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A Finite-Volume discretization of viscoelastic
Saint-Venant equations for FENE-P fluids

Sébastien Boyaval

Abstract Saint-Venant equations can be generalized to account for a viscoelastic
rheology in shallow flows. A Finite-Volume discretization for the 1D Saint-Venant
system generalized to Upper-Convected Maxwell (UCM) fluids was proposed in
[Bouchut & Boyaval, 2013], which preserved a physically-natural stability prop-
erty (i.e. free-energy dissipation) of the full system. It invoked a relaxation scheme
of Suliciu type for the numerical computation of approximate solution to Riemann
problems. Here, the approach is extended to the 1D Saint-Venant system generalized
to the finitely-extensible nonlinear elastic fluids of Peterlin (FENE-P). We are cur-
rently not able to ensure all stability conditions a priori, but numerical simulations
went smoothly in a practically useful range of parameters.

Key words: Saint-Venant equations, FENE-P viscoelastic fluids, Finite-Volume,
simple Riemann solver, Suliciu relaxation scheme

MSC (2010): 65M08, 65N08, 35Q30

1 Introduction

Saint-Venant equations standardly model shallow free-surface gravity flows and can
be generalized to account for the viscoelastic rheology of non-Newtonian fluids
[6], Upper-Convected Maxwell (UCM) fluids in particular [5]. Here, we consider
a generalized Saint-Venant (gSV) system for finitely-extensible nonlinear elastic
fluids with Peterlin closure (FENE-P fluids) in Cartesian coordinates
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∂th+∂x(hu) = 0 (1)
∂t(hu)+∂x

(
hu2 +gh2/2+hN

)
= 0 (2)

λ (∂tσxx +u∂xσxx +2(ζ −1)σxx∂xu) = 1−σxx/(1− (σzz +σxx)/`) (3)
λ (∂tσzz +u∂xσzz +2(1−ζ )σzz∂xu) = 1−σzz/(1− (σzz +σxx)/`) (4)

for 1D ey-translation invariant flow along ex under a uniform gravity field−gez with

• mean flow depth h(t,x)> 0 (in case of a non-rugous flat bottom),
• mean flow velocity u(t,x) (for uniform cross sections), and
• a normal-stress difference N = G(σzz−σxx)/(1− (σzz +σxx)/`) given by con-

formation variables σzz,σxx > 0 constrained by 0 < σzz +σxx < `, a relaxation
time λ ≥ 0 and an elasticity modulus G > 0.

Note that (1-2-3-4) formally reduces to the standard viscous Saint-Venant system
with viscosity ν ≡ 2λG ≥ 0 when `→ ∞, λ → 0 and Gλ < ∞. Moreover we have
used the quite general Gordon-Schowalter derivatives with slip parameter ζ ∈ [0, 1

2 ]
constrained by the hyperbolicity of the system (1-2-3-4). (This follows after an easy
computation similar to [8].)

In this work, we discuss a Finite-Volume method to solve (numerically) the
Cauchy problem for the nonlinear hyperbolic 1D system (1-2-3-4). Standardly, we
need to consider weak solutions (in fact, to (6-7-8-9), see below) plus admissibil-
ity constraints that are physically-meaningful dissipation rules formalizing the ther-
modynamics second principle close to an equilibrium [9]. Here, we consider the
inequality associated with the companion conservation law for the free-energy

F = h
(

u2

2
+

gh
2
− G

2(1−ζ )
(` log((`− (σxx +σzz))/(`−2))+ log(σxxσzz))

)
that is, on denoting the impulse by P = gh2/2+hN,

− Gh
2(1−ζ )λ

(
σ
−1
xx

(
1− σxx

1− (σzz +σxx)/`

)2

+σ
−1
zz

(
1− σzz

1− (σzz +σxx)/`

)2
)

=: D≥ ∂tF +∂x (u(F +P)) (5)

where the left-hand-side is obviously non-positive on the admissibility domain

U ` := {0 < h,0 < σxx,0 < σzz,σxx +σzz < `} .

