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Abstract We propose a new method to measure the trans-
lations and rotations of each individual grain in a granular
material imaged by computerized tomography. Unlike the
classic approach, which requires that both initial and cur-
rent configurations be fully reconstructed, ours only requires
a reconstruction of the initial configuration. In this sense,
our method is reconstruction-free, since any subsequent de-
formed state can be analyzed without further reconstruction.
One distinguishing feature of the proposed method is that it
requires very few projections of the deformed sample, thus
allowing for time-resolved experiments.

Keywords Computed tomography · Digital image
correlation · Full-field measurement · Granular material ·
Tomographic reconstruction

M.H. Khalili · S. Brisard · M. Bornert · P. Aimedieu · J.-M. Pereira ·
J.-N. Roux
Laboratoire Navier, UMR 8205, École des Ponts, IFSTTAR, CNRS,
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1 Introduction

The mechanical behaviour of granular materials has long
been (and still is) investigated by means of macroscopic (e.g.
oedometer and triaxial tests) experiments, see [1, 2, 3, 4]
among many others. Since the early eighties, computerized
tomography [5, 6] has been successfully invoked to comple-
ment these global experiments, first to track collective events
(e.g. the onset of shear bands [7, 8]), then to quantify the
rigid-body motion of each individual grain [9, 10]. Together
with numerical simulations based on the discrete element
method (DEM) [11, 12, 13], these local measurements have
the potential to deliver new insight on the complex behaviour
of granular materials.

Full field measurements of 3D displacement fields are
now performed almost routinely on 3D tomographic recon-
structions by means of volumetric digital image correlation
techniques. While the standard form of these techniques is
better-suited to continua [14, 15, 16, 17, 18], discrete forms
have later been devised with granular materials in mind (DV-
DIC [9], ID-Track [10]). They led to significant advances
in the understanding of complex phenomena, such as strain
localization. In particular, it was shown that grains undergo
large rotations within shear bands [9] that may have a width
of several grains. The importance of the overall angularity of
the grains was also highlighted [10, 19].

Most volumetric digital image correlation techniques are
based on the comparison of 3D images of the sample in its
initial (undeformed) and current (deformed) states. Within
the framework of computerized tomography, this means that
a full tomographic scan is required in both initial and current
states. This is a serious limitation for time-resolved exper-
iments, as the total acquisition time of a full scan is of the
order of the hour with laboratory facilities. While fast and
ultra-fast tomography setups developed at synchrotron facili-
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ties [20, 21, 22] can overcome this limitation, such a solution
is sometimes unpractical.

In this paper, an alternative route is explored in order to
reduce the total acquisition time of the current configuration.
Instead of reducing the acquisition time of each individual
radiographic projection (as in fast and ultra-fast setups, rely-
ing on very bright sources), we propose to reduce the overall
number of projections itself. This idea is motivated by the
fact that (assuming no breakage occurs) each grain undergoes
a rigid body motion. Therefore, the current configuration is
fully defined by a limited set of unknowns (3N translational
degrees of freedom and 3N rotational degrees of freedom,
where N is the total number of grains), which suggests that
a limited number of projections should suffice to accurately
identify these unknowns and fully reconstruct the local dis-
placements.

Owing to the insufficient number of projections, the
downside of this approach is of course the impossibility of
carrying out a 3D reconstruction of the sample in its cur-
rent state, at least with standard methods making use of
projections of the current configuration only. In other words,
correlations cannot be performed on the 3D reconstructions,
and we propose to skip the reconstruction step and directly
match the radiographic projections instead. In this sense, our
method can be considered as reconstruction-free, as it does
not require the reconstruction of the current configuration. It
should however be noted that together with the reconstruction
of the reference configuration, the kinematics of each grain
thus determined can be used to reconstruct a posteriori the
current configuration, if needed.

The proposed method proceeds as follows. A full scan of
the sample in its initial state is first carried out. A 3D image
is reconstructed and each grain is segmented. The sample
then undergoes a transformation, and a limited number of
projections are acquired (target projections). Applying a trial
rigid body motion to each grain (whose shape, local attenua-
tion and initial position and orientation are known from the
segmentation of the initial 3D reconstruction), the resulting
trial projections can be computed. The trial rigid body mo-
tions are then optimized in order to minimize the discrepancy
between the trial projections and the target projections.

It is apparent from the above description that the proposed
method can be seen as an inverse problem. The correspond-
ing forward problem consists in finding the radiographic
projections of an assembly of grains subjected to trial rigid
body motions. This forward problem is addressed in Sec. 2.
It is formulated so as to minimize discretization errors, while
allowing for an efficient implementation. Sec. 3 is devoted
to the inverse problem itself. We first define the distance
function which is used to measure the discrepancy between
trial and target projections. A few synthetic test cases then
illustrate the performance of the method. Finally, this paper
closes in Sec. 4 with an application of the proposed method

to true projections of gravel submitted to simple geometric
transformations. An estimate of the measurement error is
provided. Our method is shown to compare well with more
conventional discrete correlation techniques, while requiring
a substantially smaller acquisition time.

