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, which preserved a physically-natural stability property (i.e. free-energy dissipation) of the full system. It invoked a relaxation scheme of Suliciu type for the numerical computation of approximate solution to Riemann problems. Here, the approach is extended to the 1D Saint-Venant system generalized to the finitely-extensible nonlinear elastic fluids of Peterlin (FENE-P). We are currently not able to ensure all stability conditions a priori, but numerical simulations went smoothly in a practically useful range of parameters.

Introduction

Saint-Venant equations standardly model shallow free-surface gravity flows and can be generalized to account for the viscoelastic rheology of non-Newtonian fluids [START_REF] Bouchut | Unified derivation of thin-layer reduced models for shallow freesurface gravity flows of viscous fluids[END_REF], Upper-Convected Maxwell (UCM) fluids in particular [START_REF] Bouchut | A new model for shallow viscoelastic fluids[END_REF]. Here, we consider a generalized Saint-Venant (gSV) system for finitely-extensible nonlinear elastic fluids with Peterlin closure (FENE-P fluids) in Cartesian coordinates 

∂ t (hu) + ∂ x hu 2 + gh 2 /2 + hN = 0 (2) λ (∂ t σ xx + u∂ x σ xx + 2(ζ -1)σ xx ∂ x u) = 1 -σ xx /(1 -(σ zz + σ xx )/ ) (3) 
λ (∂ t σ zz + u∂ x σ zz + 2(1 -ζ )σ zz ∂ x u) = 1 -σ zz /(1 -(σ zz + σ xx )/ ) (4) 
for 1D e y -translation invariant flow along e x under a uniform gravity field -ge z with

• mean flow depth h(t, x) > 0 (in case of a non-rugous flat bottom),

• mean flow velocity u(t, x) (for uniform cross sections), and • a normal-stress difference N = G(σ zzσ xx )/(1 -(σ zz + σ xx )/ ) given by conformation variables σ zz , σ xx > 0 constrained by 0 < σ zz + σ xx < , a relaxation time λ ≥ 0 and an elasticity modulus G > 0.

Note that (1-2-3-4) formally reduces to the standard viscous Saint-Venant system with viscosity ν ≡ 2λ G ≥ 0 when → ∞, λ → 0 and Gλ < ∞. Moreover we have used the quite general Gordon-Schowalter derivatives with slip parameter ζ ∈ [0, 1 2 ] constrained by the hyperbolicity of the system (1-2-3-4). (This follows after an easy computation similar to [START_REF] Boyaval | Johnson-Segalman -Saint-Venant equations for viscoelastic shallow flows in the elastic limit[END_REF].)

In this work, we discuss a Finite-Volume method to solve (numerically) the Cauchy problem for the nonlinear hyperbolic 1D system (1-2-3-4). Standardly, we need to consider weak solutions (in fact, to (6-7-8-9), see below) plus admissibility constraints that are physically-meaningful dissipation rules formalizing the thermodynamics second principle close to an equilibrium [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. Here, we consider the inequality associated with the companion conservation law for the free-energy

F = h u 2 2 + gh 2 - G 2(1 -ζ ) ( log (( -(σ xx + σ zz ))/( -2)) + log(σ xx σ zz ))
that is, on denoting the impulse by P = gh 2 /2 + hN,

- Gh 2(1 -ζ )λ σ -1 xx 1 - σ xx 1 -(σ zz + σ xx )/ 2 +σ -1 zz 1 - σ zz 1 -(σ zz + σ xx )/ 2 =: D ≥ ∂ t F + ∂ x (u(F + P)) (5)
where the left-hand-side is obviously non-positive on the admissibility domain

U := {0 < h, 0 < σ xx , 0 < σ zz , σ xx + σ zz < } .
Note that we do not consider the vacuum state h = 0 as admissible here, see [START_REF] Boyaval | Johnson-Segalman -Saint-Venant equations for viscoelastic shallow flows in the elastic limit[END_REF].

