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Abstract

The present paper focuses on the numerical simulation of quasi-static prob-
lems involving shape memory alloy (SMA) structures or components. Phe-
nomenological constitutive models formulated within the continuum ther-
modynamics with internal variable framework describe phase transformation
in a SMA by introducing a suitable set of internal variables, which may be
constrained to satisfy a set of inequalities. The numerical treatment of such
constraints, together with the presence of non-smooth functions and/or com-
plementary conditions in the model formulation, is not an easy task and
strongly influences the numerical convergence, algorithm robustness, and
computational times. The aim of this paper is to propose a novel state-
update procedure for the three-dimensional phenomenological model known
as the Souza-Auricchio model. The proposed radial return algorithm, relying
on an incremental energy minimization approach, allows for an easy imple-
mentation of model equations and internal constraints and avoids the use of
regularization parameters for the treatment of non-smooth functions. Sev-
eral numerical simulations assess the noticeable efficiency, robustness, and
performance of the proposed approach, while comparisons with a classical
algorithm proposed in the literature show the reduced computational times.
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1. Introduction

Shape memory alloys (SMAs) are smart materials with the ability to
recover large strains after thermal cycling or mechanical loading/unloading
(Lagoudas, 2008). Thanks to these unique properties, denoted as shape mem-
ory effect and pseudoelasticity, SMA materials are employed in numerous
commercial applications, ranging from the biomedical, aerospace, automo-
tive, and earthquake engineering fields to recent technologies as additive
manufacturing and active textiles (Jani et al., 2014).

Motivated by the ever-increasing use of SMA-based components and de-
vices, a lot of research has been dedicated to the modeling, simulation, and
experimental testing of these alloys.

Several constitutive models have been proposed in the literature for de-
scribing the complex behavior of SMAs; generally, they are categorized in
macroscopic, microscopic, and micro-macro models. A description of all the
modeling approaches is out of the present scope; the reader is referred to
Cisse et al. (2016) for a recent review on the topic. Among the others,
phenomenological macroscopic models formulated within the framework of
continuum thermodynamics with internal variables attract large engineering
interest. Starting from pioneering models involving only scalar internal vari-
ables (Tanaka and Nagaki, 1982), such models have actually reached high
levels of accuracy and refinement (Auricchio et al., 2014a; Lagoudas et al.,
2012; Zaki and Moumni, 2007). Most of the models are in fact able to describe
several mechanisms and effects characterizing SMA behavior, e.g., martensite
reorientation (Arghavani et al., 2010; Pan et al., 2007; Popov and Lagoudas,
2007), twinned-detwinned martensites (Auricchio and Bonetti, 2013), ther-
momechanical coupling (Auricchio et al., 2016), R-phase and anisotropy
(Sedlák et al., 2012), asymmetric behavior in tension and compression (Au-
ricchio et al., 2009b), transformation-induced plasticity (Hartl and Lagoudas,
2009; Auricchio et al., 2007), viscoplasticity (Chemisky et al., 2014), internal
damage (Hartl et al., 2014), functional fatigue effects (Barrera et al., 2014),
microstructure-dependent inelasticity (Grandi and Stefanelli, 2014), and the
two-way shape memory effect (Lexcellent et al., 2000).

One of the major concerns associated to constitutive modeling is the need
of suitable numerical algorithms to treat non-smooth functions and/or local
constraints deriving from the set of nonlinear constitutive equations describ-
ing material behavior. The presence of equality/inequality constraints in
the evolution problem and/or on internal variables as well as the introduc-
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tion of non-smooth functions in the model definition, often treated through
regularized terms, may prevent numerical convergence and may influence nu-
merical robustness, accuracy, and computational times. Therefore, a robust
and accurate numerical implementation is of extreme importance for the de-
sign of novel structures (Peraza-Hernandez and Galvan, 2013) and for the
development of novel technologies (Meisel et al., 2015). The implementation
generally consists first in the time-integration of the system of constitutive
equations and then in a state-update procedure to derive the updated vari-
ables.