To close this introduction, it should be noted that Leclerc,
Roux and Hild [23, 24, 25, 26] have recently proposed a
similar appproach to reconstructing displacement fields in
continua. Like the present work, the Projection-based Digital
Volume Correlation technique is based on a full reconstruc-
tion of the sample in its initial state, and a few projections of
the sample in its current state. The trial displacement field
also depends on a finite number of degrees of freedom (nodal
displacements of a superimposed mesh); unlike the present
work, the displacement is interpolated between nodes. The
method proposed in the present paper should therefore be un-
derstood as the discrete version of the work of Leclerc, Roux
and Hild [24], just like DV-DIC [9] is the discrete version of
V-DIC [14, 15]. For this reason, we will refer to our method
as D-DPC, for Discrete Digital Projection Correlation.

2 The projection model

The D-DPC method presented in this paper is formulated as
an inverse problem. In view of solving this inverse problem,
we first introduce a projection model which solves the fol-
lowing forward problem: find the tomographic projections
of an assembly of objects (grains) which are subjected to
trial rigid body motions. More precisely we assume that the
geometry and initial position of the objects are known. Each
object is subjected to an individual trial rigid body motion.
In this section, we show how the tomographic projections
of the resulting updated configuration can be computed by
means of our projection model. In the remainder of this paper,
objects which have been subjected to a rigid body motion
will be called “transformed objects”.

For untransformed objects, our model coincides with
the approaches of most algebraic reconstruction techniques
[5, 27]. As such, it relies on the same assumptions. In par-
ticular, the in-plane dimensions of the pixels of the sensor
are neglected. In other words, each pixel of the sensor is
associated with a unique ray (no averaging over the surface
of the pixel). For transformed objects, our model follows
a Lagrangian approach: the rays are pulled back to the ini-
tial configuration. In the case of voxel-based geometrical
descriptions of the objects, this reduces the accuracy losses.

The projection model is first developed in Sec. 2.1 for
a single object subjected to a rigid body motion. It is then
extended in Sec. 2.2 to an assembly of objects (e.g. granular
materials), each object being subjected to an individual rigid
body motion. Sec. 2.3 finally addresses some implementation
issues for voxel-based representations of the grains.
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2.1 Tomographic projections of a single object subjected to
a rigid body motion

In the present paper, we consider a general tomography setup.
The sample B is placed on a rotating stage. ∆ denotes its axis
of rotation; it is oriented by the unit vector e∆. The origin O is
placed on the rotation axis ∆, so that points can be identified
in the remainder of this paper with their radius vector.

The sample is illuminated by an X-ray source (parallel
or cone-beam), and the resulting projection is measured on
a plane detector D. Each point p ∈ D of the detector is hit
by a unique X-ray, the direction of which is given by the unit
vector T (p), oriented from the source to the detector. We will
assume that pixel values returned by the detector correspond
to the intensity at the center of the pixel; therefore, p ∈ Dwill
usually refer in the present paper to the center of a pixel of
the detector. For parallel projections, we have T (p) = const.
(see Fig. 1), while for cone-beam projections (see Fig. 2)

T (p) =
p − a

‖p − a‖ , (1)

where a denotes the location of the X-ray point source (apex
of the cone); in the case of parallel tomography, a is located
at infinity.

No assumption is made regarding the geometry of the
setup. In particular, it is not assumed that the detector D is
parallel to the axis of rotation ∆ of the sample stage. Likewise,
it is not assumed that the plane which contains the axis of
rotation ∆ and the point source a is perpendicular to the
detectorD. Indeed, our method is formulated in an intrinsic
way which does not require perfect geometries.

For the sake of simplicity, it will however be assumed
in most applications presented below that the geometry of
the setup is indded “perfect”: for parallel setups, the detector
and the axis of rotation of the sample are parallel and T (p) is
normal to the detector, while for cone-beam setups, the axis
of rotation of the sample is parallel to the detector, and the
plane formed by the point source and the axis of rotation is
perpendicular to the detector.

In both cases of perfect geometries, it is convenient to
introduce a global frame (O, ex, ey, ez) defined as follows (see
also Figs. 1 and 2). The unit vector ez, normal to the detector,
points in the direction of propagation of the X-rays. ey = e∆
is the (ascending) direction of the axis of rotation. Finally,
ex = ey × ez. Besides, for cone-beam setups, the origin O is
placed at the intersection between the normal to the detector
passing through the point source, and the axis of rotation.