Note that we do not consider the vacuum state h = 0 as admissible here, see [8].



Saint-Venant/FENE-P shallow flows 3

2 Finite-Volume discretization of FENE-P/Saint-Venant

Piecewise-constant approximate solutions to the Cauchy problem on (t,x)∈ [0,T )×
R for the gSV system can be defined by a Finite-Volume (FV) method. With a
view to preserving U ` and the dissipation (5) after discretization by a FV method,
we choose q = (h,hu,hσxx,hσzz) as discretization variable. Indeed, the free-energy
functional F is convex on the convex domain U ` 3 q (this follows after an easy com-
putation from [4, Lemma 1.3]) while it is not convex in the variable (h,hu,hΠ ,hΣ)
whatever smooth invertible functions ϖ ,ς are used for the reformulation of gSV

∂th+∂x(hu) = 0 (6)

∂t(hu)+∂x

(
hu2 +

gh2

2
+hN

)
= 0 (7)

∂t(hΠ)+∂x(huΠ) =
h3−2ζ ϖ ′(σxxh2(1−ζ ))

λ

(
1− σxx

1− σzz+σxx
`

)
(8)

∂t(hΣ)+∂x(huΣ) =
h2ζ−1ς ′(σzzh2(ζ−1))

λ

(
1− σzz

1− σzz+σxx
`

)
(9)

with Π = ϖ(σxxh2(1−ζ )), Σ = ς(σzzh2(ζ−1)) (computations are similar to [5, Ap-
pendix]). In the sequel, we therefore discretize a quasilinear system with source

∂tq+A(q)∂xq = S(q) , (10)

which we recall is not ambiguous here (for those discontinuous solutions built using
a Riemann solver, at least) thanks to the dissipation rule (5), see [11, 2, 8].

2.1 Splitting-in-time

In cell (xi−1/2,xi+1/2), i ∈ Z, with volume ∆xi = xi+1/2 − xi−1/2 > 0 and center
xi = (xi−1/2 + xi+1/2)/2, we approximate q solution to (10) on R≥0×R 3 (t,x) by

qn+1
i ≈ 1

∆xi

∫ xi+1/2

xi−1/2

q(t,x)dx, i ∈ Z, t ∈ (tn, tn+1]

on a time grid 0 = t0 < t1 < .. . < tn < tn+1 < .. . < tN = T where ∆ tn = |tn+1− tn|
will be chosen small enough compared with ∆x= supi∈Z ∆xi <∞ to ensure stability.

More precisly, having in mind the numerical approximation of a (well-posed)
Cauchy problem for (10) on R≥0×R with initial condition q(t→ 0+)= q0 ∈ L∞(R),
and therefore starting from approximations q0

i ≈ 1
∆xi

∫ xi+1/2
xi−1/2 q0(x)dx, i ∈ Z, we shall

define the cell values qn
i in two steps for each n = 1, . . . ,N:

(i) an approximate solution to the homogeneous gSV system (i.e. without the source
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term S) on [tn, tn+1) is first computed by an explicit three-point scheme

qn+1/2
i = qn

i −
∆ tn

∆xi

(
Fl(qn

i ,q
n
i+1)−Fr(qn

i−1,q
n
i )
)
, (11)

(ii) an approximate solution to the full gSV system on (tn, tn+1] is next computed as

qn+1
i = qn+1/2

i +∆ tnS(qn+1
i ) . (12)

Then, the scheme is consistent with weak solutions of (1–2) equiv. (6–7)

qn+1
i = qn

i −
∆ tn

∆xi

(
Fl(qn

i ,q
n
i+1)−Fr(qn

i−1,q
n
i )
)
+∆ tnS(qn+1

i ) (13)

provided the two first flux components for the conservative part (h,hu) of the vari-
able q (actually solutions to conservation laws) are conservative Fl,h = Fr,h := Fh,
Fl,hu = Fr,hu := Fhu and consistent Fh(q,q) = hu|q, Fhu(q,q) = (hu2 +gh2/2+hN)|q
as usual, and with the conservative interpretation (8–9) of (3–4) insofar as we next
define Fl and Fr using a simple approximate Riemann solver [10] for (6–7–8–9).