Several models are available in a suitable form to perform simulations
of complex SMA-based geometries subjected to general thermomechanical
loading paths in both finite element (Arghavani et al., 2010; Sedlák et al.,
2012; Zaki, 2012) and isogeometric analysis (Auricchio et al., 2015; Dhote
et al., 2015) frameworks. The state-update procedures generally adopted
to treat SMA constitutive equations are based on return-map schemes, in-
cremental energy minimization approaches, or algorithms for mathematical
programming.

A wide class of SMA models implements a return-map-like procedure in
an implicit framework (Auricchio and Petrini, 2004; Qidwai and Lagoudas,
2000; Lagoudas et al., 2012; Zaki, 2012; Hartl and Lagoudas, 2009), even
if some works have recently proposed implementations in an explicit en-
vironment (Stebner and Brinson, 2013; Scalet et al., 2015). The work by
Popov and Lagoudas (2007) applies an extension of the closest-point projec-
tion algorithm to treat a SMA model incorporating single- and multi-variant
martensites. The advantage in using such a procedure is granted by its good
numerical performance and well-established numerical properties.

To eliminate the need for a predictor-corrector-type scheme and to omit
an active set search, which may become elaborate in the presence of coupled
evolution equations and internal constraints, Kiefer et al. (2012) presented
two alternative algorithms for the integration of the constitutive equations
for magnetic SMAs, namely, the classical return-map scheme and a Fischer-
Burmeister-based algorithm. The work demonstrates a greater numerical
efficiency of the Fischer-Burmeister-based algorithm, compared to the clas-
sical return-mapping. In the context of SMA micromechanical modeling, it
is noteworthy to cite the contributions by Bartel and Hackl (2009, 2010);
Bartel et al. (2011), who also employed the Fischer-Burmeister complemen-
tary function. Recently, Auricchio et al. (2014a) have proposed the use of the
Fischer-Burmeister function to treat the inequality constraints on the internal
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variables and the Kuhn-Tucker complementary inequality conditions deriving
from a plasticity-like model formulation. A regularized Fischer-Burmeister
function is adopted to treat the non-differentiability of the function when
both the arguments are equal to zero.

An alternative approach to return-map procedures is the class of vari-
ational methods, which relies on an incremental energy minimization ap-
proach. Sedlák et al. (2012) applied the Nelder-Mead minimization algorithm
to solve the derived problem for SMAs and introduced a regularization en-
ergy to assure the fulfillment of constraints on internal variables. Stupkiewicz
and Petryk (2013) presented a pseudoelastic model within the incremental en-
ergy minimization framework and proposed an unified augmented Lagrangian
treatment of both constitutive constraints and non-smooth dissipation func-
tion.

Another approach consists in rewriting the problem as a mathematical
programming problem which is solved using general optimization methods.
Peigney et al. (2011) applied an incremental variational approach to SMAs
and reformulated the incremental problem as a linear complementarity prob-
lem. The advantage of the formulation is to solve simultaneously the equilib-
rium equations and the constitutive laws, taking the internal constraints into
account. The obtained formulation leads to a simple and efficient numerical
algorithm, solved using interior-point methods.

In the present paper, we focus on the three-dimensional phenomenological
model introduced by Souza et al. (1998), and then treated and generalized
in Auricchio and Petrini (2004); Evangelista et al. (2009) (hence the denom-
ination Souza-Auricchio model, in the following). The model has received
a large attention thanks to several advantageous features (Grandi and Ste-
fanelli, 2015), such as a simple plasticity-like formulation, few parameters,
and a robust numerical implementation, which have allowed its application
to the simulation of a wide range of devices (Auricchio et al., 2014b). Sev-
eral works have focused on the numerical implementation of this model, to
treat the evolution of the tensorial internal variable (i.e., the transformation
strain), subjected to a saturation constraint. Souza et al. (1998) adopted
a return-map scheme and used a criterion for the nucleation of the prod-
uct phase, while Auricchio and Petrini (2004) used a regularized parameter
to treat the case of vanishing transformation strain and Jähne (2012) pro-
posed an explicit integration scheme. Recently, Artioli and Bisegna (2015)
have adopted an incremental energy minimization approach for the solution
of the constitutive equations, without introducing any regularization, and
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have shown the effect of the regularized term on material response. The use
of a regularization parameter strongly influences the predicted response at
the cost of accuracy. Arghavani et al. (2011b) proposed an integration al-
gorithm for a finite-strain extension of the Souza-Auricchio model, based on
a logarithmic mapping and a nucleation-completion criterion, while Argha-
vani et al. (2011a) proposed an improved alternative constitutive model for
a finite-strain extension of the Souza-Auricchio model, expressed in terms of
only symmetric tensors.