A body B is placed on the sample holder. The map
x ∈ B 7→ µ(x) denotes its local linear absorption coeffi-
cient. Then, from Beer–Lambert’s law, we get the following
projection formula

ln [I0/I] (p) =

∫
µ
(
p + sT (p)

)
ds, (2)
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Fig. 1 Tomography setup for parallel (synchrotron) tomography.
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Fig. 2 Tomography setup for cone-beam (laboratory) tomography.

where s denotes the arc-length along the ray (p, T (p)), I0 and
I are the incident and transmitted intensities. In practice, for
each pixel of the sensor, the ratio [I0/I](p) is deduced from
the grey level. This preliminary calibration corrects for the
possible non uniformity of the incident intensity and of the
sensitivity of the individual pixels of the sensor [28].
B is now submitted to a rigid body motion prior to projec-

tion. This motion is defined by the translation vector u ∈ R3,
the rotation center c and the rotation tensor Ω ∈ SO(3), so
that the point initially located at X is transported to x

x = Ω ·
(
X − c

)
+ u + c. (3)

Therefore, the absorption coefficient µ being conserved dur-
ing the motion, the projection at pixel p of the transformed
sample now reads

ln [I0/I] (p) =

∫
µ
(
ΩT ·

[
p + sT (p) − u − c

]
+ c

)
ds. (4)
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In a tomography experiment, the sample stage is rotated
by an angle θ about the axis of rotation ∆, oriented by the unit
vector e∆ (see Figs. 1 and 2); R

θ
denotes the corresponding

rotation tensor (the rotation center is the origin).
Composing the rigid body motion of the body and the

rotation of the sample stage, it is readily seen that the point
initially located at X is transported to x, given by

x = R
θ
· Ω ·

(
X − c

)
+ R

θ
·
(
u + c

)
, (5)

while the final expression of the projection at pixel p and
angle θ of the transformed body B reads

ln [I0/I] (p, θ) =

∫
µ
(
ΩT ·

[
RT
θ
·
(
p + sT (p)

)
− u − c

]
+ c

)
ds.

(6)

2.2 Extension of the projection model to granular materials

We now consider a granular medium. It is submitted to a
mechanical loading, causing each grain to undergo a rigid
body motion. Prior to loading, a first set of tomographic
projections leads to a reconstruction of the 3D map x 7→
µ(x) of the linear attenuation in the reference configuration
(unloaded sample, unrotated sample stage). Provided that the
projections are suitably calibrated, it can be assumed that
µ(x) = 0 outside the grains.

The reconstructed image is then segmented; in other
words, the total attenuation µ is decomposed as follows

µ(x) =
∑

i

µ(i)(x), (7)

where the sum extends to all grains, and µ(i) denotes the local
attenuation of the i-th grain (µ(i)(x) = 0 outside grain i).

The rigid body motion of grain i is defined by the transla-
tion vector u(i), the rotation center c(i) and the rotation tensor
Ω(i). The projection of this grain is then retrieved from Eq. (6)

P̂(i)(θ, p; u(i), Ω(i)) =

∫
µ(i)

(
Ω(i)T ·

[
RT
θ
·
(
p + sT (p)

)
−u(i) − c(i)

]
+ c(i)

)
ds. (8)

It should be noted that arbitrary choices of the rotation
centers c(i) (which are licit) might induce artificially large
variations of the amplitude of the translation u(i) from grain to
grain, which in turn might lead to convergence issues for the
inverse problem considered in Sec. 3. To avoid such issues,
the center of rotation c(i) of grain (i) was placed at its center
of mass. In other words, u(i) is the translation of the center of
mass of grain i.

Summing Eq. (8) over all grains, we get the following
expression of the projection of the deformed sample

P̂(θ, p; u(1), Ω(1), . . . , u(n), Ω(n)) =
∑

i

P̂(i)(θ, p; u(i), Ω(i)). (9)

The above expression defines our projection model, which
solves the forward problem. In other words, if the translations
and rotations of each grain are known, we can evaluate the
tomographic projections of the deformed granular material.

For later use in the inverse problem (17) which defines
the D-DPC method, the grain rotations Ω(i) must be param-
eterized. We use Rodrigues’ formula [29, 30] to map the
rotation vector ω = ω n (ω: angle of rotation; n: axis of
rotation, ‖n‖ = 1) to the rotation tensor Ω

Ω = I +
sinω
ω

ω +
1 − cosω

ω2 ω2 = expω, (10)

where we have introduced the skew-symmetric tensor ω such
that ω · x = ω × x for all x ∈ R3. It should be noted that
this parameterization is not differentiable at some points
(namely, ω = 2π) [31, 32], which might cause issues with
gradient-based optimization algorithms. In the present study,
the rotations are relatively small, so that it was not required
to consider this corner case.