Moreover, with a view to preserving U ` and a discrete version of (5)

F(qn+1/2
i )−F(qn

i )+
∆ tn

∆xi

(
G(qn

i ,q
n
i+1)−G(qn

i−1,q
n
i ))
)
≤ 0 (14)

for a numerical free-energy flux function consistent with G(q,q) = u(F +P)|q in
(5), in the sequel, we shall discuss the relaxation technique introduced by Suliciu
as simple Riemann solver in step (i), because it proved satisfying for other close
systems [3, 4, 5] equipped with an “entropy” convex in the discretization variable
like F here. In the end, for the full scheme (13), a consistent free-energy dissipation

F(qn+1
i )−F(qn

i )+
∆ tn

∆xi

(
G(qn

i ,q
n
i+1)−G(qn

i−1,q
n
i ))
)
≤ ∆ tnD(qn+1

i ) (15)

then holds insofar hn+1/2
i = hn+1

i , un+1/2
i = un+1

i and the convexity of F imply

F(qn+1
i )−F(qn+1/2

i )≤ ∆ tnD(qn+1
i )≤ 0 . (16)

Proof. On noting hn+1/2
i = hn+1

i , un+1/2
i = un+1

i it suffices to show that

λ

(
σ

n+1
xx,i −σ

n
xx,i

)
/∆ tn = 1−σ

n+1
xx,i /(1− (σn+1

zz,i +σ
n+1
xx,i )/`)

λ

(
σ

n+1
zz,i −σ

n
zz,i

)
/∆ tn = 1−σ

n+1
zz,i /(1− (σn+1

zz,i +σ
n+1
xx,i )/`)

imply (16). Now, this is obvious, on noting the convexity of F |h,u in (σxx,σzz) and

∇(σxx,σzz)F |h,u ·S = D
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since ∇(σxxh2(1−ζ ),σzzh2(ζ−1))F · (h
2(ζ−1)Shσxx ,h

2(1−ζ )Shσzz) = D by design.

2.2 Suliciu relaxation of the Riemann problem without source

For all time ranges t ∈ [tn, tn+1), n = 0 . . .N−1, let us now define at each interface
xi+ 1

2
, i ∈ Z, between cells i and i+1 the numerical flux functions Fl and Fr

Fl(ql ,qr) = F0(ql)−
∫ 0
−∞

(
R(ξ ,ql ,qr)−ql

)
dξ ,

Fr(ql ,qr) = F0(qr)+
∫

∞

0

(
R(ξ ,ql ,qr)−qr

)
dξ .

(17)

invoking an approximate solution R
(
(x− xi+1/2)/(t− tn),qn

i ,q
n
i+1
)

to the Riemann
problem for (10) with initial condition qn

i 1x<0 +1x>0qn
i+1 at t = tn, and any F0.

In this work, we propose as approximate solution that given by Suliciu relaxation

R(ξ ,ql ,qr) = LR (ξ ,Ql ,Qr) (18)

i.e. the projection (operator L) onto q ≡ (h,hu,hσxx,hσzz) of the exact solution
R (ξ ,Ql ,Qr) of the Riemann problem for the system with relaxed pressure

∂th+∂x(hu) = 0

∂t(hu)+∂x(hu2 +π) = 0

∂t(σxxh2(1−ζ ))+u∂x(σxxh2(1−ζ )) = 0

∂t(σzzh2(ζ−1))+u∂x(σzzh2(ζ−1)) = 0

∂t(hπ)+∂x(huπ +uc2) = 0

∂t
(
h(u2/2+ ê)

)
+∂x

(
hu(u2/2+ ê)+uπ

)
= 0

∂tc+u∂xc = 0

(19)

and initial condition given by (o = l,r)

