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Pricing Monitoring Uncertainty in Climate Policy 

Environmental and Resource Economics 68 (4), pp.949-974 

Abstract 

This article assesses the environmental and economic efficiency of three different approaches to treat 

monitoring uncertainty in climate policy, namely prescribing uncertainty, setting minimum certainty 

thresholds and pricing uncertainty through a discount. Our model of the behavior of profit-maximizing 

agents demonstrates that under the simplest set of assumptions the regulator has no interest in reducing 

monitoring uncertainty. However, in the presence of information asymmetry, monitoring uncertainty may 

hamper the economic and environmental performance of climate policy due to adverse selection. In a 

mandatory policy, prescribing a reasonable level of uncertainty is preferable if the regulator has enough 

information to determine this level. For voluntary mechanisms, such as carbon offsets, allowing agents to 

set their own monitoring uncertainty below a maximum threshold or discounting carbon revenues in 

proportion to monitoring uncertainty helps the regulator mitigate the negative effects of information 

asymmetry. These conclusions are much more pronounced when agents do not accrue revenues from 

their mitigation action, other than carbon. Our analysis of monitoring uncertainty under information 

asymmetry, which results in heterogeneity in the agents' benefits from abatement, generalizes the 

classical trade-off between production efficiency and information rents. 
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1. Introduction 

Implementing climate policies – be they carbon pricing mechanisms or direct regulations – requires 

monitoring the level of emissions or abatement of the agents that receive an incentive or a penalty. For 

example, on a jurisdictional level, national greenhouse gas (GHG) inventories reported under the UNFCCC 

provide the basis for assessment of compliance of the parties to the Kyoto Protocol. On a private entity 

level, annual monitoring of GHG emissions under the EU Emissions Trading System (EU ETS) serves to 

determine whether a company has a deficit or a surplus of emissions allowances. Finally, on an offset 

project level, quantification of emissions reductions defines the amount of carbon credits that a project is 

entitled to receive. Similarly, in non-pricing policies monitoring GHG emissions may be necessary to 

determine whether an agent complies with an emissions standard or whether he is entitled to receive a 

public subsidy. 

Monitoring GHG emissions in climate policies is usually the responsibility of an agent – be it an offset 

project developer, a company subject to an ETS or a party to the Kyoto Protocol – who also bears the costs 

of monitoring (Bellassen and Stephan 2015). The implementation of monitoring rules prescribed by the 

regulator comes with an uncertainty range:  the exact amount of GHG emissions differs from the amount 

reported by an agent (Bellassen et al. 2015). Agents may or may not be aware of this difference, which 

effectively results in the presence or absence of information asymmetry between an agent and the 

regulator.  

Currently, existing carbon pricing policies deal with monitoring uncertainty in three – often exclusive – 

ways: prescribing the level of uncertainty, setting maximum tolerated uncertainty thresholds, and 

implicitly or explicitly discounting the abatement incentive in proportion to the uncertainty level (Bellassen 

et al. 2015). There is no consensus regarding the efficiency of different approaches to address this issue in 

climate policy – for example in the Clean Development Mechanism (CDM) monitoring uncertainty is not 

treated in a consistent manner across different sectors and methodologies (Shishlov and Bellassen 2015). 

The main objective of this article is therefore to compare the efficiency and distributional effects of 

different approaches to treat monitoring uncertainty in climate policy. To this end, we develop a 

microeconomic model of behavior of profit-maximizing agents taking into account monitoring costs, 

uncertainty of GHG emissions abatement and different scenarios regarding information asymmetry. 

The rest of the article is organized as follows. Section 2 briefly reviews the existing literature on monitoring 

uncertainty and information asymmetry in environmental economics. Section 3 presents the model and 
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different information scenarios. Section 4 solves the model analytically – where feasible – and provides a 

numerical application for two cases of GHG emissions abatement: improved energy efficiency and landfill 

gas flaring. Section 5 synthesizes the results and discusses the key trade-offs for the regulator. Section 6 

concludes the analysis with some policy recommendations and considerations for future research. 

2. Literature review 

Uncertainty has been subject to research in environmental economics since the seminal work of Weitzman 

(1974), which investigated the merits of price and quantity regulations when the regulator has imperfect 

information on the aggregate abatement cost curve. In an ideal mathematical world both cap-and-trade 

and Pigouvian taxation instruments manage to perfectly internalize the cost of pollution and restore the 

first-best solution in terms of social welfare. However, when abatement costs and benefits are uncertain, 

the results may differ. Indeed, if the pollution damage curve is much steeper than the abatement cost 

curve – such as for example in the case of runaway climate change – setting a price and letting the market 

decide on quantity may be too risky. Conversely, if the social cost of pollution is rising gradually compared 

to abatement costs around the optimal quantity of pollution, setting a cap may result in unsustainable 

costs for society. 

Along these lines, several studies have proposed to adjust the instrument when the level of pollution of 

individual firms is not perfectly known. Most often, this adjustment consists of a revised level of the 

Pigouvian tax, different from the seminal level which equates marginal costs and benefits of abatement. 

We identified two lines of relevant literature: one is concerned with restoring the optimal level of social 

welfare without budget constraint for the regulator and therefore pays no attention to welfare transfers 

between agents. The other assigns a budget constraint to the regulator and is therefore mostly concerned 

with information rents, i.e. unnecessary transfers from the regulator to efficient agents mimicking 

inefficient ones.  

Adding monitoring error into the seminal framework of Becker for crime penalties (Becker 1968), Png 

(1986) finds that penalties for convicted criminals should be increased and that the overchilling effect of 

this increase needs to be compensated for by subsidizing everyone. Chakraborty and McAfee (2014) 

translates this question to continuous setups such as car speeding and finds that the penalty needs to be 

adjusted by −
𝑠′′(𝑥)×𝜎(𝑥)

2
 where x is the magnitude of the offence (i.e. speed), s’’(x) is the second derivative 

of the damage function (i.e. probability of injuring a bystander) and σ(x) is the monitoring uncertainty (i.e. 

the measurement error of a speed camera). A useful corollary of this proposition is that the monitoring 
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uncertainty does not require the adjustment of the penalty when the damage function is linear (s’’(x) = 0). 

These two papers take a single agent perspective and therefore neglect the possibility of asymmetrical 

information, and therefore of adverse selection. 

In the field of environmental economics, Dasgupta et al. (1980) consider agents with heterogeneous 

abatement costs and propose a general form for a tax scheme that maximizes welfare both with and 

without information asymmetry between regulator and agents. However, as Chakraborty and McAfee 

(2014) put it, “existence theorems are often cold comfort to someone who needs to use a construct”. 

Segerson (1988) considers agents with heterogeneous abatement costs and offers a solution in the case 

where only the total level of pollution is observed and not the individual pollution discharge of each firm. 

But her solution requires several strong assumptions and most remarkably the knowledge of the 

conjecture functions of all firms, that is what each firm expects other firms will do under a given incentive 

level.  

Montero (2005) also assumes abatement costs heterogeneity and studies the case where individual 

pollution rates – i.e. tCO2e per ton of output – are known, but not individual emission levels – i.e. tCO2e 

per firm. In this context, a policy of tradable permits does not always improve social welfare over fixed 

emissions standards, especially when the abatement cost heterogeneity among agents is low. This 

informational setup may be a good approximation of the monitoring rules prevailing in Santiago-Chile’s 

scheme to reduce total suspended particulate emissions, but it does not fit climate policies. In climate 

policies, inputs and outputs – activity data – are indeed usually monitored, and the associated uncertainty 

is usually lower than the uncertainty of pollution rates – emission factors (Bellassen and Stephan 2015). 

Because these frameworks neglect the possibility of adverse selection or assume informational setups that 

do not match the current practice in climate policies, they were not suited to our aim of assessing the 

efficiency and distributional effects of different approaches to treat monitoring uncertainty in climate 

policy. 

In the absence of budget constraint, the potential inefficiencies stem from the over/under-abatement by 

agents with high/low abatement costs as the incentive cannot be tailored to the individual emission level. 

When a budget constraint is imposed to the regulator – which usually limits the total amount of subsidies 

distributed but can be generalized to a maximum taxation revenue or abatement level, the potential 

inefficiencies come from information rents, that is useless transfers from the regulator when he does not 

know with certainty the abatement cost functions of all agents. 



6 
 

The second line of literature studies this context, where the regulator has only uncertain information on 

agents’ costs – typically the range – while agents themselves have perfect information on their costs. This 

setup has been extensively studied in the field of procurement and regulation (Laffont and Tirole 1993). 