We then introduce the compact notation

q =
[
u(1)

1 , u(1)
2 , u(1)

3 , ω(1)
1 , ω(1)

2 , ω(1)
3 , . . .

. . . , u(n)
1 , u(n)

2 , u(n)
3 , ω(n)

1 , ω(n)
2 , ω(n)

3

]T
, (11)

which gathers in a unique column-vector the parameters defin-
ing the rigid body motion of each grain. The projection model
defined by Eqs. (8) and (9) can then be written

P̂(θ, p; q) =
∑

i

P̂(i)(θ, p; q(i)), (12)

where q(i) = S(i) · q and the 6n × 6 matrix S(i) selects in q the
rows corresponding to u(i) and ω(i)

S(i) = [O6, . . . ,O6︸       ︷︷       ︸
i−1 times

, I6,O6, . . . ,O6︸       ︷︷       ︸
n−i times

], (13)

(O6: 6 × 6 null matrix; I6: 6 × 6 identity matrix).

2.3 Implementation of the projection model

In situations of practical interest, the 3D map of the linear
attenuation results from an initial 3D reconstruction of the
(undeformed) granular sample. It is therefore voxelized, and
we write the attenuation as the following discrete sum

µ(x) =
∑

v

µ(v)χ(x − v), (14)

where v denotes the center of the current voxel and χ is the
indicator function of the voxel centered at the origin. The
projection formula (2) then becomes

ln
I0

I(p)
=

∑
v

µ(v)
∫

χ
(
p − v + sT (p)

)
ds, (15)
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where the integral in the above equation is the chord length
of the voxel centered at v intersected by the ray (p, T (p)).
Thus, the value of the projection is the summation of the
chord lengths weighted by their attenuation coefficients µ(v).
This summation is referred to as the radiological path and
can be efficiently evaluated by means of Siddon’s algorithm
[33]. The improved version proposed by Jacobs [34] was
implemented here.

Eq. (15) should be evaluated for every pixel of the de-
tector. In Siddon’s algorithm, unnecessary computations are
avoided by considering only the voxels that are actually in-
tersected by the current ray. A further gain can be made by
only considering the rays that intersect the grain: to this end,
bounding boxes are attached to each grain.

To close this section, it is again emphasized that the de-
sign of our projection model minimizes the accuracy losses.
Indeed, two approaches might be considered for the com-
putation of the projection of the transformed object. In the
natural, Eulerian approach, the direct transform is applied
to the object itself, which is then projected. In the case of
voxelized objects, this leads to unacceptable accuracy losses
due to rediscretization. In the present, Lagrangian approach,
the inverse transform is applied to the rays, and the untrans-
formed object is then projected along this Lagrangian ray,
with no need for rediscretization.

3 The Discrete Digital Projection Correlation method

The projection model presented in Sec. 2 allows to generate
digital projections of an assembly of grains subjected to
arbitrary rigid body motions. It is recalled that P̂(θ, p; q)
denotes the resulting digital projection (θ: rotation angle of
the sample holder; p: center of detector pixel; q: generalized
displacements of grains). We are now in a position to provide
a definition of the Discrete Digital Projection Correlation
method (D-DPC), which is formulated as an inverse problem,
where the above projection model is used as the forward
solver.

3.1 Formulation of the method

We consider a granular sample undergoing a geometric trans-
formation resulting from e.g. mechanical loading. As already
argued in Sec. 2.2, it is assumed that a full tomographic
projection of the initial configuration is available, allowing
for a fine description of the geometry and position of each
grain. We then record a few tomographic projections P(θ, p)
of the sample in its deformed (current) state. For each trial
generalized displacement q of the grains, we compute the
corresponding set of trial projections P̂(θ, p; q), and evaluate
the discrepancy between experimental and trial projections.
Minimizing this discrepancy with respect to q then leads

to an estimate of the displacements of each grain. In the
present work, we selected the following objective function
as a measure of the discrepancy between P and P̂

F(q) =
∑
θ

∑
p

(
P̂(θ, p; q) − P(θ, p)

)2
, (16)

where the sum runs over the limited set of projection angles
θ and all pixels p of the detector. Minimization of the objec-
tive function F is known to deliver the maximum likelihood
estimate of q for projections corrupted with Gaussian noise.
In the more realistic case of Poisson noise, a different cost
function ought to be adopted [35]; this is ongoing work.

