLC is the range 7–10%.

At small contrast (i.e. σ2 = σ1(1 + r) with r � 1), the effective conductivity σeff is
known to admit the expansion (Blumenfeld and Bergman, 1989, 1991)

σeff

σ1
= 1 + c2r −

n+ 1

2(n+
√
n)
c1c2r

2 +O(r3). (5.7)

The small-contrast expansion of the linear comparison bound is given by (Ponte Castañeda
et al., 1992)

σLC
σ1

= 1 + c2r −
1

2
c1c2r

2 +O(r3). (5.8)

As can observed on those expressions, the linear comparison is exact only to first-order in
contrast (except in the special cases n = 1 and n =∞). It can be verified that

σ̃

σ1
= 1 + c2r +O(r2),

i.e. the bound σ̃ is exact to first-order in contrast – just as the linear comparison bound
σLC . Although we have not determined the second-order expansion of the bound σ̃ (the
calculations proved to be quite cumbersome), the numerical results shown in Fig. 9 suggest
that the bound σ̃ is not exact to second-order in contrast. For instance, in the case n = 3,
c1 = 0.5, the expression (5.7) gives

lim
r→0

σeff/σ1 − 1− c2r

r2
= − n+ 1

2(n+
√
n)
c1c2 ' −0.106. (5.9)

The numerical results give

lim
r→0

σ̃/σ1 − 1− c2r

r2
' −0.113

which does not match with the value in (5.9). As a comparison, the expression (5.8) gives

lim
r→0

σLC/σ1 − 1− c2r

r2
= −0.125.

The proposed bound gives a second-order expansion that is closer to (5.9) but a significant
gap remains.
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Figure 9: Left: Upper bounds on the effective resistivity of a power-law composite, as a function of the
contrast ratio. Solid line: proposed bound. Dashed line: linear comparison bound. Right: relative im-
provement as a function of the contrast ratio.

6. Bounds on the effective complementary energy

The methodology is now adapted to bound the effective complementary energy w∗eff
from below (which is equivalent to bounding weff from above). In the isotropic case, w∗eff
only depends on ̄ through its norm ̄, i.e. we have

w∗eff (̄) = φ∗eff (̄)

for some function φ∗eff . Setting J = (j1, · · · , jn), we consider the extended complementary
energy

W ∗(J ,x) =

n∑
i=1

w∗(ji,x).

Let J̄ = (̄1, · · · , ̄n) be such that ̄1 = · · · = ̄n = ̄. Reproducing the arguments of Sect.
2 leads to the lower bound

φ∗eff (̄) ≥ 1

n

(
J̄ · T + Ũ(J̄)−

∫
Ω

(W ∗ − Ũ)∗(T ,x)dω

)
(6.1)

where Ũ satisfies2 ∫
Ω
Ũ(J)dω ≥ Ũ(J̄) for any J ∈ S(J̄) (6.2)

2The distinctive property (6.2) enters into the framework of A-quasiconvexity (Fonseca and Müller,
1999) and can be interpreted as quasiconvexity in divergence-free fields. To avoid any confusion, use of the
word ’quasiconvexity’ is restricted in this paper to the standard definition (2.12).
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with
S(J̄) = {(j1, · · · , jn) : div ji = 0 in Ω, ji(x) · n = ̄i · n on ∂Ω}.

For two-dimensional problems, potentials Ũ that satisfy (6.2) can easily be generated from
quasiconvex potential U , i.e. potentials that satisfy (2.12). For any given potential U
defined in R2n, considered indeed the ’rotated’ potential U⊥ defined by

U⊥(J) = U(r⊥J)

where r⊥J = (r⊥j1, · · · , r⊥jn) and r⊥ is the two-dimensional rotation with angle π/2.
For two-dimensional fields, we have

j ∈ S(̄)⇐⇒ r⊥j ∈ K(r⊥̄). (6.3)

Let us briefly justify the property (6.3). It is well-known (and easy to verify) that r⊥ maps
divergence-free fields to curl-free fields. For any j ∈ S(̄), the rotated field r⊥j can thus
be written as r⊥j = ∇u for some function u. From the boundary condition j ·n = ̄ ·n, we
obtain that (∇u− r⊥̄)∧n = 0 on ∂Ω, i.e. that u = (r⊥̄) ·x on ∂Ω (up to some constant
that can be taken as 0). This shows that r⊥j ∈ K(r⊥̄). We note that the relation (6.3)
also holds for extended fields, i.e.