Canton et al. (2009) adapts this literature to the context of environmental economics and in particular 

spatial heterogeneity in abatement costs. It finds that spatially disaggregated information allows the 

regulator to improve the efficiency of environmental subsidies. Yet, it disregards that more precise 

information may be costly to obtain.  

In the specific context of soil carbon sequestration, Antle et al. (2003) consider this trade-off between 

improved efficiency of environmental scheme and cost of information, assessing the worth of monitoring 

soil carbon at the finer agro-ecozone scale rather than the default regional scale. While we are interested 

in the same trade-off, the binary form of information is somewhat limiting and, more importantly, the 

regulator is assumed to monitor environmental benefits whereas in actual climate policies agents are in 

charge of monitoring and the regulator simply verifies that this monitoring is performed in accordance 

with the rules (Bellassen and Stephan 2015). In the field of climate policy, Montero (2000) considers 

asymmetrical information in the case of voluntary opt-in programs. It demonstrates that asymmetrical 

information results in a tradeoff between efficiency gains due to involvement of low-cost emissions 

reductions and excess emissions due to the adverse selection of firms that produce a level of emissions 

below the permit allocation. 

van Benthem and Kerr (2013) and Bento et al. (2015) build upon Montero (2000) to assess different policies 

in the context carbon offsetting schemes, namely increase in baseline scale, offset discounting, stringent 

baselines and offsets limit. Interestingly, they broaden performance criteria by tracking distributional 

transfers in addition to economic efficiency. They find that when limiting transfers is part of the objective, 

setting baselines, in particular large-scale ones, is the best instrument. Like them, we find that there is 

often a trade-off between efficiency and transfers. Unlike them however, we focus on the policy options 

related to the level of monitoring uncertainty and the associated monitoring costs. 

The existing literature thus provides important insights into the potential sources of inefficiency and the 

choice of policy under different types of uncertainty and information asymmetry. Yet, the existing 

literature is mostly based on a theoretical approach, taking into account neither the existing monitoring 

rules in climate policies nor empirical data. Moreover, when information asymmetry occurs, most papers 

– with the exception of Antle et al. (2003) – assume that this asymmetry occurs on the costs of using an 

abatement technology rather than the level of abatement obtained by the implementation of the 
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technology. As a result, none of the aforementioned models are fit to assess the impact of existing 

monitoring rules on social welfare. This article attempts to bridge these gaps by incorporating existing 

monitoring approaches into a simple model and by providing numerical simulations based on the empirical 

data. 

The policy relevance of the topic can be highlighted by the ongoing discussion regarding the monitoring, 

reporting and verification (MRV) provisions – also known as ‘transparency’ – under the Paris Climate 

Agreement (Bultheel et al. 2015) and the current reform of the CDM regarding inter alia the monitoring 

uncertainty rules (Shishlov and Bellassen 2015). The latest scandal with Volkswagen that equipped its 

diesel cars with special software to tweak their emissions tests (The Economist 2015) and the reports 

regarding the increased methane emissions in the US that are not reflected in the national inventory 

(Turner et al. 2016) further demonstrate the timeliness and importance of this topic. 

3. Description of the model 

In order to compare the efficiency and distributional effects of different approaches to address monitoring 

uncertainty in climate policy, we develop a simple microeconomic model of behavior of profit-maximizing 

agents. The model takes into account the uncertainty associated with monitoring GHG emissions or 

emissions reductions, monitoring costs and information asymmetry. 

3.1. Assumptions 

In both mandatory and voluntary carbon pricing mechanisms agents ‘produce’ GHG emissions reductions 

– abatement – in order to obtain economic benefits. These benefits may come in the form of reduced 

amount of emission permits they have to purchase within an ETS, reduced amount of carbon tax to be 

paid, or tradable credits generated in a carbon offset project. Although we use data from a carbon offset 

scheme for the numerical applications, the model developed in this article applies to all the 

aforementioned carbon pricing mechanisms, with either voluntary or mandatory participation. The 

difference between the latter two options is materialized by the profitability constraint, which appears in 

the case of a voluntary scheme, whereas it is absent from a mandatory scheme as long as carbon 

represents a small fraction of firms turnover.  

Carbon price p is assumed to be exogenous – that is, agents cannot influence the level of carbon tax or the 

market price of carbon in an ETS – and is equal to the social cost of carbon. An agent i produces GHG 

abatement 𝒒𝒊 ≥ 𝟎. Carbon pricing policy is then applied against reported abatement, which may be 

different from the real amount of abatement. The ‘carbon revenue’ of an agent i therefore equals the 
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amount of abatement 𝒒𝒊 multiplied by the carbon price p multiplied by the relative monitoring error, which 

is a function of monitoring uncertainty.  The carbon revenue function is thus upward sloping and linear.  

In existing monitoring rules, uncertainty is often estimated using confidence/precision intervals, a 

statistical measure of the reliability of an estimate. For example, 95/5 confidence/precision interval means 

that there is a 95% chance that the true value lies within +/-5% of the estimate. In order not to complicate 

the model unreasonably, we assume here that the reported amount of abatement is within two standard 

errors from the true abatement.   

The relative monitoring error of agent i thus equals 𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊 . 𝒖𝒊 is monitoring uncertainty, which is 

defined by a monitoring methodology and 𝜺𝒊 is a stochastic variable that is independently and identically 

distributed according to the distribution function Y, which in turn is assumed to be centered on 0 (𝑬(𝜺𝒊 ) =

0) and to be contained within the [−𝟏; 𝟏] interval. This implicitly assumes that monitoring is not biased. 

This assumption is realistic, because in most carbon pricing policies, monitoring reports are verified by 

third-party auditors that make sure that there is no cheating and that agents do not report biased data 

(Bellassen et al. 2015). Depending on the monitoring rules set by the regulator, an agent may or may not 

choose the level of monitoring uncertainty 𝒖𝒊 > 𝟎. We start with an uncertainty level ∀𝒊, 𝒖𝒊 = 𝒖 

prescribed by the regulator. Alternative monitoring rules are assessed after section 4.2.1.   

Some GHG abatement projects may have other revenues not related to the carbon pricing policy, such as 

for example revenues stemming from electricity savings from improved energy efficiency on an industrial 

site. These ‘non-carbon’ revenues can be expressed as a product of abatement 𝒒𝒊 and a constant 

parameter b such as, for example, the price of electricity. The non-carbon revenue function is thus upward 

sloping, linear and independent of monitoring uncertainty. Taking into account non-carbon revenues is 

important, since it may significantly alter the outcomes in a voluntary carbon pricing scheme as 

demonstrated by two different project types in Section 4. 

Direct costs of abatement are described as the sum of fixed costs 𝒄𝟎 and the amount of abatement 𝒒𝒊 

squared and multiplied by a constant parameter c. Marginal costs of abatement thus increase linearly with 

the amount of emissions reduced, which means that the cost function is upward-sloping and convex. This 

is coherent with the simplest assumption used in environmental economics (e.g. Weitzman 1974) and 

backed in practice by Marginal Abatement Cost Curves (MACCs) that are often used to illustrate GHG 

abatement costs (e.g. Castro 2012; Shishlov and Bellassen 2014a).  
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Indirect (monitoring) costs of abatement are represented by a constant parameter m divided by the square 

of monitoring uncertainty 𝒖𝒊 . Monitoring costs are thus inversely proportional to monitoring uncertainty, 

which appears logical – better information comes at a higher cost – and coherent with the available 

empirical research (e.g. Powell 1999; Antle et al. 2003). The monitoring costs function is therefore 

downward sloping and convex. 