To sum up, the grain displacements are retrieved from
the following optimization problem

q? = arg min
q

F(q). (17)

Numerical optimization of the cost function is carried
out with the Levenberg–Marquardt method. It requires the
partial derivatives of P̂ with respect to the parameters q,
which are estimated by finite differences. Our implementation
accounts for the sparsity of the resulting Jacobian matrix
[see Eq. (12)]: the partial derivatives of P̂(i) with respect to
q( j) are not evaluated for j , i. Furthermore, P̂(i) and its
derivatives are evaluated simultaneously to avoid redundant
function calls. Non-linear optimization methods are known
to be sensitive to the initial guess; this point will be addressed
in Sec. 3.3.

3.2 Validation of the method

In this section, we present a few test-cases of the D-DPC
method, where the “experimental” projections P(θ, p) [see
Eq. (16)] are in fact generated numerically from reference
images of grains by means of our projection model. In other
words,

P(θ, p) = P̂(θ, p; qexact), (18)

where qexact is the generalized displacement that we impose
to the grains and expect to retrieve through minimization of
the cost function F [see Eq. (16)].

The simulations presented here are restricted to the case
of parallel projection of two-dimensional objects in the xz
plane (perfect geometry, see Fig. 1). The rigid body motions
of the grains are then characterized by three scalars (two
displacements and one angle of rotation): let u(i) and w(i)

denote the translation of the center of mass of grain i along
the x and z directions, and ω(i) its angle of rotation about its
center (x(i), z(i)).

It should be observed that displacements along the RT
θ
·

ez direction induce no change in the projection at angle θ.
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112.5◦
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Fig. 3 Image of the 30 grains considered for the validation of the D-
DPC method in Sec. 3.2. The blue squares (resp. red circles) indicate the
grains belonging to the “loose” (resp. “dense”) set. The typical diameter
of the grains is about 30 pix.

Hence, at least two projections are needed to fully resolve
the displacement of a grain.

The simulations presented below are successful if qD-DPC =

qexact (up to a specified tolerance), where qD-DPC denotes the
D-DPC estimate of the displacements. The initial guess for
the optimization algorithm will always be taken as the refer-
ence state (qinit = 0)

Fig. 3 shows a digital image of the grains considered
here. This image corresponds to the reference (initial) config-
uration, q = 0. In order to ensure that we explored realistic
shapes and sizes of grains, as well as gray level variations
within grains, this image was extracted from the (experimen-
tal) tomographic reconstruction of a real granular material.
However, it is again emphasized that the projections P(θ, p)
are generated numerically from this experimental image.

3.2.1 Validation with two projections and small
displacements

In this section, only two projections are considered, at angles
θ = 22.5◦ and 112.5◦ (see Fig. 3). All components of the
applied rigid body motion qexact are selected randomly: trans-
lations u(i) and w(i) are uniformly distributed between −1 pix
and 1 pix (about one tenth of the diameter of the grains),
while rotations ω(i) are uniformly distributed between −6◦

and 6◦.
As a first test, we carried out the D-DPC optimization

described in Sec. 3.1 on each grain individually. In other
words, we optimized the following cost functions [compare
with Eq. (16)]

F(i)(q) =
∑
θ

∑
p

(
P̂(i)(θ, p; q(i)) − P̂(i)(θ, p; q(i)

exact)
)2
, (19)

Max. rel. err. Num. iter.
Loose 3.42 10−13 8
Dense 1.7 10−13 8
All grains 1.26 10−12 12

Table 1 Results of the tests described in Sec. 3.2.1. For all three as-
semblies of grains, the table reports the maximum component-wise
relative error on the generalized displacement, as well as the number of
iterations of the Levenberg–Marquardt algorithm.

and retrieved q(i)
D-DPC = q(i)

exact (up to machine accuracy) for
each grain i.

We then tested our method on assemblies of grains. For
loose assembly of grains, the rays intersect a limited number
of grains. Each pixel of the sensor therefore measures infor-
mation relating to a small number of grains, and we expected
the D-DPC method to deliver more accurate results in this
case. In order to verify this intuition, we studied three differ-
ent groups of grains (subsets of the assembly shown in Fig. 3).
In the first group (labeled “loose” in what follows), the six
selected grains are separated by roughly two diameters (see
blue squares on Fig. 3). In the second group (labeled “dense”
in what follows), the six selected grains are separated by a
few pixels (see red circles on Fig. 3). Finally, the tests were
also carried out on all grains shown in Fig. 3. It should be
noted that in all these test cases, the grains are not in contact;
more realistic configurations are tested in Sec. 4.

To quantify the accuracy of our method, we measure the
component-wise maximal relative error of qexact and qD-DPC.
The results (averaged over five realizations of qexact) are re-
ported in table 1. It is observed that the minimization is
successful in all three cases. In particular, contrary to what
we expected, convergence of the method is not affected by
the density of the sample. This is a very desirable feature
for future applications to real, experimental situations. We
finally note that the number of iterations of the Levenberg–
Marquardt algorithm grows with the number of grains.