2 Finite-Volume discretization of FENE-P/Saint-Venant Piecewise-constant approximate solutions to the Cauchy problem on (t, x) ∈ [0, T )× R for the gSV system can be defined by a Finite-Volume (FV) method. With a view to preserving U and the dissipation (5) after discretization by a FV method, we choose q = (h, hu, hσ xx , hσ zz ) as discretization variable. Indeed, the free-energy functional F is convex on the convex domain U q (this follows after an easy computation from [4, Lemma 1.3]) while it is not convex in the variable (h, hu, hΠ , hΣ ) whatever smooth invertible functions ϖ, ς are used for the reformulation of gSV

∂ t h + ∂ x (hu) = 0 (6) ∂ t (hu) + ∂ x hu 2 + gh 2 2 + hN = 0 ( 7 
)
∂ t (hΠ ) + ∂ x (huΠ ) = h 3-2ζ ϖ (σ xx h 2(1-ζ ) ) λ 1 - σ xx 1 -σ zz +σ xx (8) ∂ t (hΣ ) + ∂ x (huΣ ) = h 2ζ -1 ς (σ zz h 2(ζ -1) ) λ 1 - σ zz 1 -σ zz +σ xx (9) with Π = ϖ(σ xx h 2(1-ζ ) ), Σ = ς (σ zz h 2(ζ -1)
) (computations are similar to [START_REF] Bouchut | A new model for shallow viscoelastic fluids[END_REF]Appendix]). In the sequel, we therefore discretize a quasilinear system with source

∂ t q + A(q)∂ x q = S(q) , (10) 
which we recall is not ambiguous here (for those discontinuous solutions built using a Riemann solver, at least) thanks to the dissipation rule [START_REF] Bouchut | A new model for shallow viscoelastic fluids[END_REF], see [START_REF] Lefloch | The theory of classical and nonclassical shock waves[END_REF][START_REF] Berthon | Why many theories of shock waves are necessary: kinetic relations for non-conservative systems[END_REF][START_REF] Boyaval | Johnson-Segalman -Saint-Venant equations for viscoelastic shallow flows in the elastic limit[END_REF].

Splitting-in-time

In cell

(x i-1/2 , x i+1/2 ), i ∈ Z, with volume ∆ x i = x i+1/2 -x i-1/2 > 0 and center x i = (x i-1/2 + x i+1/2
)/2, we approximate q solution to (10) on R ≥0 × R (t, x) by

q n+1 i ≈ 1 ∆ x i x i+1/2 x i-1/2 q(t, x)dx, i ∈ Z,t ∈ (t n ,t n+1 ] on a time grid 0 = t 0 < t 1 < . . . < t n < t n+1 < . . . < t N = T where ∆t n = |t n+1 -t n | will be chosen small enough compared with ∆ x = sup i∈Z ∆ x i < ∞ to ensure stability.
More precisly, having in mind the numerical approximation of a (well-posed) Cauchy problem for [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] on R ≥0 ×R with initial condition q(t → 0 + ) = q 0 ∈ L ∞ (R), and therefore starting from approximations q 0 i ≈ 1

∆ x i x i+1/2
x i-1/2 q 0 (x)dx, i ∈ Z, we shall define the cell values q n i in two steps for each n = 1, . . . , N: (i) an approximate solution to the homogeneous gSV system (i.e. without the source term S) on [t n ,t n+1 ) is first computed by an explicit three-point scheme

q n+1/2 i = q n i - ∆t n ∆ x i F l (q n i , q n i+1 ) -F r (q n i-1 , q n i ) , (11) 
(ii) an approximate solution to the full gSV system on (t n ,t n+1 ] is next computed as

q n+1 i = q n+1/2 i + ∆t n S(q n+1 i ) . (12) 
Then, the scheme is consistent with weak solutions of (1-2) equiv. (6-7)

q n+1 i = q n i - ∆t n ∆ x i F l (q n i , q n i+1 ) -F r (q n i-1 , q n i ) + ∆t n S(q n+1 i ) (13) 
provided the two first flux components for the conservative part (h, hu) of the variable q (actually solutions to conservation laws) are conservative F l,h = F r,h := F h , F l,hu = F r,hu := F hu and consistent F h (q, q) = hu| q , F hu (q, q) = (hu 2 + gh 2 /2 + hN)| q as usual, and with the conservative interpretation (8-9) of (3-4) insofar as we next define F l and F r using a simple approximate Riemann solver [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] for (6-7-8-9). Moreover, with a view to preserving U and a discrete version of ( 5)