3.2. Agent’s and regulator’s objectives 

Given the assumptions above, the profit function of an agent i can be written as: 

 𝐦𝐚𝐱
𝒒𝒊≥𝟎

(𝝅𝒊) = 𝒑 × 𝒒𝒊 × (𝟏 + 2𝒖 × 𝜺𝒊 ) + 𝒃 × 𝒒𝒊 − 𝒄𝟎 − 𝒄 × 𝒒𝒊
𝟐 −

𝒎

𝒖𝟐 ; where 𝜺𝒊 ∈ [−𝟏; 𝟏] (1) 

The objective of a benevolent climate regulator in a carbon pricing policy – tax or an ETS – is to induce 

agents to produce the amount of abatement that maximizes the difference between total benefits and 

costs. In order to test the efficiency and distributional effects of monitoring uncertainty, we represent the 

heterogeneity of agents with two extremes balancing one another. Agent 1 benefits from monitoring 

uncertainty, i.e. 𝜺𝟏 = 𝟏, while agent 2 is penalized by monitoring uncertainty, i.e. 𝜺𝟐 = −𝟏. We prefer a 

two-agent framework over a continuum of agents because it allows for simpler calculations and graphical 

illustrations of results (see Section 4). We demonstrate that using a continuous representation of agents’ 

heterogeneity does not affect the nature of our findings (see Appendix 6). In a scheme with two agents 

the regulator’s objective (welfare) function can therefore be written as: 

𝐦𝐚𝐱
𝒖>𝟎

{𝑾 = ∑ (𝒑 × 𝒒𝒊 + 𝒃 × 𝒒𝒊 − 𝒄𝟎 − 𝒄 × 𝒒𝒊
𝟐 −

𝒎

𝒖𝟐)𝟐
𝒊=𝟏 } (2) 

Similarly to Montero (2005), social welfare is the sole objective of the regulator and wealth transfers 

between regulator and agents do not directly impact the regulator choice. We nevertheless report the 

amount of undue transfers (UT) between regulator and agents, that is payments from the regulator above 

(UT>0) or below (UT<0) the value of the agent’s abatement. 

3.3. Information scenarios 

It can reasonably be assumed that the regulator knows the reported GHG abatement of each agent 𝒒𝒊 ×

(𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊 ) and the level of monitoring uncertainty 𝒖𝒊 , but not the value of 𝜺𝒊. Indeed, for many of 

the variables used in the calculations, a default average value and its uncertainty range, both scientifically 

established, are actually prescribed by the regulator (Bellassen and Stephan 2015). Compliance of agents 
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with the uncertainty provisions is verified by independent auditors. The case of deliberate data falsification 

beyond the allowed monitoring uncertainty  𝒖𝒊  is therefore not considered here. 

On the part of the agent, three information scenarios can be considered: 

1. No information asymmetry. Similar to the regulator, the agents know the reported GHG abatement 

𝒒𝒊 × (𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊 )  and the level of monitoring uncertainty 𝒖𝒊 , but they do not know their type, 

that is the value of 𝜺𝒊 . The agents thus cannot anticipate whether the monitoring error will result in 

overestimation (when 𝟎 < 𝜺𝒊 ≤ 𝟏) or underestimation (when −𝟏 ≤ 𝜺𝒊 < 𝟎) of GHG abatement. This 

scenario can happen in practice when the measurement error comes from a miscalibrated meter for 

example. 

2. Information asymmetry. Unlike the regulator, the agents have perfect information on both the actual 

abatement 𝒒𝒊 and the monitoring error. Knowing whether 𝜺𝒊  is positive or negative they can thus 

anticipate whether their abatement will be over- or underestimated. As a result, they can adapt their 

level of abatement 𝒒𝒊 and if allowed monitoring uncertainty 𝒖𝒊  according to this perfect anticipation. 

In practice, this scenario can occur in monitoring methodologies that use a default value for some 

parameter, such as the non-combustible fraction of fuel or flare efficiency. For example, the operator 

of a power plant may know that their state-of-the art installation has a lower non-combustible fraction 

than the default value used in the prescribed monitoring method, thus putting their emissions at the 

lower end of the uncertainty range. 

3. Information bias. In this scenario, the agents not only have perfect information about the GHG 

abatement 𝒒𝒊 and the monitoring error (𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊 ), but are also able to tweak the measurement 

without breaking the letter of the rules laid down in the monitoring methodology1. As a result, the 

agents are still compliant, and the monitoring error therefore remains within the uncertainty range 𝒖𝒊  

allowed by the regulator, but falls on its upper bound i.e. 𝜺𝒊 = 𝟏 for all i. This might happen for 

example if the monitoring is done using a meter installed at a chimney (Dimopoulos 2015). The 

regulator knows the maximum error when this method of monitoring follows an existing norm (e.g. 

EN 14181). The position of the meter within the chimney affects the measurement and the project 

developer may have private information on where to position the meter in order to obtain a 

measurement of emissions at the lower range of uncertainty. This may not sound very likely, but the 

recent scandals in the automotive industry make this scenario worth studying. Indeed, Volkswagen 

                                                           

1 Note that in this last scenario, we revoke the “no bias” assumption laid out in section 3.1. 
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allegedly installed software that constrained engine power during the emissions tests. This allowed 

for the tested car to behave at the ‘eco-friendly’ end of the ‘eco-friendly’ to ‘power-hungry’ range of 

real car drivers’ behavior (The Economist 2015). 

3.4. Empirical data 

In addition to solving the model analytically, empirical data is plugged into the model to illustrate the 

behavior of functions graphically. The aim of this exercise is not to design a model optimally fitting the 

empirical data – this could be a topic for a separate article – but rather to use sensible figures to get an 

idea of the orders of magnitude of welfare transfers and losses that can reasonably be expected, and how 

these are impacted by information asymmetry. To this end, we will use the data publicly available for 

energy efficiency (EE) and landfill gas flaring (LFG) CDM projects, assuming that they represent typical 

investments into GHG abatement (please refer to Appendix 1 for details regarding empirical values). 

4. Results 

Similar to Montero (2000), we model a two-step game where the regulator sets the rules – i.e. carbon 

price and monitoring uncertainty policy – and then agents choose their levels of abatement production 𝒒𝒊 

and, if allowed, the level of monitoring uncertainty 𝒖𝒊 striving to maximize their profit. For each case, the 

model is solved analytically when possible and numerically for two case-studies – EE and LFG – otherwise. 

Calculus details are provided in Appendix 5. In order to better understand the mechanisms and trade-offs 

involved, we also illustrate the results graphically. 

4.1. Scenario 1: uncertainty with no information asymmetry 

Without risk sensitivity, both the agents and the regulator will behave based on the expected value of 

monitored GHG abatement 𝑬[𝒒𝒊 × (𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊 )] = 𝒒𝒊. In the absence of information asymmetry the 

agent’s and the regulator’s objectives are thus aligned with regards to the value of 𝒖𝒊: monitoring 

uncertainty affects only the costs part of both regulator’s and agents’ objective functions. The optimal 

monitoring uncertainty is therefore 𝒖𝒊
∗ = +∞, no matter who decides on its value. A rational agent will 

then produce the amount of GHG abatement 𝒒𝒊
∗ that maximizes its profit function – in other words when 

the marginal benefits equal the marginal costs: 

𝝏𝝅𝒊

𝝏𝒒𝒊
= 𝒑 + 𝒃 − 𝟐𝒄𝒒𝒊 = 𝟎 
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⟺ 𝒒𝒊
∗ =

𝒑 + 𝒃

𝟐𝒄
 

The resulting total welfare in a two-agent framework is then: 

 𝑾∗ =
(𝒑 + 𝒃)𝟐

𝟐𝒄
− 𝟐𝒄𝟎 

While the abatement of individual agents is misestimated, the overall abatement estimation is accurate. 

Mathematically, the regulator therefore has no reason to limit monitoring uncertainty, as long as the error 

is random and not anticipated by the agent. At the same time, individual over- and underestimations will 

lead to unjust distribution of benefits among agents. The undue transfers (UT) will therefore be: 

𝑼𝑻 = ∑ (𝒑 × 𝒒𝒊 × 𝟐𝒖𝒊 )
𝟐
𝒊=𝟏 = +∞  

Plugging the empirical values from Section 3.4 into the model results in the optimal production of 9.06 Mt 

CO2e of emissions reductions by each agent for the EE project and 0.27 Mt CO2e for the LFG project, no 

matter the regulator’s stringency on a possible maximum value of 𝒖𝒊 (Figure 1 and Figure 2). In the absence 

of information asymmetry, the rules regarding monitoring uncertainty do not affect the amount of 

abatement, as the quantity of emissions reductions produced is independent of the monitoring error. As 

a result, the best regulation in this information configuration is to have no requirement on uncertainty. 

This is consistent with the formalism of Chakraborty and McAfee (2014): when the damage function is 

linear and under perfect information, the penalty need not be adjusted for monitoring uncertainty.  