J ∈ S(J̄)⇐⇒ r⊥J ∈ K(r⊥J̄). (6.4)

A notable consequence of (6.4) is that U⊥ satisfies (6.2) whenever U is quasiconvex. For
any J ∈ S(J̄), we have indeed∫

Ω
U⊥(J)dω =

∫
Ω
U(r⊥J)dω ≥ U(r⊥J̄) = U⊥(J̄)

where the inequality comes from the quasiconvexity of U together with the fact that r⊥J ∈
K(r⊥J̄).

We now specialize the above relations to n = 3 and to quasiconvex potentials U of the
form (2.19). Since the two-dimensional determinant is invariant by r⊥, the quasiconvex
function V in (2.20) satisfies V⊥ = V . Taking J̄ = ̄N and Ũ = αV in (6.1), we obtain the
following lower bound on the complementary effective energy:

φ∗eff (̄) ≥ sup
α∈R,τ∈R

{
̄τ −

√
3

2
α̄2 − 1

3

∫
Ω

(W ∗ − αV )∗(τN ,x) dω

}
. (6.5)

Observe that (6.5) is formally identical to (2.26). Consequently, all the developments of
Sect. 4 remain valid by making the formal substitutions W 7→W ∗ and E 7→ J .
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6.1. Perfectly insulating inclusions in a power-law matrix

As an illustration, consider a power-law matrix (phase 1) with perfectly insulating
inclusions (phase 2). The energy w1 is of the form (5.1). The energy w2(e) is null for all
e. By Legendre duality, the complementary energy function w∗2 is given by

w∗2(j) =

{
0 if j = 0,
+∞ otherwise;

The effective complementary energy w∗eff is of the form (5.3). The formula (6.5) gives the

inequality χ̃ ≤ χeff where χeff is the effective resistivity and χ̃ is given by

χ̃

m+ 1
= sup

α∈R,τ∈R

{
τ −
√

3

2
α− c1

3
(W ∗1 − αV )∗(τN)

}
.

The bound χ̃ is non trivial for m > 1, i.e. for n < 1. Since χeff = σ
−1/n

eff , the lower bound

χ̃ on the effective resistivity translates as an upper bound on the effective conductivity
σeff. We have indeed

σeff ≤ χ̃−n . (6.6)

The upper bound given by (6.6) is represented in Fig. 10 along with the linear comparison
bound σLC , given by (Ponte Castañeda, 1992)

σLC
σ1

=
c1

(2− c1)
(n+1)

2

.

For n = 0.1, the relative improvement on the linear comparison bound σLC is about 4%.

7. Concluding remarks

Nonlinear Hashin–Shtrikman type bounds can be obtained by combining the translation
method with the idea of embedding, whereby n copies of the original problem are considered
simultaneously in an extended problem of dimension 2n. In contrast with the linear case,
the bounds obtained by taking n = 2 are generally not optimal. In this paper, we investigate
the choice n = 3, thus considering an extended problem of dimension 6.

Embedding the original problem in R6 leads to a genuine improvement of the bounds,
but it comes at a price: The direct evaluation of the bounds is difficult to perform, even
using numerical techniques. For isotropic constituents, invariance properties lead to con-
siderable simplifications, thus making up for the increase in dimensionality that comes with
the embedding approach. Ultimately those simplifications make for an efficient and reliable
way of evaluating the bounds.

This paper concentrates on two-dimensional conductivity, but it should be mentioned
that the results obtained apply to the mathematically equivalent problem of bounding the
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Figure 10: Upper bounds on the effective conductivity of a power-law composite, as a function of the
nonlinearity index n. Case of infinite contrast, with c1 = 0.7. Solid line: proposed bound. Dashed line:
linear comparison bound.

elastic energy of fiber-reinforced composites under transverse shear. It is tempting to fur-
ther extend the presented approach to three-dimensional conductivity or two-dimensional
elasticity. For instance, in the case of three-dimensional conductivity, it can be expected
that 4 copies of the original problem are necessary to improve on the linear comparison
bound, thus leading to an extended problem of dimension 12. The issue of evaluating the
corresponding bounds becomes even more critical, but the ideas used in this paper could
be possibly be helpful to make the calculations tractable.

Appendix A. Calculation of g∗ for dielectric breakdown

In this Appendix we address the calculation of the function g∗ in (3.14). We have

g∗(τ) = sup
E∈C

g(E) (A.1)

where C = {E = (e1, e2, e3) : ei ≤ 1} and

g(E) = τN ·E +
1

2
E ·M ·E. (A.2)
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The problem (A.1) is easily solved for τ = 0: Since the largest eigenvalue of M is equal
to
√

3, the supremum in (A.1) is attained for any eigenvector of M (corresponding to the
eigenvalue

√
3) of norm 3 and we have g∗(0) = 3

√
3/2. We note that such an eigenvector

if given by
1

2
(1,
√

3,−1,
√

3,−2, 0).