The present paper aims to propose a novel solution algorithm for the
Souza-Auricchio model. Among the several numerical approaches cited above,
the proposed algorithm belongs to the class of variational methods relying on
an incremental energy minimization approach. The evolution of the trans-
formation strain in a finite time step incrementally minimizes a convex func-
tional, given by the sum of the elastic energy and the dissipation function.
The treatment is then based on a radial-return algorithm and a standard
Newton-Raphson scheme is adopted to solve the single scalar equation in
both the unsaturated and saturated phase transformation cases. The solu-
tion algorithm as well as the initial guess for the resultant nonlinear equation
are also discussed. The formulation is here restricted to the framework of
infinitesimal strain theory; however, the present approach can be applied to
geometric nonlinear problems.

The choice of using this approach is due to its suitable variational struc-
ture which facilitates the treatment of internal constraints and allows for
an efficient numerical implementation. The advantages of the proposed al-
gorithm are its equation simplicity, easy implementation, the possibility of
avoiding regularized terms in both energy/dissipation definition and trans-
formation strain norm, and, overall, the reduced computational times. The
actual nonlinear system consists of only one scalar equation for both the un-
saturated and phase transformation cases. Further simplifications are pos-
sible for low-temperature cases, i.e. when temperature is lower than the
equilibrium temperature T ∗. This results in noticeable low computational
times and costs, which are of great important in engineering simulations.

To test the performance, robustness, and efficiency of the proposed algo-
rithm several finite element analyses are presented. The simulations range
from classical uniaxial and biaxial tests to more complex multiaxial problems,
reproducing the pseudoelastic and shape memory properties. Moreover, the
algorithm in Auricchio and Petrini (2004) is implemented to provide a com-
parison in terms of model response, computational times, as well as iteration

5



number and to highlight the advantages in using the proposed radial return
algorithm.

The paper is organized as follows. Section 2 briefly reviews the continuum
formulation of the Souza-Auricchio model, together with the related bound-
ary value problem. Section 3 presents the equations in the time-discrete
framework and Section 4 describes the proposed algorithmic scheme. Then,
Section 5 presents the results of several numerical simulations. Finally, con-
clusions are given in Section 6.

2. Continuum model formulation

2.1. Constitutive laws

We briefly reviews the time-continuous formulation of the Souza-Auricchio
model. The reader is referred to Souza et al. (1998) for details.

The assumed control variables are the total strain ε and the absolute
temperature T , while the internal variable is the transformation strain etr.
According to experimental evidences (Wayman, 1989), etr is assumed to be
traceless and satisfies the saturation constraint:

‖etr‖ ≤ εL , (1)

where εL is a material parameter corresponding to the scalar maximum trans-
formation strain reached at the end of the phase transformation during an
uniaxial test and ‖ · ‖ denotes the Euclidean norm.