Figure 1 – No information asymmetry (EE) 

 

Figure 2 – No information asymmetry (LFG) 
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This result can be questioned for very small (<1%) and very large uncertainties (e.g. > 50%) if multiple 

rounds are considered. As the monitoring error approaches 0% the investment in GHG abatement 

becomes unprofitable, which leads either to negative – without profitability constraint – or null – with a 

profitability constraint – profits and welfare. This effect is stronger for investments with no revenues, other 

than carbon, such as LFG projects. Similarly, prescribing very high uncertainty may render the agent that 

underestimates abatement unprofitable. This can be observed in the LFG case with uncertainty above 15% 

(Figure 2Erreur ! Source du renvoi introuvable.). Considering that climate mitigation is usually a minor 

component of firms’ turnover, we did not impose a profitability constraint. Yet, we discuss the policy 

implications of negative profits in the case of opt-in climate policies in section 4.2. 

4.2. Scenario 2: information asymmetry 

Let us now assume that there is information asymmetry, i.e. agents can anticipate the monitoring error 𝜺𝒊 

and adjust their level of abatement production 𝒒𝒊 accordingly. The optimal solution for agents is then: 

𝝏𝝅𝒊

𝝏𝒒𝒊
= 𝒑 × (𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊) + 𝒃 − 𝟐𝒄𝒒𝒊 

𝒒𝒊
∗ =

𝒑 × (𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊) + 𝒃

𝟐𝒄
;  where 𝜺𝒊 ∈ [−𝟏; 𝟏] 

The agents will thus produce suboptimal levels of abatement compared to the scenario with no 

asymmetry. The larger the uncertainty, the further the agents will be from the optimal production level. 

In order to address this issue the regulator can set monitoring rules pertaining to this uncertainty. Based 

on the previous research regarding the treatment of monitoring uncertainty in climate policy (Bellassen et 

al. 2015; Shishlov and Bellassen 2015) the regulator has three realistic policy options to deal with 

monitoring uncertainty: 
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a) Prescribing u through a specific monitoring method – for example through a prescribed monitoring 

method and default values.  

b) Setting a maximum tolerated threshold for u, as it is done in the EU ETS (Warnecke 2014) or in the 

Standard for Sampling and Surveys of the CDM (Shishlov and Bellassen 2015), which sets the 

maximum tolerated monitoring error at 5% or 10% for samples and surveys. 

c) Applying a discount to carbon payments (or an increase in carbon tax) proportional to u. This 

approach is applied for certain types of CDM projects, e.g. forestry, and in some other carbon 

offset standards, e.g. CCX and VCS (Shishlov and Bellassen 2015). 

4.2.1. Policy option a – prescribing uncertainty 

If the regulator prescribes uncertainty, the optimal solution for this prescribed uncertainty level is:  

𝒖∗ = √
𝒄𝒎

𝒑²

𝟒
 

𝑾∗ =
(𝒑 + 𝒃)𝟐

𝟐𝒄
− 𝟐𝒄𝟎 −

𝟒𝒑𝒎

√𝒄𝒎
 

𝑼𝑻 = ∑(𝒑 × 𝒒𝒊 × 𝟐√
𝒄𝒎

𝒑²

𝟒
)

𝟐

𝒊=𝟏

= 𝟒√𝒑 × 𝒒𝒊 × √cm𝟒  

In the presence of information asymmetry, an optimal and non-infinite 𝒖∗ emerges. Indeed, the agent with 

overestimated emissions reductions abates more than optimal, producing more costly abatement than 

what the agent with underestimated emissions reductions would have produced in his stead without 

information asymmetry. This, together with additional monitoring costs related to the prescribed finite 

error, results in a welfare loss of −
𝟒𝒑𝒎

√𝒄𝒎
 compared to the absence of information asymmetry, a classic 

example of the consequences of adverse selection in the information asymmetry context. Note that 

representing the problem by a continuum of uniformly distributed agents rather than by two opposite 

agents leads to similar results (Appendix 6): a non-infinite optimal 𝒖∗ also emerges to balance adverse 

selection and monitoring costs. This is 𝒖∗ turns out to be 30% higher and the welfare loss is therefore 

slightly lower. 
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The model thus demonstrates that the heterogeneity in benefits – similarly to the heterogeneity in costs 

more generally studied in the literature (see for example Laffont and Tirole 1993) – under asymmetric 

information results in suboptimal levels of production.  

Plugging the empirical values from Section 3.4 into the model results in an optimal 𝒖∗ of 4.27% and 6.53% 

for EE and LFG project types respectively. In the case of EE, Agent 1 produces 9.19 Mt CO2e of emissions 

reductions and Agent 2 produces only 8.93 Mt CO2e (Figure 3). In the case of LFG, Agent 1 produces 0.31 

Mt CO2e of emissions reductions and Agent 2 produces only 0.24 Mt CO2e (Figure 4). The welfare loss 

compared to the absence of information asymmetry is EUR0.66 million in the case of EE and EUR0.28 

million in the case of LFG. This welfare loss comes from increased mitigation costs due to more costly 

abatement compared to the case with no asymmetry, as well as from the increased costs of monitoring, 

when a finite uncertainty is prescribed. 

Figure 3 – Information asymmetry and monitoring error prescribed (EE) 

      

Figure 4 – Information asymmetry and monitoring error prescribed (LFG) 

      

While the welfare loss in the case of EE is relatively small – around 0.04% – compared to the scenario with 

no asymmetry (Figure 3), the situation changes significantly in the instance of abatement projects with no 

benefits other than carbon, i.e. with b=0. Indeed, in the case of LFG the welfare loss compared to the case 

with no asymmetry reaches 6.49% at the optimal 𝒖 = 6.53% (Figure 4).  
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Note that adding a profitability constraint – corresponding in practice to a carbon pricing mechanism in 

which participation is voluntary – such as the CDM – does not change the results for energy efficiency 

projects. Indeed, abatement is largely profitable for both agents around the optimal 𝒖∗. In LFG projects, 

however, the profits of Agent 2 are close to zero. Indeed, should the regulator misjudge the optimal 

uncertainty, and prescribe an uncertainty higher than 15%, Agent 2 becomes unprofitable. In a voluntary 

carbon pricing mechanism, prescribing uncertainty thus becomes much riskier. If Agent 2 does not opt-in, 

the welfare produced by his abatement – which is worth half the total welfare produced in Scenario 1 – is 

lost. Moreover, the amount of welfare transfer from the society to the agents would shoot up: as long as 

he participates, Agent 2 produces abatement for which he is not paid, which partly compensates for the 

payments made to Agent 1 for abatement that is overestimated. 

4.2.2. Policy option b – uncertainty threshold 

If the regulator prescribes the maximum allowed uncertainty threshold 𝒕 ≥ 𝒖𝒊 , the agents get a limited 

degree of flexibility in choosing their monitoring uncertainty. Given the profit functions of the agents 

discussed earlier, it is quite obvious that Agent 1 has the incentive to increase the uncertainty until the 

maximum level allowed. For Agent 2, however, there is a non-infinite optimal level of uncertainty, which 

may be below or above the threshold set by the regulator: 

𝒖𝟏 
∗ = 𝒕 , 𝒒𝟏 

∗ =
𝒑 × (𝟏 + 𝟐𝒕) + 𝒃

𝟐𝒄
 

𝒖𝟐 
∗ = min (√

𝒎

𝒑𝒒𝟐

𝟑

, 𝑡) 

As 𝒖𝟐 
∗ is a non-trivial function of q2, there is no obvious analytical solution for q2*. Yet, as shown in the 

numerical simulation (Figure 5 and Figure 6), Agent 2 abates 9.03 Mt CO2e (EE) and 0.26 Mt CO2e (LFG), 

which is slightly more than the respective amounts in case of policy option a. At the same time Agent 2 

invests in monitoring uncertainty 𝒖𝟐 
∗ of 1.03% (EE) and 3.39% (LFG), lower than t* of 4.27% and 6.53% 

respectively. This indeed reduces his penalty – that is the amount of abatement, for which he is not 

rewarded due to the monitoring error. Note that t* is in both cases very close to the optimal prescribed 

𝒖∗ of case 2a.  As a result, Agent 1 produces the same amounts of 9.19 Mt CO2e (EE) and 0.31 Mt CO2e 

(LFG) as in the previous case. The welfare loss compared to the scenario with no information asymmetry 

is EUR3.1 million or around 0.19% in the case of EE and EUR0.42 million or around 9.72% in the case of 

LFG, which occurs due to increased costs of monitoring of Agent 2.  
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Figure 5 – Outcomes with information asymmetry and maximum uncertainty threshold (EE) 

    

Figure 6 – Outcomes with information asymmetry and maximum uncertainty threshold (LFG) 

   

The welfare loss would be even more pronounced if the regulator does not set t* properly. For example, 

with the threshold set at t=20% the welfare loss reaches 0.4% (EE) and 22% (LFG) respectively. This 

happens due to increased costs of abatement of Agent 1. Similarly to the previous scenario, the effects of 

information asymmetry are much more pronounced in the case with no revenue other than carbon. 