Qo =
(

ho,(hu)o,h1−2ζ
o (hσxx)o,h2ζ−3

o (hσzz)o,hoP(qo),(hu)2
o/2ho + e(qo),co

)
(20)

where co(ql ,qr) are chosen so as to ensure stability, that is the dissipation rule (14)
here (see below). Note that (19) is a hyperbolic system which fully decomposes into
linearly degenerate eigenfields, so R has an analytic expression (see formulas in
[4, 5]). Note also: the Riemann solver R is consistent under the CFL condition

∆ tn ≤ 1
2

inf
i∈Z

1
∆xi

max
(
un

i − cl(qn
i ,q

n
i+1)/hn

i ,u
n
i + cr(qn

i ,q
n
i+1)/hn

i+1
)
. (21)

It remains to specify a choice of functions cl ,cr preserving U ` and ensuring (14).
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Although it is not clear whether our construction allows one to approximate so-
lutions on any time ranges t ∈ [0,T ), since the series ∑n ∆ tn may be bounded uni-
formly for all space-grid choice (supi |un

i | may grow unboundedly as n→∞), speci-
fying such cl ,cr fully defines a computable scheme. In particular, (15) then implies
that (12) at step (ii) always has at least one solution qn+1

i ∈U ` for any ∆ tn fixed at
step (i). (This can be shown using Brouwer fixed-point theorem like in [1].)

Note however a difficulty here for FENE-P fluids with cl ,cr. Suliciu relaxation
approach (19) was retained at step (i) because the solver often allows one to preserve
invariant domains like U ` and a dissipation rule (14) through well-chosen cl ,cr, see
e.g. [3, 4, 5]. Indeed, on noting the exact Riemann solution to (19), to get (14) on
choosing G(ql ,qr) = u

(
h
( u2

2 + ê
)
+π

)
|R(0,ql ,qr), it is enough that ∀ql ,qr ∈U `

qξ := LR (ξ ,Ql ,Qr) ∈U ` and h2
ξ

∂h|h2−2ζ σxx,h2ζ−2σzz
P(qξ )≤ c2

ξ
, ∀ξ ∈ R (22)

using cξ = cl(ql ,qr) if ξ <= u∗ and cξ = cr(ql ,qr) if ξ > u∗ with u∗ := clul+πl+crur−πr
cl+cr

.
One can easily propose cl ,cr satisfying the first condition in (22), i.e.

1
h∗l

=
1
hl

(
1+

cr(ur−ul)+πl−πr

(cl/hl)(cl + cr)

)
> 0 (23)

1
h∗r

=
1
hr

(
1+

cl(ur−ul)+πr−πl

(cr/hr)(cl + cr)

)
> 0 (24)

as usual for Saint-Venant systems, plus the admissibility conditions (o = l/r)

(h∗o)
2(1−ζ )(ho)

2(ζ−1)
σzz,o +(h∗o)

2(ζ−1)(ho)
2(1−ζ )

σxx,o < ` (25)

for any σzz,o,σxx,o > 0 satisfying σzz,o +σxx,o < ` (FENE-P fluids, see below). But
the second condition is usually treated for φo : h→ h

√
∂h|h2−2ζ

o σxx,o,h
2ζ−2
o σzz,o

P mono-

tone. Unfortunately, a lengthy (but easy) computation shows that the latter is not
monotone here, so the standard method to choose cl ,cr a priori does not apply.

2.3 Choice of relaxation parameter

Let us treat the first part of (22) as usual and define co = max(ho
√

∂hP(qo) :=
hoao, c̃o), o = l/r such that the functions c̃o(ql ,qr) ensure (23–24) and (25).