The Helmoltz free energy function Ψ = Ψ(ε, T, etr) is expressed as follows:

Ψ =
1

2
κ θ2 +G ‖e− etr‖2 + τM ‖etr‖+

1

2
h ‖etr‖2 + IεL(etr) . (2)

Here, θ and e are the volumetric and deviatoric part of ε, respectively; differ-
ent expressions can be chosen for τM : in this case we assume τM = β〈T−T ∗〉,
where β is a positive parameter related to the dependence of the critical stress
on temperature, T ∗ is a reference temperature, and 〈·〉 indicates the positive
part function; κ and G are the bulk and shear modulus, respectively; h de-
fines the phase transformation hardening. The indicator function

IεL(etr) =

{
0 if ‖etr‖ ≤ εL

+∞ otherwise
(3)

is introduced to satisfy the transformation strain constraint (1).
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Following standard arguments (Gurtin, 1981; Coleman and Noll, 1963),
the constitutive equations are:

p =
∂Ψ

∂θ
= κθ ,

s =
∂Ψ

∂e
= 2G(e− etr) ,

X = −
∂Ψ

∂etr
= s− τM∂‖etr‖ − hetr − γ

etr

‖etr‖
,

(4)

where p and s are the volumetric and deviatoric part of σ, respectively, and
X is the thermodynamic stress-like quantity associated to etr. If etr 6= 0,
the subdifferential ∂‖etr‖ in (4) is given by

∂‖etr‖ =
etr

‖etr‖
.

If etr = 0, we have

∂‖etr‖ = {τ | tr τ = 0; ‖τ‖ ≤ 1}.

Note that ∂‖etr‖ is not single-valued when etr = 0. The variable γ in (4)
results from the indicator function subdifferential ∂IεL(etr) and it is defined
as follows:

γ =

{
0 if ‖etr‖ < εL
≥ 0 if ‖etr‖ = εL

, (5)

with ∂IεL(etr) = γetr/‖etr‖.
To describe phase transformation and inelasticity evolution, a Mises-type

limit function F = F (X) is introduced in the following form:

F = ‖X‖ −RY , (6)

where RY is a positive material parameter corresponding to the radius of the
elastic domain in the deviatoric stress space.

The evolution equation for etr takes the form:

ėtr = λ̇
∂F

∂X
= λ̇

X

‖X‖
, (7)

where λ̇ is the non-negative consistency parameter. The model is then com-
pleted by the classical Kuhn-Tucker conditions:

λ̇ ≥ 0, F ≤ 0, λ̇F = 0 . (8)
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2.2. Boundary value problem

Consider a three-dimensional continuum occupying a domain Ω and sub-
jected to a prescribed loading history. The continuum is assumed to be at
mechanical and thermal equilibrium at each time. In such a situation, the
temperature field is homogeneous at each time and takes a prescribed value
T (t). The stress field σ satisfies the equilibrium equation

divσ + f d(t) = 0 in Ω,
σ.n = T d(t) on ∂ΩT ,

(9)

where f d(t) are body forces in Ω and T d(t) are tractions specified on a part
∂ΩT of the boundary ∂Ω. The strain field ε derives from a kinematically
admissible displacement field u, i.e.,

ε =
1

2
(∇u+∇Tu) in Ω,

u = ud(t) on ∂Ωu,
(10)

where ud(t) are given displacements on ∂Ωu = ∂Ω − ∂ΩT . The functions
f d, T d, and ud may also depend on the position x, but that dependence is
omitted in the notations.

Together, the local constitutive relations (4-8) and the field equations (9-
10) define a boundary value problem that governs the evolution of the SMA
continuum. In general, a discretization both in space and time is necessary
to solve that boundary value problem, as discussed next.

3. Discrete model formulation

The time-discretization consists in introducing a finite number of time in-
stants t0 < · · · < tN and estimating the solution at each time ti using a time-
marching approach. To do so, the crucial step is to introduce an incremental
problem for estimating the values (un+1, e

tr
n+1) at t = tn+1, assuming the

values (un, e
tr
n ) at t = tn known. A widely used time-discretization scheme

is the Euler implicit scheme, which in the present context corresponds the
incremental problem defined as follows:

un+1 ∈ Ku(tn+1), σn+1 ∈ Kσ(tn+1), etrn+1 ∈ KεL , (11.1)

pn+1 = κθn+1, sn+1 = 2G(en+1 − etrn+1) , (11.2)
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Xn+1 = sn+1 − τM,n+1∂‖etrn+1‖ − hetrn+1 − γn+1

etrn+1

‖etrn+1‖
, (11.3)

etrn+1 = etrn + ∆λ
Xn+1

‖Xn+1‖
, (11.4)