3.2.2 Validation with two to six projections and large
displacements

In this section, we present tests carried out with larger dis-
placements, defined as follows. The translations are deter-
ministic

u(i) = αx(i), (20a)

w(i) = βz(i), (20b)

with α = 0.15 and β = 0.1. Rotations ω(i) are sampled from a
uniform distribution between −30◦ and 30◦.

The error was measured as in Sec. 3.2.1 above, and the
results are reported in table 2, where it is observed that
the D-DPC method fails in this case with two projections
(θ = 22.5◦, 112.5◦). We therefore carried out two additional
simulations with four (θ = 22.5◦, 67.5◦, 112.5◦, 157.5◦) and
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Num. proj. Max. rel. err. Num. iter.
All grains 2 26.6 67
All grains 4 2.6 935
All grains 6 3.26 10−13 42

Table 2 Results of the tests described in Sec. 3.2.2. The table reports
the number of projections, the maximum component-wise relative error
on the generalized displacement and the number of iterations of the
Levenberg–Marquardt algorithm.

six (θ = 22.5◦, 52.5◦, 82.5◦, 112.5◦, 142.5◦, 172.5◦) projec-
tions. With four projections, the error was still unacceptably
high, while six projections led to an excellent accuracy. It is
very likely that with two and four projections, the optimiza-
tion algorithm converged to a local minimum. This point is
discussed in the next section.

3.3 Sensitivity to the initial guess

The D-DPC cost function F defined by Eq. (16) is not convex.
Therefore, for the Levenberg–Marquardt method to converge,
the initial guess should be close enough to the global mini-
mum. Otherwise, the D-DPC method may return a local min-
imum. In true, experimental conditions, the load should be
applied in small increments, and the D-DPC method should
be applied at each load step, using as initial guess for the
current load step the converged generalized displacement at
the previous load step.

In the present section, we study the sensitivity to the ini-
tial guess empirically. We consider the D-DPC cost function
F corresponding to the two-dimensional, parallel projections
of one grain

F(u,w, ω) =
∑
θ,p

(
P̂(θ, p; u,w, ω) − P(θ, p)

)2

=
∑
θ,p

(
P̂(θ, p; u,w, ω) − P̂(θ, p; 0, 0, 0)

)2
, (21)

where the two “experimental” projections P(θ, p) (θ = 22.5◦,
112.5◦) are generated from the 2D image of the grain marked
with a green cross on Fig. 3 (largest diameter: 37 pix). In
the present exemple, the exact generalized displacement is
qexact = 0, and an empirical study of this function in the
neighborhood of this minimum is provided.

Our observations show that the optimization procedure
is more sensitive to the initial value of the rotation ω than
translations u and w. We therefore focus in what follows
on a 1D cross-section of the cost function: ω 7→ F(0, 0, ω),
where the translations u and w are frozen. The resulting cross-
section is plotted in Fig. 4 (left axis) for values of ω ranging
from −90◦ to 90◦. Clearly, the function is convex only in
the neighborhood of the minimum ω = 0, and the initial
guess of ω should be selected in this neighborhood. This is
illustrated on Fig. 4 (right axis), where the symbols show the

−90◦ −67.5◦ −45◦ −22.5◦ 0◦ 22.5◦ 45◦ 67.5◦ 90◦

Rotation ω (and initial guess ωinit)
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◦ )

0◦

22.5◦

45◦

67.5◦

90◦
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Fig. 4 Plot of the objective function F considered in Sec. 3.3 around its
minimum (continuous line, left axis). F is not convex for large values of
ω, and the initial guess ought to be close enough to the minimum, as
illustrated by the symbols (right axis). See main text for a description
of this plot.

converged value of the rotation ωD-DPC, for the initial guess
(0, 0, ωinit), where ωinit takes the values −90◦, −45◦, −22.5◦,
−4.5◦, 4.5◦, 22.5◦, 45◦, 90◦. The simulation is successful if
the converged value of the rotation is null (up to machine
accuracy). In Fig. 4, successful simulations correspond to the
green squares lying on the x-axis. These results confirm that
the initial guess must be close enough to the solution.

It should be noted that we deliberately considered ex-
tremely large rotations: true rotations usually observed in ex-
perimental conditions are much smaller [9, 10]. It is observed
that succesful convergence is obtained for initial guesses of
the rotation which are in error by about 30◦. This illustrates
the robustness of our method.

To close this section, we mention that the same analysis
(not presented here) can be carried out on the translations.
Our simulations show that convergence to the exact displace-
ment is obtained for initial guesses of the translations which
are in error by several pixels. The amplitude of the conver-
gence domain is deemed large enough for practical applica-
tions, especially if the load is applied in small increments.