First, let us inspect (23–24) classically following [7, section3.3]. Denoting alYl =

(ul − ur)+ + (πr−πl)+
hlal+hrar

≥ 0, arYr = (ul − ur)+ + (πl−πr)+
hlal+hrar

≥ 0 so 1
h∗o
≥ 1−hoaoYo/co

ho
,

it then holds (h∗o)
−1 ≥ (ho)

−1yo > 0 with yo := 1− Yo
1+αoYo

∈ (αo−1
αo

,1] provided
one chooses c̃o > 0 such that co ≥ hoao(1+αoYo) for αo > 1, which yields h∗o ∈
(0,ho/yo] thus (23–24) in particular.

On the other hand, let us now inspect (25), which rewrites with h∗o > 0
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woAo +w−1
o Bo < 1⇔ 2Aowo ∈

(
1−
√

1−4AoBo,1+
√

1−4AoBo

)
⊂ R>0 (26)

with wo = (h∗o/ho)
2(1−ζ ), Ao = σzz,o/`, Bo = σxx,o/` positive such that Ao +Bo < 1

(hence AoBo ≤ Ao(1−Ao) ≤ 1
4 ) and 2(1− ζ ) ∈ [1,2]. The upper-bound in (26) is

satisfied with αo = (w+
o )

1
2(1−ζ ) /((w+

o )
1

2(1−ζ ) −1)> 1, on noting

(w+
o )

1
2(1−ζ ) :=

(
(1+

√
1−4AoBo)/(2Ao)

) 1
2(1−ζ ) ≥ αo

αo−1
≥ 1/yo ≥ h∗o/ho . (27)

It remains to ensure the lower bound in (26). Obviously, w−o := 1−
√

1−4AoBo
2Ao

< 1 so

one only needs to inspect the case h∗o≤ ho. Now, with alWl =(ur−ul)++
(πl−πr)+
hlal+hrar

≥

0, arWr = (ur−ul)++ (πr−πl)+
hlal+hrar

≥ 0, if co ≥ hoaoWo((w−o )
− 1

2(1−ζ ) −1)−1 then holds

(w−o )
1

2(1−ζ ) ≤ (1+aohoWo/co)
−1 ≤ h∗o/ho .

In the end, we claim the following choices

cl = hl max
(

al +αl

(
(ul−ur)++

(πr−πl)+
hlal +hrar

)
,βl

(
(ur−ul)++

(πl−πr)+
hlal +hrar

))
(28)

cr = hr max
(

ar +αr

(
(ul−ur)++

(πl−πr)+
hlal +hrar

)
,βr

(
(ur−ul)++

(πr−πl)+
hlal +hrar

))
(29)

satisfy simultaneously (23–24) and (25) in a compatible way with ao =
√

∂hP(qo),

αo =max(2,(w+
o )

1
2(1−ζ ) /((w+

o )
1

2(1−ζ ) −1)), βo =(w−o )
1

2(1−ζ ) /(1−(w−o )
1

2(1−ζ ) )), w−o =
`−
√

`−4σzz,oσxx,o
2σzz,o

, w+
o =

`+
√

`−4σzz,oσxx,o
2σzz,o

, for o = l/r. Moreover, note that we have
chosen αo such that all subcharacteristic conditions (22) are satisfied in the `→ ∞

limit, hence also the free-energy dissipation (15). Indeed, φo is monotone in the
`→ ∞ limit and one can then apply the standard method to choose cl ,cr [5].

3 Numerical illustrations

We numerically approximate on t ∈ [0, .1] the solution to a Riemann problem with{
(hl ,ul ,σxx,l ,σzz,l) = (1,0,1,1) x < .5
(hr,ur,σxx,r,σzz,r) = (.1,0,1,1) x > .5

as initial condition when g = 10, ζ = 0, G = .1, λ = .1. In Fig. 1, we show the
initial condition and the result at t = .1 when ∆x = 2−8 for `= 10,100,1000. Note
the influence of the parameter ` on the stretch σxx +σzz. On computing numerically
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Fig. 1 Top: h (left) and u (right), bottom: σxx and σzz.

the free-energy dissipation with the choice of relaxation parameter above, we have
never observed the wrong sign, while the time-step did not go to zero.
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