γn+1 ≥ 0, ‖etrn+1‖ ≤ εL, γn+1(‖etrn+1‖ − εL) = 0, (11.5)

∆λ ≥ 0, ‖Xn+1‖ ≤ RY , ∆λ(RY − ‖Xn+1‖) = 0. (11.6)

In (11.1), the sets of admissible fields are defined by

KεL = {etr|‖etr‖ ≤ εL for all x ∈ Ω},
Ku(t) = {u|u = ud(t) on ∂Ωu},
Kσ(t) = {σ|divσ + f d(t) = 0 in Ω;σ.n = T d(t) on ∂ΩT}.

(12)

The incremental problem (11) being nonlinear, the issues of existence and
uniqueness of solutions need to be addressed. In that regard, it is useful to
observe that a variational formulation is attached to the incremental problem
(11). Consider indeed the functional F(u, etr) defined as the sum F(u, etr) =
F e(u, etr) + Fd(etr) of the elastic potential energy

F e(u, etr) =

∫
Ω

Ψ(ε, T (tn+1), etr)dω −
∫

Ω

f d.u dω −
∫
∂ΩT

T d.u da (13)

and the dissipative term

Fd(etr) = RY

∫
Ω

‖etr − etrn ‖dω. (14)

Using standard results in convex analysis (Brézis, 1972; Rockafellar, 1970),
it can be proved (see Appendix A) that the solutions to (11) are minimiz-
ers of F , i.e. the incremental problem (11) is formally equivalent to the
minimization problem

inf
(u,etr)∈Ku(tn+1)×KεL

F(u, etr) (15)

Variational formulations governing the evolution of generalized standard
materials have been largely used in the literature in case of convex potentials
and have been also extended to non-convex potentials to predict microstruc-
ture formation (Ortiz and Repetto, 1999; Miehe et al., 2002; Carstensen et al.,
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2002). In the present case observe that the function F is convex in (u, etr),
with quadratic growth at infinity. It follows that minimizers of F do ex-
ist, provided adequate functional spaces are chosen for Ku and KεL . For a
three-dimensional continuum, such a choice of appropriate functional spaces
is a subtle mathematical issue that is beyond the scope of this paper. The
situation simplifies once space discretization is performed: in practice, the
spaces Ku and KεL are indeed taken as finite-dimensional, using, for instance,
the finite element method. In such case, the aforementioned properties of F
ensures that the (space-discretized) incremental problem does admit some
solutions. If h > 0 (which is assumed in the following) then F is actually
strictly convex, which ensures that the minimizer is unique.

Several strategies are available for solving the minimization problem (15).
A possible approach consists in rewriting the minimization problem (15) in
the nested form

inf
u∈Ku(tn+1)

{ inf
etr∈KεL

F(u, etr)}. (16)

Observing that the variable etr in (16) is free from any differential constraint,
we have

inf
etr∈KεL

F(u, etr) =

∫
Ω

Ψn+1(ε) dω −
∫

Ω

f d.u dω −
∫
∂ΩT

T d.u da. (17)

where the function

Ψn+1(ε) = inf
etr:‖etr‖≤εL

Ψ(ε, T (tn+1), etr) +RY ‖etr − etrn ‖ (18)

is obtained by solving a local nonlinear problem. Using (17), Eq. (16) can
be rewritten as

inf
u∈Ku(tn+1)

∫
Ω

Ψn+1(ε) dω −
∫

Ω

f d.u dω −
∫
∂ΩT

T d.u da (19)

The functional that appears in (19) is similar to the functional F e in (13),
the only difference being that the Helmoltz free energy Ψ in (2) is replaced by
the function Ψn+1. Solving (19) amounts to solve the equilibirum problem of
an elastic nonlinear continuum with a free energy density Ψn+1, i.e., obeying
the constitutive law σ = Ψ′n+1(ε). Note that Ψn+1 is path-dependent since
it depends on the state etrn at the previous time instant.