In the following, we address the general situation where τ 6= 0. Let E attaining the
supremum in (A.1). We write E as E = (u1, v1, u2, v2, u3, v3) with u2

i +v2
i ≤ 1 (i = 1, 2, 3).

The stationarity conditions give

τ/2 + v2 + v3 = λ1u1

−
√

3τ/2− u2 − u3 = λ1v1

−τ/2− v1 + v3 = λ2u2

−
√

3τ/2 + u1 − u3 = λ2v2

−τ − v1 − v2 = λ3u3

u1 + u2 = λ3v3

(A.3)

where the Lagrange multipliers λi satisfy

λi ≥ 0, λi(u
2
i + v2

i − 1) = 0. (A.4)

The second-order optimality condition reads as

0 ≥ 1

2
δE ·M · δE +

3∑
i=1

λi(ui, vi) · δei (A.5)

for all δE = (δe1, δe2, δe3) verifying

(ui, vi) · δei ≤ 0 if u2
i + v2

i = 1.

Using (A.3) and (A.5), it can be proved that all the Lagrange multipliers λi are non zero, i.e.
that u2

i +v2
i = 1 for i = 1, 2, 3. The main argument is that if one of the Lagrange multipliers

is equal to 0 then one can construct an eigenvector δE such that M · δE =
√

3 δE and
λi(ui, vi) · δei = 0 for i = 1, 2, 3, which is in contradiction with (A.5).

We now prove that, up to a rotation Ri in (4.2), E is of the form

E = (cos θ, sin θ,− cos θ, sin θ, ε, 0) (A.6)

for some ε in {−1, 1}. First assume that λ1 +λ2 +λ3−λ1λ2λ3 6= 0. In that case, the linear
system (A.3) can be inverted to give

u1

v1

u2

v2

u3

v3

 =
1

2

τ

λ1 + λ2 + λ3 − λ1λ2λ3



λ3(
√

3− λ2)√
3λ2λ3 − 2λ2 − λ3

−λ3(
√

3− λ1)√
3λ1λ3 − 2λ1 − λ3

2λ1λ2 −
√

3λ1 −
√

3λ2

λ1 − λ2

 (A.7)
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Using the expressions (A.7), the relation u2
1 + v2

1 = u2
2 + v2

2 can be rewritten as

0 = (λ1 − λ2)P (λ3) (A.8)

where P is the cubic polynomial defined by

P (λ) = s−
√

3(s− λ)λ+ (s− λ−
√

3)λ2 (A.9)

with s = λ1 + λ2 + λ3. Similarly we have

0 = (λ1 − λ3)P (λ2) = (λ2 − λ3)P (λ1). (A.10)

Calculating the discriminant of P shows that P only has one root in R. Therefore, we
deduce from (A.8) and (A.10) that two of the multipliers λi are necessarily equal. By ap-
plying one of the transformation Ri in (4.2), we can assume that λ1 = λ2. The expressions
(A.7) rightly show that v3 = 0, u1 = −u2, v1 = v2. Hence E is of the form (A.6).

The above analysis needs to be modified if λ1 +λ2 +λ3−λ1λ2λ3 = 0. In that case, some
manipulations on (A.3) (that we do not report here) show that λ1, λ2, λ3 are necessarily
all equal to

√
3 and that E is parallel to N (and therefore of the form (A.6)).

The developments so far show that we only need to optimize the function in (A.2) with
respect to E of the form (A.6). For such E, a direct calculation gives

g(E) = 2(cos θ − ε) sin θ + τ(cos θ −
√

3 sin θ − ε).

Hence we are left with solving the scalar optimization problems supθ g−(θ) and supθ g+(θ)
with

g+(θ) = 2(cos θ − 1) sin θ + τ(cos θ −
√

3 sin θ − 1),

g−(θ) = 2(cos θ + 1) sin θ + τ(cos θ −
√

3 sin θ + 1).

The stationarity condition g′±(θ) = 0 gives

sin θ =
2

τ
(2 cos2 θ − 1− ε cos θ)−

√
3 cos θ (A.11)

with ε = 1 for g+ and ε = −1 for g−. Taking the square of (A.11) leads to the polynomial
equation

0 = 16x4 − 8(2ε+
√

3τ)x3 + 4x2(τ2 +
√

3ετ − 3) + 4(2ε+
√

3τ)x+ 4− τ2 (A.12)

where x = cos θ. Observe from (A.11) that x0 = −ε/2 is a solution of (A.12). Factorizing
the polynomial in (A.12) by (x+ ε/2), we obtain that the solutions of (A.12) (distinct from
−ε/2) are the roots of the cubic equation

0 = 8x3 + 4(−3ε− τ
√

3)x2 + (2τ2 + 4
√

3ετ)x− ε(τ2 − 4). (A.13)
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Setting x = z + ε/2 + τ/2
√

3, (A.13) can be rewritten as

0 = 8z3 − 6z +

√
3τ3

9
+ 2ε.