F(q n+1/2 i ) -F(q n i ) + ∆t n ∆ x i G(q n i , q n i+1 ) -G(q n i-1 , q n i )) ≤ 0 (14)
for a numerical free-energy flux function consistent with G(q, q) = u(F + P)| q in (5), in the sequel, we shall discuss the relaxation technique introduced by Suliciu as simple Riemann solver in step (i), because it proved satisfying for other close systems [START_REF] Bouchut | Entropy satisfying flux vector splittings and kinetic BGK models[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Bouchut | A new model for shallow viscoelastic fluids[END_REF] equipped with an "entropy" convex in the discretization variable like F here. In the end, for the full scheme (13), a consistent free-energy dissipation

F(q n+1 i ) -F(q n i ) + ∆t n ∆ x i G(q n i , q n i+1 ) -G(q n i-1 , q n i )) ≤ ∆t n D(q n+1 i ) (15) 
then holds insofar

h n+1/2 i = h n+1 i , u n+1/2 i = u n+1 i
and the convexity of F imply

F(q n+1 i ) -F(q n+1/2 i ) ≤ ∆t n D(q n+1 i ) ≤ 0 . (16) 
Proof. On noting

h n+1/2 i = h n+1 i , u n+1/2 i = u n+1 i it suffices to show that λ σ n+1 xx,i -σ n xx,i /∆t n = 1 -σ n+1 xx,i /(1 -(σ n+1 zz,i + σ n+1 xx,i )/ ) λ σ n+1 zz,i -σ n zz,i /∆t n = 1 -σ n+1 zz,i /(1 -(σ n+1 zz,i + σ n+1 xx,i )/ )
imply ( 16). Now, this is obvious, on noting the convexity of F| h,u in (σ xx , σ zz ) and

∇ (σ xx ,σ zz ) F| h,u • S = D since ∇ (σ xx h 2(1-ζ ) ,σ zz h 2(ζ -1) ) F • (h 2(ζ -1) S hσ xx , h 2(1-ζ ) S hσ zz ) = D by design.

Suliciu relaxation of the Riemann problem without source

For all time ranges t ∈ [t n ,t n+1 ), n = 0 . . . N -1, let us now define at each interface x i+ 1 2 , i ∈ Z, between cells i and i + 1 the numerical flux functions F l and F r F l (q l , q r ) = F 0 (q l ) -0 -∞ R(ξ , q l , q r )q l dξ , F r (q l , q r ) = F 0 (q r ) + ∞ 0 R(ξ , q l , q r )q r dξ .

(

) 17 
invoking an approximate solution R (xx i+1/2 )/(tt n ), q n i , q n i+1 to the Riemann problem for (10) with initial condition q n i 1 x<0 + 1 x>0 q n i+1 at t = t n , and any F 0 . In this work, we propose as approximate solution that given by Suliciu relaxation

R(ξ , q l , q r ) = LR (ξ , Q l , Q r ) (18) 
i.e. the projection (operator L) onto q ≡ (h, hu, hσ xx , hσ zz ) of the exact solution R (ξ , Q l , Q r ) of the Riemann problem for the system with relaxed pressure

                           ∂ t h + ∂ x (hu) = 0 ∂ t (hu) + ∂ x (hu 2 + π) = 0 ∂ t (σ xx h 2(1-ζ ) ) + u∂ x (σ xx h 2(1-ζ ) ) = 0 ∂ t (σ zz h 2(ζ -1) ) + u∂ x (σ zz h 2(ζ -1) ) = 0 ∂ t (hπ) + ∂ x (huπ + uc 2 ) = 0 ∂ t h(u 2 /2 + ê) + ∂ x hu(u 2 /2 + ê) + uπ = 0 ∂ t c + u∂ x c = 0 (19)
and initial condition given by (o = l, r)