From a numerical point of view, Eq. (19) is a global nonlinear mini-
mization problem that can be solved using a descend algorithm or a Newton
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method. Such algorithms make use of the first and second derivatives of the
function to minimize, which in the present case amounts to calculate Ψ′n+1(ε)
and the consistent tangent operator Ψ′′n+1(ε). In the following we propose an
efficient algorithm for calculating those quantities.

4. A radial return algorithm

In the present section, we focus on the local nonlinear problem (18) which,
as explained before, is the central building block for solving the incremental
structural problem (11). To alleviate the expressions, the term τM,n+1 is
denoted by τM in the following. Replacing Ψ with its expression (2), the
minimization problem in (18) can be rewritten as

inf
etr
G′‖etr‖2 − 2G′etr : e′ + τM‖etr‖+RY ‖etr − etrn ‖+ IεL(etr) (20)

where G′ = G+ h/2 and e′ = (G/G′)e. The function to minimize in (20) is

strictly convex in etr and therefore admits a unique solution. That solution,
denoted by etrn+1 in the following, is characterized by the optimality equation

0 ∈ 2G′(etrn+1 − e′) + τM∂‖etrn+1‖+RY ∂‖etrn+1 − etrn ‖+ γn+1

etrn+1

‖etrn+1‖
(21)

where
γn+1 ≥ 0, ‖etrn+1‖ ≤ εL, γn+1(‖etrn+1‖ − εL) = 0, (22)

∂‖etrn+1 − etrn ‖ =

{
etrn+1−etrn
‖etrn+1−etrn ‖

if etrn+1 6= etrn
{τ : tr τ = 0, ‖τ‖ ≤ 1} if etrn+1 = etrn ,

(23)

and, similarly,

∂‖etrn+1‖ =

{
etrn+1

‖etrn+1‖
if etrn+1 6= 0

{τ : tr τ = 0, ‖τ‖ ≤ 1} if etrn+1 = 0.
(24)

From a numerical standpoint, there are two possible approaches for solving
(20). The first approach consists in constructing a minimizing sequence, us-
ing for instance a linear search algorithm. Since we are in the most favorable
situation where the function to minimize is convex, convergence of such al-
gorithms is ensured under mild conditions. The second approach consists
in solving the nonlinear equation (21), using for instance a Newton-Raphson
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procedure. Generally speaking, the convergence of the Newton-Raphson pro-
cedure is conditioned by the choice of the initial guess. In the case where the
initial guess is close enough to the solution, the Newton-Raphson procedure
converges very fast – usually faster than linear search algorithms or the like
– and it is hard to beat. In the following, we favor the second approach,
i.e., solving the optimality equation (21). The reason is that Eq. (21) can
be reduced to a scalar equation, as detailed next. For scalar problems, the
issue of finding a good initial guess simplifies considerably, which allows one
to take full advantage of the Newton-Raphson procedure.

4.1. Check for elastic evolution or fully reversed phase transformation

To solve (21), the first step consists in checking whether etrn+1 = etrn or
etrn+1 = 0. This is accomplished using the expressions (23-24). The obtained
conditions take different expressions whether etrn 6= 0 or etrn = 0:

• Case etrn 6= 0:
We have etrn+1 = etrn (elastic evolution) if and only if

‖a− τM
etrn
‖etrn ‖

‖ ≤ RY . (25)

We have etrn+1 = 0 (fully reversed phase transformation) if and only if

‖2G′e′ +RY
etrn
‖etrn ‖

‖ ≤ τM . (26)

• Case etrn = 0:
We have etrn+1 = 0 if and only if

‖a‖ ≤ RY + τM . (27)

In (26-27), a is the trial elastic state, defined by

a = 2G′(e′ − etrn ). (28)

4.2. Unsaturated phase transformation

If none of the inequalities (25-27) is satisfied, then etrn+1 /∈ {0, etrn } and
Eq. (21) becomes

0 = 2G′(etrn+1 − e′) + τM
etrn+1

x
+RY

etrn+1 − etrn
‖etrn+1 − etrn ‖

+ γn+1

etrn+1

‖etrn+1‖
(29)
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with x = ‖etrn+1‖ and γn+1 satisfying (22). To solve (29), first consider the
equation

0 = 2G′(etrn+1 − e′) + τM
etrn+1

x
+RY

etrn+1 − etrn
‖etrn+1 − etrn ‖

(30)

which amounts to drop the constraint ‖etr‖ ≤ εL. Eq. (30) can written as

0 = 2G′(etrn+1 − etrn )− a+ τM
etrn+1 − etrn

x
+ τM

etrn
x

+RY

etrn+1 − etrn
‖etrn+1 − etrn ‖

.