It is necessary at this point to distinguish between the cases ε = 1 and ε = −1.

For ε = −1, the cubic equation (A.13) admits

3 solutions (denoted by x3 > x2 > x1) if τ < τ1,
2 solutions (denoted by x2 > x1) if τ = τ1,
1 solution (denoted by x1) if τ > τ1;

where τ1 =
√

3 22/3 (see Fig. A.11). Let θi be the value of θ satisfying xi = cos θi along
with (A.11). We need to find which of the values g−(θ0), g−(θ1), g−(θ2), g−(θ3) is the
largest. Setting τ0 = 1 +

√
3, some manipulation shows that

sup g− =

{
g−(θ3) for 0 < τ ≤ τ0,
g−(θ0) for τ0 ≤ τ.

(A.14)

For ε = 1, (A.13) only has one solution (denoted by x′1) in R. Calculating the sec-
ond derivative g′′+ shows that x0 = −ε/2 corresponds to a local minimum and that x′1
corresponds to a local maximum of g+. It follows that

sup g+ = g+(θ′1)

where θ′1 satisfies x′1 = cos θ′1 along with (A.11). Comparing g+(θ′1) with max(g−(θ0), g−(θ3))
shows that sup g+ ≤ sup g−. Hence g∗(τ) is equal to sup g− as given by (A.14).

Appendix B. Additional details for a power-law behaviour

For a power-law energy w(e) = σ
n+1e

n+1, the function F introduced in Eq. (4.24)
specializes as

F(E) = T ·E +
1

2
E ·M ·E − σ

n+ 1

3∑
i=1

en+1
i (B.1)

where T = τN , E = (e1, e2, e3) and ei ∈ R2.
Note that F(0) = 0. In the following, we construct R > 0 such that F(E) ≤ 0 for any

E verifying ‖E‖ ≥ R, so that

sup
E
F(E) = sup

E:‖E‖≤R
F(E). (B.2)

As mentioned in Sect. 5.1, the property (B.2) is helpful for solving numerically the opti-
mization problems that define the bounds.
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Figure A.11: Stationary points of g−.

Since M is symmetric with eigenvalues 0 and ±
√

3, we have E ·M ·E ≤
√

3 ‖E‖2 for
any E. Therefore

F(E) ≤ ‖T ‖ ‖E‖+
1

2

√
3‖E‖2 − σ

n+ 1

3∑
i=1

en+1
i . (B.3)

where the Cauchy-Schwarz inequality has been used. We have the straightforward relations

3∑
i=1

en+1
i ≥ max(en+1

1 , en+1
2 , en+1

3 ) = (max
i
ei)

n+1.

and
‖E‖2 = e2

1 + e2
2 + e2

3 ≤ 3 max(e2
1, e

2
2, e

2
3) = 3(max

i
ei)

2.

Combining the two preceding relations, we get

3∑
i=1

en+1
i ≥ 3−

n+1
2 ‖E‖n+1.

Substituting in (B.3) yields

F(E) ≤ ‖T ‖ ‖E‖ − 1

2
A(‖E‖)‖E‖2.
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where

A(‖E‖) = 3−
n+1
2

2σ

n+ 1
‖E‖n−1 −

√
3.

Since σ > 0 and n > 1, there exists R0 > 0 such that A(‖E‖) ≥ 1 for any ‖E‖ ≥ R0. Such
a value of R0 is given by

R0 = 3
n+1

2(n−1)

[
(n+ 1)(1 +

√
3)

2σ

] 1
n−1

.

For any E verifying ‖E‖ ≥ R0, we obtain

F(E) ≤ ‖T ‖ ‖E‖ − 1

2
‖E‖2 =

1

2
‖E‖(2‖T ‖ − ‖E‖).

Hence F(E) ≤ 0 for any E such that ‖E‖ ≥ max(R0, 2‖T ‖). A value of R satisfying (B.2)
is thus given by

R = max(R0, 2‖T ‖).
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Ponte Castañeda, P., 2002. Second-order homogenization estimates for nonlinear compos-
ites incorporating field fluctuations: I-theory. J. Mech. Phys. Solids 50 (4), 737–757.
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