3.4 Accounting for brightness and contrast evolutions of the
projections

Changes of the intensity of the X-ray source and imperfec-
tions of the grey level calibration procedure can induce vari-
ations of brightness and contrast between the two series of
projections. In standard DIC or V-DIC algorithms, this is usu-
ally accounted for by introducing two additional optimization
parameters a and b in the cost function F, which now reads

F(a, b,q) =
∑
θ

∑
p

(
P̂(θ, p; q) − (aP(θ, p) + b)

)2
, (22)
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Fig. 5 The specimen considered in Sec. 4. The photograph also shows
the sample stage of the tomography setup.

(compare with Eq. (16)).

3.5 Implementation of the method

The standard Python implementation of the Levenberg–Mar-
quardt method provided by the scipy.optimize package
[36] was used to solve the optimization problem defined by
Eq. (17).

Naturally, the bottleneck of the code is the evaluation of
the cost function F defined by Eq. (16); as such, it was imple-
mented with great care. The Cython [37, 38, 39] static com-
piler was used to produce a native C-extension for Python of
the projection operator P̂(i)(θ, p; q(i)) defined by Eq. (9). Then,
observing that each term of the sum appearing in Eq. (16)
can be evaluated independently, the MapReduce pattern [40]
was used for the parallelization of the computation of the
objective function F. This means that each available core is in
charge of computing the projections of a subset of all grains.

4 Experimental validation

In the present section, the D-DPC methodology is applied
to a simple experiment carried out on a simplified granular
medium.

4.1 Specimen

The specimen is an assembly of 15 grains of limestone gravel
from the Boulonnais quarries (mean diameter of the grains:
5 mm, density: 2.6). The grains are placed in a polypropylene
syringe (diameter: 10 mm; height: 30 mm), see Fig. 5. The
X-ray absorption of the container is small compared to that
of gravel; it only contributes to about 10 % of the sinogram
(defined here loosely as the set of tomographic projections).

Fig. 6 Two orthogonal projections of the specimen used for validating
the D-DPC method (see Sec. 4).

4.2 X-ray microtomography and reconstruction

X-ray microtomography experiments were performed at Lab-
oratoire Navier with an Ultratom scanner from RX Solu-
tions combining a Hamamatsu L10801 X-ray source (230 kV,
200 W, smallest spot size: 5 µm) and a Paxscan Varian 2520V
flat-panel imager (1920 × 1560 pix2, pixel size 127 µm). All
scans were performed at 100 kV and 500 µA, with a frame
rate of 2 images per second. In order to increase the signal-to-
noise ratio, 40 images were averaged to produce one projec-
tion (effective exposure time: 20 s). According to the geome-
try of the tomography setup, the voxel size was estimated to
0.112 mm · vox−1. Fig. 6 shows two orthogonal projections
of the sample.

Three full scans (352 radiographs spanning the full 360◦)
were then performed. For scans 1 and 2, the position of the
sample was unchanged (reference configuration), while for
scan 3, a 3.5 mm translation in the Oxz plane (see Fig. 2) was
applied to the sample.

The D-DPC method is based on an algebraic projec-
tion operator. Consistency then requires that the initial con-
figuration be reconstructed by means of the same projec-
tion operator (as was also observed by Leclerc and coau-
thors [24]). This of course precludes the use of efficient re-
construction techniques such as the Filtered Back-Projection.
Instead, we implemented the Simultaneous Algebraic Recon-
struction Technique (SART), parallelism being provided by
the Portable Extensible Toolkit for Scientific Computation
(PETSc) [41, 42]. Our implementation was then applied to a
180 × 280 pix2 region of interest of the detector (leading to a
180 × 280 × 180 vox3 reconstructed volume).

In order to set up a stopping criterion for the SART itera-
tions, we first defined the relative residual error ε

ε =
‖b − Ax‖2
‖b‖2 , (23)

where A denotes the projection operator, b denotes the sino-
gram, and x is the unknown reconstruction. For all three
scans, the iterations were stopped when no significant reduc-
tion of the error ε was observed.
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Fig. 7 Two orthogonal cross-sections through the segmented, recon-
structed volume.

In all cases, this led to ε ' 3 %, which is consistent with
a stopping criterion based on the discrepancy principle [43].
Indeed, it should be observed that the specimen was not
moved between scans 1 and 2. In other words, the projections
from these two scans are essentially identical, up to noise.
Their difference therefore gives a reliable estimate of the
signal-to-noise (SNR) ratio, which was computed as follows

SNR =
1
2
‖b1 + b2‖2
‖b2 − b1‖2 , (24)

where b1, b2 denote the sinograms from the first and sec-
ond scans, respectively. We found that 1/SNR ' 2 %. The
residual error at the end of the iterative reconstruction was
therefore comparable to the amplitude of the noise, which
validates our stopping criterion.