Again, adding a profitability constraint would not alter the results for EE projects. In the case of LFG 

projects, the risk that Agent 2 is not profitable is substantially reduced. Indeed, he is able to invest in 

monitoring and avoid overly large amounts of unpaid emissions reductions. Thus, even if the regulator 

mistakenly sets a too high uncertainty threshold, Agent 2 is able to remain profitable. 

4.2.3. Policy option c – discounting for uncertainty 

Let us now consider the option where the regulator applies a discount 𝜷 proportional to monitoring 

uncertainty 𝒖𝒊. The optimal solution for agents then becomes: 

𝒒𝒊
∗ =

𝒑 × (𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊) × (𝟏 − 𝜷) + 𝒃

𝟐𝒄
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Both agents thus receive an explicit incentive to reduce the monitoring uncertainty, the strength of which 

depends on the discounting coefficient 𝜷. Again, in this case there is no obvious analytical solution for 𝒖𝒊. 

Plugging the empirical values from Section 3.4 into the model results in an optimal 𝜷∗ of 1.17 and 1.21 for 

EE and LFG projects respectively. 

Introducing a discount proportional to uncertainty strongly affects the monitoring behavior of Agent 1, 

while the impact on Agent 2 is minor (Figure 7) compared to previous scenarios. With the optimal 𝜷∗ of 

1.17 and 1.21 for EE and LFG projects respectively, Agent 1 invests in monitoring uncertainty of 17-18%, 

while Agent 2 further reduces uncertainty to avoid stronger penalty. 

Figure 7 – Agents’ profits with information asymmetry and discounting 

 

The welfare loss compared to the case with no information asymmetry is EUR3.9 million or around 0.24% 

in the case of EE and EUR0.40 million or around 9.34% in the case of LFG, i.e. close to the option with an 

uncertainty threshold. This happens due to higher abatement costs of Agent 1 and higher monitoring costs 

of Agent 2. Although Agent 2 only slightly reduces his error compared to other scenarios, marginal cost of 

doing it is increasing as he approaches very low levels of 𝒖𝒊. One of the advantages of the discounting 

approach is that the regulator does not have to figure out the optimal error to prescribe or the optimal 

uncertainty threshold to set, instead offering the agents flexibility to choose the intensity of monitoring 

based on their cost considerations. 

4.3. Scenario 3: information bias 

To represent the scenario where agents are able to influence the measurement within the uncertainty 

range, we assume that the reported emissions reductions fall on the upper end of the uncertainty range 
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for both agents, i.e. 𝜺𝒊 = 𝟏. Similar to Agent 1 in scenario 2, both agents thus have an implicit incentive to 

increase uncertainty to benefit from overestimated emissions reductions.  

In this information scenario, policy options (a) and (b) - namely prescribing monitoring uncertainty or 

setting a maximum allowed uncertainty threshold – come down to the same thing, since agents will always 

choose the maximum uncertainty allowed. The optimal solution is then: 

𝒖𝒊 
∗ = √

𝒄𝒎

𝒑²

𝟒
 

𝒒𝒊
∗ =

𝒑 × (𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊) + 𝒃

𝟐𝒄
;  where 𝜺𝒊 = 𝟏 

The welfare then becomes: 

𝑾∗ =
(𝒑 + 𝒃)𝟐

𝟐𝒄
− 𝟐𝒄𝟎 −

𝟒𝒑𝒎

√𝒄𝒎
 

And the undue wealth transfers (UT) are: 

𝑼𝑻 = ∑(2𝒑 × 𝒒𝒊 × √
𝒄𝒎

𝒑²

𝟒
)

𝟐

𝒊=𝟏

= 𝟒√𝒑 × 𝒒𝒊 × √cm𝟒  

In policy option c the optimal solution for both agents is: 

𝒒𝒊
∗ =

𝒑 × (𝟏 + 𝟐𝒖𝒊 × 𝜺𝒊) × (𝟏 − 𝜷) + 𝒃

𝟐𝒄
;  where 𝜺𝒊 = 𝟏 

The optimal solution for the regulator is therefore to apply a discount 𝜷 = 𝟏/(𝒖𝒊 + 𝟎. 𝟓) that effectively 

brings the level of abatement to the first-best, i.e. the same as with no information asymmetry: 

𝒒𝐢
∗ =

𝒑 + 𝒃

𝟐𝒄
 

𝒖𝐢
∗ = +∞ 

 𝑾∗ =
(𝒑 + 𝒃)𝟐

𝟐𝒄
− 𝟐𝒄𝟎 

Moreover, the discount allows countering the effect of uncertainty thus canceling out the undue transfers. 

While the information scenario 3 is unlikely in practice due to the third-party verification, the possibility 
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of measurement influence by the agent further reinforces the conclusion that the regulator shall limit 

uncertainty in order to ensure the economic and environmental efficiency of climate policy. Interestingly, 

in this case applying a discount proportional to uncertainty is preferable to setting minimum certainty 

thresholds or prescribing the error. The optimal discount 𝜷 = 𝟏/(𝒖𝐢 + 𝟎. 𝟓)  that effectively cancels out 

the negative effects of overestimation when all agents are able to tweak the monitored value to the upper 

end of the uncertainty range can be seen as maximum discount to be applied as well as the value that 

guarantees the absence of overpaid emissions reductions. 

5. Synthesis and discussion 

5.1. Policy choices to maximize welfare 

Analytical results of our model are synthetized in Appendix 2. These results demonstrate that under the 

simplest set of assumptions, i.e. no information asymmetry and random monitoring errors (Scenario 1), 

the first-best level of abatement is achieved without imposing any constraints on monitoring uncertainty. 

As a result, the best regulation is to have no special requirements on uncertainty as long as the monitored 

value is accurate, that is as long as expected value is the true amount of emissions reductions for the whole 

population of agents.  

Conversely, when there is information asymmetry (Scenario 2), the agents with overestimated emissions 

reductions are over-rewarded for their abatement and therefore abate more than optimal. The reverse is 

true for agents whose abatement is underestimated. This situation is a generalization of the classic 

example of the adverse selection in the information asymmetry context where over-abatement is driven 

by information asymmetry on the agent’s abatement costs (Laffont and Tirole 1993) rather than on the 

level of abatement produced by the agent (our case). Limiting monitoring uncertainty allows the regulator 

to reduce the excessive participation of overestimating Type 1 agents and increase the insufficient 

participation of underestimating Type 2 agents. The regulator thus has to find a balance between the 

stringency of monitoring requirements which optimizes the participation of each agent and the additional 

costs this stringency imposes. If the agents are able to tweak the monitoring within the uncertainty limits 

(Scenario 3), offering a menu of contracts through a discount proportional to monitoring uncertainty is the 

best policy choice. 

5.2. Mitigating non-participation risk in voluntary mechanisms 

Numerical simulations (Appendix 3 and Appendix 4) demonstrate that prescribing the level of uncertainty 

under information asymmetry (case 2a) is better than the two other policy options (cases 2b and 2c) in 
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terms of welfare outcomes. This approach, however, relies heavily on the accuracy of the regulator’s 

information regarding the profit functions of the agents. Indeed, in the case of LFG if the regulator 

mistakenly prescribes an error above 15%, the investment in abatement becomes unprofitable for Agent 

2 (Section 4.2.1). In a voluntary scheme this would result in halving the welfare because Agent 2 would not 

participate. Setting a minimum certainty threshold (case 2b) or discounting for uncertainty (case 2c) 

mitigates this risk as Agent 2 is allowed to invest in monitoring in order become profitable again. In our 

numerical applications, total welfare is comparable for the two cases, case 2b being slightly closer to the 

optimum for EE projects and case 2c being slightly closer to the optimum for LFG projects. 