Q o = h o , (hu) o , h 1-2ζ o (hσ xx ) o , h 2ζ -3 o (hσ zz ) o , h o P(q o ), (hu) 2 o /2h o + e(q o ), c o (20 
) where c o (q l , q r ) are chosen so as to ensure stability, that is the dissipation rule ( 14) here (see below). Note that (19) is a hyperbolic system which fully decomposes into linearly degenerate eigenfields, so R has an analytic expression (see formulas in [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Bouchut | A new model for shallow viscoelastic fluids[END_REF]). Note also: the Riemann solver R is consistent under the CFL condition

∆t n ≤ 1 2 inf i∈Z 1 ∆ x i max u n i -c l (q n i , q n i+1 )/h n i , u n i + c r (q n i , q n i+1 )/h n i+1 . ( 21 
)
It remains to specify a choice of functions c l , c r preserving U and ensuring (14).

Although it is not clear whether our construction allows one to approximate solutions on any time ranges t ∈ [0, T ), since the series ∑ n ∆t n may be bounded uniformly for all space-grid choice (sup i |u n i | may grow unboundedly as n → ∞), specifying such c l , c r fully defines a computable scheme. In particular, (15) then implies that (12) at step (ii) always has at least one solution q n+1 i ∈ U for any ∆t n fixed at step (i). (This can be shown using Brouwer fixed-point theorem like in [START_REF] Barrett | Existence and approximation of a (regularized) Oldroyd-B model[END_REF].) Note however a difficulty here for FENE-P fluids with c l , c r . Suliciu relaxation approach (19) was retained at step (i) because the solver often allows one to preserve invariant domains like U and a dissipation rule (14) through well-chosen c l , c r , see e.g. [START_REF] Bouchut | Entropy satisfying flux vector splittings and kinetic BGK models[END_REF][START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Bouchut | A new model for shallow viscoelastic fluids[END_REF]. Indeed, on noting the exact Riemann solution to (19), to get (14) on choosing G(q l , q r ) = u h u 2 2 + ê + π | R(0,q l ,q r ) , it is enough that ∀q l , q r ∈ U

q ξ := LR (ξ , Q l , Q r ) ∈ U and h 2 ξ ∂ h | h 2-2ζ σ xx ,h 2ζ -2 σ zz P(q ξ ) ≤ c 2 ξ , ∀ξ ∈ R (22)
using c ξ = c l (q l , q r ) if ξ <= u * and c ξ = c r (q l , q r ) if ξ > u * with u * := c l u l +π l +c r u r -π r c l +c r . One can easily propose c l , c r satisfying the first condition in (22), i.e.

1 h * l = 1 h l 1 + c r (u r -u l ) + π l -π r (c l /h l )(c l + c r ) > 0 (23) 1 h * r = 1 h r 1 + c l (u r -u l ) + π r -π l (c r /h r )(c l + c r ) > 0 (24) 
as usual for Saint-Venant systems, plus the admissibility conditions (o = l/r) P monotone. Unfortunately, a lengthy (but easy) computation shows that the latter is not monotone here, so the standard method to choose c l , c r a priori does not apply.