Hence (
2G′ +

τM
x

+
RY

‖etrn+1 − etrn ‖

)
(etrn+1 − etrn ) = b (31)

where
b = a− τM

x
etrn . (32)

Eq. (31) shows that the tensor etrn+1 − etrn is parallel to b. Taking the norm
of (31) and using the fact that G′, τM , x, RY are positive, we find

‖etrn+1 − etrn ‖ =
‖b‖ −RY

τM/x+ 2G′
.

Substituting in (31), we finally arrive at

etrn+1 = etrn +
b

‖b‖

( ‖b‖ −RY

τM/x+ 2G′

)
. (33)

Eq. (33) shows that etrn+1 is entirely determined by the positive scalar x. We
are thus left with the issue of finding x. This is accomplished by taking the
norm of (33), leading to the consistency equation

x = ‖etrn +
b

‖b‖

( ‖b‖ −RY

τM/x+ 2G′

)
‖ (34)

in which x is the only unknown. Eq. (34) can be rewritten in the form

f(x) = 0

where
f(x) = ‖c‖ − τM − 2G′x (35)

13



and

c = 2G′e′ −RY
b

‖b‖
. (36)

The equation f(x) = 0 has a unique solution in ]0,+∞[. More precisely, we
have

lim
x→0+

f(x) > 0; f(xmax) ≤ 0 (37)

where xmax = ‖e′‖+(RY −τM)/2G′. The first inequality in (37) follows from
the assumption that none of the inequalities (25-27) are satisfied. To obtain
the second inequality in (37), observe from (36) that ‖c‖ ≤ 2G′‖e′‖ + RY .
Substituting in (35) gives f(x) ≤ 2G′(‖e′‖ − x) + RY − τM and the result
follows.

Using Eq. (37) and the continuity of f on [0,+∞[, a direct application
of the intermediate value theorem shows that the solution of f(x) = 0 lies
in the bounded interval ]0, xmax]. This is a useful information for solving the
equation f(x) = 0 numerically. In that regard, another useful ingredient is
the derivative f ′(x). A direct calculation gives:

f ′(x) = −τM
x2

RY

‖b‖
c

‖c‖
:
(
etrn −

(b : etrn )

‖b‖2
b
)
− 2G′.

Remark: In the case τM = 0, the equation f(x) = 0 can be solved directly.
From Eqs. (33-34) we have indeed

x = ‖etrn +
a

‖a‖

(‖a‖ −RY

2G′

)
‖

and

etrn+1 = etrn +
a

‖a‖

(‖a‖ −RY

2G′

)
.

4.3. Saturated phase transformation

If the value etrn+1 provided by (33-34) satisfies the inequality ‖etrn+1‖ ≤ εL,
then the solution to problem (20) is obtained. Otherwise, we need to solve

0 = 2G′(etrn+1 − e′) + τM
etrn+1

εL
+RY

etrn+1 − etrn
‖etrn+1 − etrn ‖

+ γn+1e
tr
n+1 (38)

with
γn+1 ≥ 0, ‖etrn+1‖ = εL.