5.3. Undue wealth transfers 

While case 1a optimizes total welfare, it results in large amounts of undue transfers from society to agents 

(UT) – positive for Agent 1 and negative for Agent 2. In practice, this may impair the acceptability of the 

carbon pricing mechanism. Under the information asymmetry scenario moving from case 2a to 2b and to 

2c, the regulator decreases the risk by providing agents with flexibility to choose their monitoring errors, 

but increases net undue wealth transfer from society to agents (Appendix 3 and Appendix 4). The optimal 

solution ultimately depends on cases and on how important it is to limit undue transfers in the eyes of 

agents, regulator and society. In LFG, discounting increases welfare compared to maximum uncertainty 

thresholds, with a ‘manageable’ level of UT increase, while in EE, discounting decreases welfare compared 

to maximum uncertainty, and UT skyrockets. As demonstrated in case 3c, applying a discount of 𝜷 =

𝟏/(𝒖𝐢 + 𝟎. 𝟓) effectively safeguards the regulator from rewarding overestimated emissions reductions. In 

case 2c, however, getting this certainty on a net wealth transfer comes at an unknown price in reduced 

total welfare. 

5.4. Decision tree for setting rules on monitoring uncertainty 

The key policy recommendations stemming from our analysis can be summarized in a decision tree below 

(Figure 8). In a nutshell, the regulator has to check whether information asymmetry is likely for a 

reasonable prescribed uncertainty threshold (indirectly coming from the default parameters). If not, there 

is no need to add further requirements or incentives on monitoring uncertainty. This result can be 

questioned for large uncertainties, which undermine the assumption of insensibility to risk. For example, 

an agent for which abatement is being largely underestimated may go bankrupt due to his miscalculation 

and as a result stop reducing emissions, as demonstrated on the example of LFG projects with uncertainty 
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of over 15%. This would bias the set of agents towards those whose abatement is being overestimated. 

An arbitrary choice of a reasonable tolerated uncertainty range may therefore be warranted. 

When information asymmetry is likely, the regulator should introduce special rules to limit uncertainty. 

Setting a maximum monitoring error threshold or applying a discount is the best default approach for 

voluntary schemes for two reasons. First, information asymmetry is very likely as agents who voluntarily 

opt in are likely to be well-informed – at least they are informed enough to have weighed their expected 

costs and benefits from such a decision. Second, the profitability constraint which applies to voluntary 

schemes makes it paramount that most agents whose abatement is underestimated remain profitable. In 

such schemes, participation is indeed critical both for reaching a high level of total welfare and for limiting 

the amount of net undue transfers – as the negative undue transfers to underestimated agents partly 

offsets the positive ones to overestimated agents. 

Figure 8 – Regulator’s decision to set rules regarding monitoring uncertainty 

 

6. Conclusions and policy recommendations 

In this article we investigated the effects of monitoring policy choice on economic and environmental 

outcomes of climate policy. It was demonstrated that under the simplest set of assumptions – no 

information asymmetry and random monitoring errors – the first-best level of abatement is achieved 

without imposing any constraints on monitoring uncertainty. However, in the presence of information 

asymmetry, monitoring uncertainty may hamper the economic and environmental performance of climate 
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policy due to adverse selection. Monitoring uncertainty under information asymmetry, which results in 

heterogeneity in the agents’ benefits from abatement, generalizes the classical trade-off between 

production efficiency and information rents (e.g. Laffont and Tirole 1993).  

In choosing the monitoring policy to address uncertainty – prescribing the error, setting maximum 

uncertainty thresholds or applying a discount – the regulator has to balance welfare, risk and undue wealth 

transfers. In a mandatory scheme, prescribing uncertainty is preferable if the regulator focuses on 

maximizing welfare. This option is also efficient in minimizing net wealth transfer, as transfers from 

underestimated agents largely offsets to overestimated agents. In a voluntary carbon pricing scheme, we 

find that allowing agents to set their own monitoring uncertainty below a maximum threshold or applying 

a discount proportional to monitoring uncertainty is preferable in order to limit the risk that 

underestimated agents opt out.  

Our analysis thus partly supports the introduction of the Uncertainty Standard with discounting under the 

CDM that was proposed by the CDM Executive Board in 2012 (Shishlov and Bellassen 2015). Discounting 

is arguably better than prescribing uncertainty and allows, if desirable, to ensure that there is no undue 

wealth transfer from society to agents. However, using a minimum certainty threshold may provide a 

better trade-off between total welfare and undue wealth transfers if the regulator has enough information 

to set the threshold properly.  

Alternatively, the discounting policy may be complemented with a minimum threshold to keep the 

uncertainty at a reasonable level to limit the adverse effects, e.g. not more than 10% in our cases. In fact, 

such a hybrid approach was proposed by Wartmann, Groenenberg, and Brockett (2009) to address 

monitoring uncertainty for potential Carbon Capture and Storage (CCS) sites under the EU ETS using the 

‘uncertainty supplement’. This supplement – in other words an upward adjustment of a site’s emissions – 

would be equal to the difference between the accuracy that a scheme can provide and the maximum 

uncertainty required by the Monitoring and Reporting Guidelines of the EU ETS. This approach would not 

ban sites with high monitoring uncertainty from participation in the scheme, yet it would encourage the 

development of more accurate monitoring techniques in the long-run. 

While our analysis emphasized welfare optimization, the regulator may have other objectives or 

constraints, such as for example minimizing “undue” transfers to the agents misestimating their 

abatement or maximizing the difference between environmental benefits and net transfers from the 

regulator as in Canton et al. (2009). The extent to which the regulator knows about the agents’ profit 
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function – and therefore the extent to which he is able to set optimal uncertainty thresholds or discounts 

– is also questionable. Exploring these scenarios would require further developments of the model to 

introduce a budgetary constraint and/or to relax the assumption of exogenous carbon price. We therefore 

stop here and let other researchers explore these avenues. 
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8. Appendices 

Appendix 1 – Details on the empirical values used in simulations 

For our simulations, we use the data publicly available for energy efficiency and landfill gas flaring (LFG) 

CDM projects, assuming that they represent a typical investment to reduce GHG emissions. The parameter 

sets are given in Table 1. The method to derive these parameters from existing databases is described 

below. 

Table 1 – Parameter sets for numerical simulations 
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Carbon price p is assumed to be equal to EUR 30 per t CO2e, roughly the price of USD 40 at which the price-

containment reserve of the Californian ETS is released (EDF 2013) and slightly above the average pre-crisis 

carbon prices in the EU ETS. 

Non-carbon benefits b in energy efficiency projects are assumed to be equal to EUR 150 per t CO2e, the 

potential cost-savings from reduced electricity consumption at the average grid carbon intensity of 0.5 t 

CO2e per MWh – the average level in the OECD countries in 2010 (Brander et al. 2011) – and the electricity 

price of EUR 75 per MWh – the average electricity price for industry in the OECD in 2009 (IEA 2012). For 

landfill gas flaring projects b = 0 as there are no additional revenues other than carbon. 

Variable monitoring costs parameter m is obtained by fitting the function “costs = m/(relative error)^2” 

on the estimates provided by Powell (1999) for a forestry project. We generalize it to energy efficiency 

and LFG projects based on two comforting points: the rationale of Powell (1999) – decreasing uncertainty 

through increased sample size – is consistent with our modelling approach and the resulting variable 

monitoring costs for a typical uncertainty of 10% is EUR 30,000, that is half the average total MRV costs 

(including fixed costs) for these project types, as estimated for the CDM (Shishlov 2015). 

Fixed and variable abatement costs parameters 𝒄𝟎 and c are  obtained from investments costs in CDM 

projects of type “Energy efficiency own generation” and “Landfill gas flaring”, as estimated by UNEP Risoe 

(2014). For each project in the database, an estimate of investment costs per tCO2e abated excluding 

variable monitoring costs is obtained by subtracting EUR 30,000 to total investment costs (see above). The 

resulting cumulative marginal abatement cost curve (MACC), obtained from many different projects – 245 

for energy efficiency and 52 for LFG – is scaled down to a single project to be consistent with our modelling 

approach. To this end, we assume that the marginal abatement costs of our single project – the size of 

which is the average size of existing projects of the same type2 – are assumed to be proportional to those 

                                                           

2 That is 784 kt CO2e over 7 years for energy efficiency projects and 682 kt CO2e over 7 years for LFG projects. For 
LFG projects, the cumulative MACC is truncated: projects with abatement costs excluding variable monitoring costs 

Parameter Unit Energy efficiency projects Landfill gas flaring projects

b €/tCO2e 150 0

p €/tCO2e 30 30

c €/(tCO2e)² 9.93E-06 5.46E-05

m € 3.00E+02 3.00E+02

c0 € 1.79E+06 1.97E+06
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of the cumulative MACC. c0 and c are then obtained by fitting the relevant equation (cost = c0 + c * q^2) to 

this “scaled-down” MACC. 