4.3 Segmentation of the reconstructed volume

Segmentation of the reconstructed volume (reference config-
uration) is a crucial step of our method, since the geometry of
each grain is required for the determination of their displace-
ments. We used a standard combination of the watershed
algorithm [44, 45] and dynamic (vertical) filters, leading to a
convincing segmentation as illustrated in Fig. 7.

4.4 Application of the D-DPC method

The segmented 3D reconstruction resulting from Scan 1 was
used as a reference configuration for the generation of trial
projections within the framework of the D-DPC method,
which was then applied to Scans 2 and 3, successively.

Application to Scan 2 The specimen is untransformed; there-
fore, our method should converge to null displacements for
all grains. Deviations from this expected result provide an
estimate of the accuracy of the D-DPC method.

X Y Z
u [µm] 0.2 (36) −2.9 (20) 8.3 (34)
u [vox] 0.002 (0.32) −0.02 (0.18) 0.074 (0.31)
ω [◦] −0.2 (0.65) −0.18 (0.86) 0.12 (0.82)

Table 3 Application of the D-DPC method to Scan 2 (see Sec. 4.4).
The components of the translation u and the rotation ω are averaged
over all grains. Figures in parentheses are standard deviations over the
grains.

X Y Z
u [mm] 2.76 (0.03) 0.01 (0.04) −2.12 (0.04)
u [vox] 24.67 (0.31) 0.14 (0.36) −18.90 (0.36)
ω [◦] −0.2 (1.46) −0.83 (1.86) 0.26 (0.81)

Table 4 Application of the D-DPC method to Scan 3 (see Sec. 4.4).
The components of the translation u and the rotation ω are averaged
over all grains. Figures in parentheses are standard deviations over the
grains.

Application to Scan 3 The specimen was subjected to a
3.5 mm (31.25 vox) translation in the Oxz plane; therefore,
the D-DPC method should converge to the same rigid body
motion for all grains. The expected value of this rigid body
motion was estimated by means of the standard Volumetric
Digital Image Correlation technique (VDIC) [17], leading to

qVDIC =
(
2.78 mm,−1.24 10−3 mm,−2.12 mm

)
,

=
(
24.82 vox,−0.01 vox,−18.93 vox

) (25)

‖qVDIC‖ = 3.503 mm. (26)

Again, deviations from this expected result provide an esti-
mate of the accuracy of the D-DPC method.

In both cases, only 4 projections (0◦, 45◦, 90◦, 135◦) were
used to estimate the rigid body motion of each grain. The
results are presented in Tables 4.4 (Scan 2) and 4.4 (Scan
3). The measured translations and rotations are averaged
over all grains, while the corresponding standard deviation
is used as a measure of the method accuracy. For both scans,
we found that the accuracy was about 0.01 mm (0.1 vox) for
translations and 1◦ for rotations.

It is again emphasized that only 4 projections were re-
quired to achieve the reported accuracy, although the initial
guess passed to the optimization algorithm provided pur-
posedly a very poor estimate of the true displacements. In-
deed, the reference configuration was used as initial guess
(qinit = 0). If the initial guess is chosen within 1 vox (trans-
lations) and 6◦ (rotations) of the true displacements, then
the accuracy achieved with only 2 projections (the bare mini-
mum) was similar for translations, and only slightly degraded
for rotations.

To close this section, we note that Leclerc and coauthors
[24] report similar accuracies when using very few projec-
tions.
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5 Conclusion

In this paper, we have proposed a new method based on X-
ray microtomography to capture the movements of grains
within granular materials. The most salient feature of this
method, wich we called D-DPC (Discrete Digital Projection
Correlation), is that it does not require a 3D reconstruction of
the specimen in its current (deformed) state (it does require
a reconstruction of the specimen in its initial state). Our
tests show that as few as two projections suffice to deliver a
satisfactory estimate of the displacements. This results in a
dramatic reduction of the acquisition time, therefore allowing
for time-dependent phenomena (such as creep) to be studied.

The D-DPC method is formulated as an inverse problem,
which is fully stated in the present paper. Both synthetic and
real-life test cases confirm the value of the method, which
is accurate to about 0.1 vox (translations) and 1◦ (rotations)
in standard laboratory experimental conditions. Although
more conventional correlation techniques can achieve more
accurate measurements, we believe that this is largely com-
pensated by the significant gain in acquisition time that our
method offers. Besides, we are currently investigating the
potential sources of errors (noise, fluctuations of the beam,
. . . ) as well as several ways to improve the accuracy of D-
DPC, such as refining the projection model, accouting for
geometric imperfections of the tomography setup, . . .
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