(h * o ) 2(1-ζ ) (h o ) 2(ζ -1) σ zz,o + (h * o ) 2(ζ -1) (h o ) 2(1-ζ ) σ xx,o < (25) 

Choice of relaxation parameter

Let us treat the first part of (22) as usual and define c o = max(h o ∂ h P(q o ) := h o a o , co ), o = l/r such that the functions co (q l , q r ) ensure (23-24) and (25). First, let us inspect (23-24) classically following [7, section3.3]. Denoting a l Y l = (u lu r ) + + (π r -π l ) + h l a l +h r a r ≥ 0, a r Y r = (u lu r ) + + (π l -π r ) + h l a l +h r a r ≥ 0 so 1

h * o ≥ 1-h o a o Y o /c o h o , it then holds (h * o ) -1 ≥ (h o ) -1 y o > 0 with y o := 1 -Y o 1+α o Y o ∈ ( α o -1 α o , 1] provided one chooses co > 0 such that c o ≥ h o a o (1 + α o Y o ) for α o > 1, which yields h * o ∈ (0, h o /y o ] thus (23-24) in particular.
On the other hand, let us now inspect (25), which rewrites with h * o > 0

w o A o + w -1 o B o < 1 ⇔ 2A o w o ∈ 1 -1 -4A o B o , 1 + 1 -4A o B o ⊂ R >0 (26) with w o = (h * o /h o ) 2(1-ζ ) , A o = σ zz,o / , B o = σ xx,o / positive such that A o + B o < 1 (hence A o B o ≤ A o (1 -A o ) ≤ 1 4 ) and 2(1 -ζ ) ∈ [1, 2]. The upper-bound in (26) is satisfied with α o = (w + o ) 1 2(1-ζ ) /((w + o ) 1 2(1-ζ ) -1) > 1, on noting (w + o ) 1 2(1-ζ ) := (1 + 1 -4A o B o )/(2A o ) 1 2(1-ζ ) ≥ α o α o -1 ≥ 1/y o ≥ h * o /h o . ( 27 
)
It remains to ensure the lower bound in (26). Obviously,

w - o := 1- √ 1-4A o B o 2A o < 1 so one only needs to inspect the case h * o ≤ h o . Now, with a l W l = (u r -u l ) + + (π l -π r ) + h l a l +h r a r ≥ 0, a r W r = (u r -u l ) + + (π r -π l ) + h l a l +h r a r ≥ 0, if c o ≥ h o a o W o ((w - o ) -1 2(1-ζ ) -1) -1 then holds (w - o ) 1 2(1-ζ ) ≤ (1 + a o h o W o /c o ) -1 ≤ h * o /h o .
In the end, we claim the following choices , for o = l/r. Moreover, note that we have chosen α o such that all subcharacteristic conditions (22) are satisfied in the → ∞ limit, hence also the free-energy dissipation (15). Indeed, φ o is monotone in the → ∞ limit and one can then apply the standard method to choose c l , c r [START_REF] Bouchut | A new model for shallow viscoelastic fluids[END_REF].

c l = h l max a l + α l (u l -u r ) + + (π r -π l ) + h l a l + h r a r , β l (u r -u l ) + + (π l -π r ) + h l a l + h r a r (28) c r = h r max a r + α r (u l -u r ) + + (π l -π r ) + h l a l + h r a r , β r (u r -u l ) + + (π r -π l ) + h l a l + h r a r (29) 

Numerical illustrations

We numerically approximate on t ∈ [0, .1] the solution to a Riemann problem with (h l , u l , σ xx,l , σ zz,l ) = (1, 0, 1, 1)

x < .5 (h r , u r , σ xx,r , σ zz,r ) = (.1, 0, 1, 1) x > .5 as initial condition when g = 10, ζ = 0, G = .1, λ = .1. In Fig. 1, we show the initial condition and the result at t = .1 when ∆ x = 2 -8 for = 10, 100, 1000. Note the influence of the parameter on the stretch σ xx + σ zz . On computing numerically the free-energy dissipation with the choice of relaxation parameter above, we have never observed the wrong while the time-step did not go to zero.
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  satisfy simultaneously (23-24) and (25) in a compatible way with a o = ∂ h P(q o ),α o = max(2, (w + o ) zz,o σ xx,o 2σ zz,o
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 1 Fig. 1 Top: h (left) and u (right), bottom: σ xx and σ zz .

  for any σ zz,o , σ xx,o > 0 satisfying σ zz,o + σ xx,o < (FENE-P fluids, see below). But the second condition is usually treated for φ o : h → h ∂ h |
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