Plugging all parameters in the model results in the production of 9 Mt CO2e for energy efficiency projects 

and 0.27 Mt CO2e for landfill gas flaring projects under no information asymmetry, both of which are within 

the range of existing projects in the database (0.08-20 Mt CO2e and 0.07-6 Mt CO2e respectively). 

Appendix 2 – Comparison of outcomes under different scenarios (analytical results) 

Scenario Policy option qi* u* W* UT 𝜷* 

1. No asymmetry a) u prescribed 
𝑝 + 𝑏

2𝑐
 +∞ 

(𝑝 + 𝑏)2

2𝑐
− 2𝑐0 +∞ NA 

2. Asymmetry a) u prescribed 
𝑝 × (1 + 2𝑢𝑖 × 𝜀𝑖) + 𝑏

2𝑐
 √

𝑐𝑚

𝑝²

4

 

(𝑝 + 𝑏)2

2𝑐
− 2𝑐0

−
4𝑝𝑚

√𝑐𝑚
 

4√𝑝 × 𝑞𝑖 × √cm
4

 NA 

2. Asymmetry b) u limited 
𝑝 × (1 + 2𝑢𝑖 × 𝜀𝑖) + 𝑏

2𝑐
 

No obvious 

solution 

No obvious 

solution 
No obvious solution NA 

2. Asymmetry c) u discounted 
𝑝 × (1 + 2𝑢𝑖 × 𝜀𝑖) × (1 − 𝛽) + 𝑏

2𝑐
 

No obvious 

solution 

No obvious 

solution 
No obvious solution 

No obvious 

solution 

3. Information 
bias 

a) u prescribed 
𝑝 × (1 + 2𝑢𝑖 × 𝜀𝑖) + 𝑏

2𝑐
 √

4𝑐𝑚

𝑝2

4

 

(𝑝 + 𝑏)2

2𝑐
− 2𝑐0

−
4𝑝𝑚

√𝑐𝑚
 

4√𝑝 × 𝑞𝑖 × √cm
4

 NA 

3. Information 
bias 

b) u limited 
𝑝 × (1 + 2𝑢𝑖 × 𝜀𝑖) + 𝑏

2𝑐
 √

4𝑐𝑚

𝑝2

4

 

(𝑝 + 𝑏)2

2𝑐
− 2𝑐0

−
4𝑝𝑚

√𝑐𝑚
 

4√𝑝 × 𝑞𝑖 × √cm
4

 NA 

3. Information 
bias 

c) u discounted 
𝑝 + 𝑏

2𝑐
 +∞ 

(𝑝 + 𝑏)2

2𝑐
− 2𝑐0 0 

1/(0.5

+ 𝑢) 

 

Appendix 3 – Comparison of outcomes under different scenarios (numerical results for EE projects) 

  
Q1*(Kt 
CO2e) 

Q2*(Kt 
CO2e) 

Q*(Kt 
CO2e) 

W* 
(M€) 

W loss 
(%) 

P2* 
(M€) 

W2* 
(M€) 

UT1 
(M€) 

UT2 
(M€) 

UTA 
(M€) u1* (%) u2* (%) t* (%) beta* 

Case 1a 9.06 9.06 18.13 1,628 0.00% 542.02 813.92 271.90 -271.90 0.00 50.00% 50.00% 50.00% NA 

Case 2a 9.19 8.93 18.13 1,627 -0.04% 790.72 813.59 23.53 -22.87 0.66 4.27% 4.27% 4.27% NA 

Case 2b 9.19 9.03 18.22 1,625 -0.19% 805.50 811.11 23.52 -5.61 17.92 4.27% 1.03% 4.27% NA 

Case 2c 9.18 9.02 18.20 1,624 -0.24% 802.54 810.13 78.02 -4.78 73.24 17.91% 0.89% NA 1.17 

Case 3a 9.19 9.19 18.38 1,627 -0.04% 837.12 813.59 23.53 23.53 47.05 4.27% 4.27% 4.27% NA 

Case 3b 9.19 9.19 18.38 1,627 -0.04% 837.12 813.59 23.53 23.53 47.05 4.27% 4.27% 4.27% NA 

Case 3c 9.06 9.06 18.13 1,628 0.00% 813.92 813.92 0.00 0.00 0.00 50.00% 50.00% NA 1/(u+0.5) 

                                                           

higher than 4.05 €/tCO2e are excluded. Over this threshold, abatement cost rises steeply, thus strongly violating our 
assumption of linear increase. The truncated MACC covers 52 out of 77 projects in the database. 
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Appendix 4 – Comparison of outcomes under different scenarios (numerical results for LFG projects) 

  
Q1*(Kt 
CO2e) 

Q2*(Kt 
CO2e) 

Q*(Kt 
CO2e) 

W* 
(M€) 

W loss 
(%) 

P2* 
(M€) 

W2* 
(M€) 

UT1 
(M€) 

UT2 
(M€) 

UTA 
(M€) u1* (%) u2* (%) t* (%) beta* 

Case 1a 0.27 0.27 0.55 4.30 0.00% -6.09 2.15 8.24 -8.24 0.00 50.00% 50.00% 50.00% NA 

Case 2a 0.31 0.24 0.55 4.02 -6.49% 1.07 2.01 1.22 -0.94 0.28 6.53% 6.53% 6.53% NA 

Case 2b 0.31 0.26 0.57 3.88 -9.72% 1.35 1.87 1.22 -0.52 0.70 6.53% 3.39% 6.53% NA 

Case 2c 0.29 0.25 0.54 3.90 -9.34% 1.08 1.78 2.35 -0.43 1.92 16.77% 2.97% NA 1.21 

Case 3a 0.31 0.31 0.62 4.02 -0.04% 3.23 2.01 1.22 1.22 2.43 6.53% 6.53% 6.53% NA 

Case 3b 0.31 0.31 0.62 4.02 -0.04% 3.23 2.01 1.22 1.22 2.43 6.53% 6.53% 6.53% NA 

Case 3c 0.27 0.27 0.55 4.30 0.00% 2.15 2.15 0.00 0.00 0.00 50.00% 50.00% NA 1/(u+0.5) 

Notes: Q1*, Q2* and Q* are the amount of emissions reductions in Mt CO2e from Agent 1, Agent 2 and both agents respectively. W* is the total 

welfare in M€. W loss is the welfare loss compared to case 1a (no asymmetry). P2* is the profit of Agent 2, and W2* the welfare generated by his 

participation. UT1, UT2 and UTA are the undue wealth transfers from society to Agent 1, Agent 2 or both agents respectively (undue wealth 

transfers corresponds to the payments of non-existing emissions reductions or to the unpaid emissions reductions. The latter case happens for 

Agent 2 whose emissions reductions are underestimated. This is why UT2 is often negative). u1* and u2* are the optimal (or prescribed in policy 

a) monitoring errors for Agent 1 and Agent 2 respectively. t* is the optimal (or prescribed in policy a) maximum tolerated error. Beta is the optimal 

discount rate. 

Appendix 5 – Derivations for case 1a 

𝐸(𝜋i) = 𝑝 × 𝑞i + 𝑏 × 𝑞i − 𝑐0 − 𝑐 × 𝑞i
2 −

𝑚

𝑢2
 

𝜕𝜋

𝜕𝑞
= 𝑝 + 𝑏 − 2𝑐𝑞 

𝑞1
∗ = 𝑞2

∗ =
𝑝 + 𝑏

2𝑐
 

𝑞∗ =  𝑞1
∗ + 𝑞2

∗ =
𝑝 + 𝑏

𝑐
 

𝑊 = 2(𝑞1
∗ × (𝑝 + 𝑏) − 𝑐0 − 𝑐 × 𝑞1

∗2 −
𝑚

𝑢2
) 

𝜕𝑊

𝜕𝑢
=

4𝑚

𝑢3
> 0  

𝑢∗ = +∞ 

𝑊∗ = lim
𝑢→∞

2(𝑞1
∗ × (𝑝 + 𝑏) − 𝑐0 − 𝑐 × 𝑞1

∗2 −
𝑚

𝑢2
) = 2(𝑞1

∗ × (𝑝 + 𝑏) − 𝑐0 − 𝑐 × 𝑞1
∗2) =

(𝑝 + 𝑏)2

2𝑐
− 2𝑐0 
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Note that our assumption that 𝜺 and q are independent is crucial here. Although we think it is generally 

warranted as 𝜺 is the relative standard error, it may not always be the case. 

Appendix 6 – Derivations for case 2a 

Profit of agent i: 

𝜋i = 𝑝 × 𝑞𝑟i + 𝑏 × 𝑞i − 𝑐0 − 𝑐 × 𝑞i
2 −

𝑚

𝑢2
= 𝑝 × 𝑞i × (1 + 2𝑢𝜀𝑖) + 𝑏 × 𝑞1 − 𝑐0 − 𝑐 × 𝑞i

2 −
𝑚

𝑢2
 

𝝏𝝅𝐢

𝝏𝒒𝐢

= 𝒑 × (𝟏 + 𝟐𝒖𝜺𝒊) + 𝒃 − 𝟐𝒄𝒒𝐢 

𝑞i
∗ =

𝑝 × (1 + 2𝑢𝜀𝑖) + 𝑏

2𝑐
 

Welfare: 

𝑊 = 𝑞1
∗ × (𝑝 + 𝑏) − 𝑐0 − 𝑐 × 𝑞1

∗2 −
𝑚

𝑢2
+ 𝑞2

∗ × (𝑝 + 𝑏) − 𝑐0 − 𝑐 × 𝑞2
∗2 −

𝑚

𝑢2
= 

(𝑝 + 𝑏) ((
𝑝(1 + 2𝑢) + 𝑏

2𝑐
) + (

𝑝(1 − 2𝑢) + 𝑏

2𝑐
)) − 𝑐 ((

𝑝(1 + 2𝑢) + 𝑏

2𝑐
)

2

+ (
𝑝(1 − 2𝑢) + 𝑏

2𝑐
)

2

) − 2𝑐0 −
2𝑚

𝑢2

=
(𝑝 + 𝑏)2

2𝑐
−

2𝑝2𝑢2

𝑐
− 2𝑐0 −

2𝑚

𝑢2
 

𝜕𝑊

𝜕𝑢
=

4(𝑐𝑚 − 𝑝2𝑢4)

𝑐𝑢3
 

𝑢∗ = √
𝑐𝑚

𝑝²

4
 

𝑊∗ =
(𝑝 + 𝑏)2

2𝑐
− 2𝑐0 −

2𝑝2√
𝑐𝑚
𝑝2

𝑐
−

2𝑚

√
𝑐𝑚
𝑝2

=
(𝑝 + 𝑏)2

2𝑐
− 2𝑐0 −

4𝑝𝑚

√𝑐𝑚
 

Modelling this situation with a continuum of agents whose 𝜺𝒊 are equally distributed over [-1;1] leads to a 

similar result on welfare: 

𝑊 = ∫ 𝑞∗ × (𝑝 + 𝑏) − 𝑐 × 𝑞∗2 − 𝑐0 −
𝑚

𝑢2

1

−1

𝑑𝜀 

= ∫
(𝑝 + 𝑏)

2𝑐
(𝑝 + 𝑏) +

𝜀𝑢𝑝

𝑐
(𝑝 + 𝑏) − 𝑐 [

(𝑝 + 𝑏)

2𝑐
+

𝜀𝑢𝑝

𝑐
]

21

−1

𝑑𝜀 − 2 (𝑐0 −
𝑚

𝑢2
) 



30 
 

= ∫
𝜀𝑢𝑝

𝑐
(𝑝 + 𝑏) − 𝑐 [

(𝑝 + 𝑏)2

4𝑐2
+

𝜀2𝑢2𝑝2

𝑐2
+

2𝜀𝑢𝑝

2𝑐2
(𝑝 + 𝑏)]

1

−1

𝑑𝜀 + 2 (
(𝑝 + 𝑏)2

2𝑐
− 𝑐0 −

𝑚

𝑢2
) 

= −
1

4𝑐
∫ 4𝜀2𝑢2𝑝2 + (𝑝 + 𝑏)2

1

−1

𝑑𝜀 + 2 (
(𝑝 + 𝑏)2

2𝑐
− 𝑐0 −

𝑚

𝑢2
) 

= −
1

4𝑐
(

8𝑢2𝑝2

3
+ 2(𝑝 + 𝑏)2) + 2 (

(𝑝 + 𝑏)2

2𝑐
− 𝑐0 −

𝑚

𝑢2
) 

=
(𝑝 + 𝑏)2

2𝑐
−

2𝑢2𝑝2

3𝑐
− 2𝑐0 −

2𝑚

𝑢2
 

𝜕𝑊

𝜕𝑢
=

4(𝑐𝑚 − 𝑝2𝑢4)

3𝑐𝑢3
 

First order condition: 

𝑢∗ = √
3𝑐𝑚

𝑝²

4

 

The solution is therefore very similar to the representation with two opposite agents: 

𝑢∗
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 = 𝑢∗

2 𝑎𝑔𝑒𝑛𝑡𝑠 √3
4

 

Quite intuitively, a uniform distribution of agents over [-1;1] decreases the inefficiency generated by 

monitoring uncertainty compared to a distribution where 𝜺𝒊 clusters on {-1;1} since the effect of adverse 

selection is lower for values of 𝜺𝒊 closer to zero. As a result, the cost of monitoring weights relatively more 

on welfare and u* is 30% higher. 

Appendix 7 – Derivations for case 2b 

For the case of underestimation of emissions reductions: 

𝝏𝝅

𝝏𝒖𝟐𝒃,𝟐

= −𝟐𝒑𝒒𝟐𝒃,𝟐 +
𝟐𝒎

𝒖𝟐𝒃,𝟐
𝟑

 

𝑢2𝑏,2
∗ = √

𝑚

𝑝𝑞2𝑏,2

3
 

Appendix 8 – Derivations for case 2c 

𝜋𝑖 = 𝑝 × 𝑞𝑖 × (1 + 2𝜀𝑖𝑢𝑖) × (1 − 𝛽𝑢𝑖) + 𝑏 × 𝑞 − 𝑐0 − 𝑐 × 𝑞2 −
𝑚

𝑢𝑖
2
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𝜕𝜋𝑖

𝜕𝑞
= 𝑝 × (1 + 2𝜀𝑖𝑢𝑖) × (1 − 𝛽𝑢𝑖) + 𝑏 − 2𝑐𝑞 

𝑞𝑖
∗ =

𝑝 × (1 + 2𝜀𝑖𝑢𝑖) × (1 − 𝛽𝑢𝑖) + 𝑏

2𝑐
 

Appendix 9 – Derivations for cases 3a and 3b 

For both agents: 

𝜋1 = 𝜋2 = 𝑝 × 𝑞 × (1 + 2𝑢) + 𝑏 × 𝑞 − 𝑐0 − 𝑐 × 𝑞2 −
𝑚

𝑢2
 

𝝏𝝅

𝝏𝒒
= 𝒑 × (𝟏 + 𝟐𝒖) + 𝒃 − 𝟐𝒄𝒒 

𝑞∗ =
𝑝 × (1 + 2𝑢) + 𝑏

2𝑐
 

Welfare: 

𝑊 = 2 [(𝑝 + 𝑏) (
𝑝(1 + 2𝑢) + 𝑏

2𝑐
) − 𝑐 (

𝑝(1 + 2𝑢) + 𝑏

2𝑐
)

2

− 𝑐0 −
𝑚

𝑢2
] ==

(𝑝 + 𝑏)2

2𝑐
−

2𝑝2𝑢2

𝑐
− 2𝑐0 −

2𝑚

𝑢2
 

𝜕𝑊

𝜕𝑢
=

4(𝑐𝑚 − 𝑝2𝑢4)

𝑐𝑢3
 

𝑢∗ = √
𝑐𝑚

𝑝²

4
 

𝑊∗ =
(𝑝 + 𝑏)2

2𝑐
− 2𝑐0 −

2𝑝2√
𝑐𝑚
𝑝2

𝑐
−

2𝑚

√
𝑐𝑚
𝑝2

=
(𝑝 + 𝑏)2

2𝑐
− 2𝑐0 −

4𝑝𝑚

√𝑐𝑚
 

Appendix 10 – Derivations for cases 3c 

For both agents: 

𝜋 = 𝑝 × 𝑞 × (1 + 2𝜀𝑢) × (1 − 𝛽𝑢) + 𝑏 × 𝑞 − 𝑐0 − 𝑐 × 𝑞2 −
𝑚

𝑢2
 

𝜕𝜋

𝜕𝑞
= 𝑝 × (1 + 2𝑢) × (1 − 𝛽𝑢) + 𝑏 − 2𝑐𝑞 

𝑞∗ =
𝑝 × (1 + 2𝑢) × (1 − 𝛽𝑢) + 𝑏

2𝑐
 