14



This case corresponds to saturated phase transformation. Provided τM 6=
0, we can use a change of variable to put (38) in the same form as (30).
Introducing indeed the variable x defined by

τM
x

=
τM
εL

+ γn+1,

we can see that Eq. (38) is formally identical to Eq. (30), except that x is
now submitted to the constraint 0 ≤ x ≤ εL. Eq. (33) still holds, but the
consistency equation for determining x now reads as

εL = ‖etrn +
b

‖b‖

( ‖b‖ −RY

τM/x+ 2G′

)
‖. (39)

Eq. (39) can be rewritten as:
g(x) = 0

where
g(x) = ‖c‖ − εL

τM
x
− 2G′εL (40)

and c is defined as in (36). The equation g(x) = 0 has a unique solution in
]0, εL]. We have:

g′(x) = −τM
x2

RY

‖b‖
c

‖c‖
:
(
etrn −

(b : etrn )

‖b‖2
b
)

+ εL
τM
x2
.

Remark: The change of variable detailed above can be used only if τM >
0. The case τM = 0 can be treated by replacing τM/x with γn+1 in the
previous developments. More precisely, starting from (38) and performing
manipulations similar to those used in Sect. 4.2, we obtain, in the case
τM = 0,

etrn+1 = etrn +
b′

‖b′‖

( ‖b′‖ −RY

γn+1 + 2G′

)
(41)

where b′ = a − γn+1e
tr
n . Enforcing that ‖etrn+1‖ = εL in (41) leads to the

consistency equation
h(γn+1) = 0

where h(γn+1) = ‖c′‖ − εLγn+1 − 2G′εL and c′ = 2G′e′ −RY b
′/‖b′‖.
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4.4. Summary

Algorithm 1 summarizes the proposed solution procedure. The input
variables are the transformation strain etrn at the previous time instant tn
and the deviatoric strain e′ = Ge/(G+h/2) at the current time instant tn+1.
The output variable is the transformation strain etrn+1 at tn+1. The stress
σn+1 at time tn+1 is given by

σn+1 = C : (ε− etrn+1)

where C is the elasticity tensor. Let 1 and I be the second-order and fourth-
order identity tensors, respectively. Setting J = (1⊗ 1)/3 and K = I− J, we
note for later reference that

C = 3κJ + 2GK, σn+1 = C : ε− 2Getrn+1 (42)

where the second equality results from the fact that etrn+1 is traceless.
Algorithm 1 follows a two-step procedure that is typical of return mapping

strategies and similar to the elastic prediction - plastic correction decomposi-
tion used in plasticity (Simo and Hugues, 1998). Step 1 consists in checking
for special cases of evolutions – namely elastic evolution or fully reversed
phase transformation. This is accomplished by checking whether the input
data (etrn , e

′) verify certain explicit inequalities. If those inequalities are not
satisfied, then the algorithm moves to Step 2 in which a nonlinar problem is
solved.

Such a two-step structure is commonly found in the algorithms for the
Souza-Auricchio model, discussed in Section 1. A distinctive feature of Al-
gorithm 1 is that the nonlinear problem involves a single scalar parameter,
whereas the other mentioned algorithms use 5, 6, or 7 scalar parameters. An
expected outcome is a significant gain in computational costs. It is worth
highlighting that the computational cost for the factorization is O(n3/3),
where n is the matrix size (Quarteroni, 2009), and the computation of the
jacobian for a system of equations increases the computational time. Another
related benefit is a gain in robustness. As mentioned earlier, the Newton-
Raphson procedure – which is often used for solving nonlinear problems –
is known to perform very fast provided the initial guess is close enough to
the solution. Failing to have a good initial guess may lead to difficulties in
convergence. The issue of finding such a good initial guess simplifies consid-
erably when the problem depends on a single scalar variable; for instance,

16



a bisection method can be used, which consists only in iterative function
evaluations that do not increase excessively the computational time.

Since it involves a single scalar unknown in Step 2, Algorithm 1 is similar
in spirit to the radial return algorithm originally proposed by Wilkins (1964)
in perfect plasticity. This is especially clear when τM = 0, i.e., at low temper-
ature. In that case, there is a simple geometric interpretation of Step 2 in Al-
gorithm 1 (see Fig. 1): Starting from the trial elastic state a = 2G′(e′−etrn ),
a correction along the ’radial direction’ a such that ‖2G′(e′ − etrn+1)‖ = RY

(in the case of unsaturated phase transformation) or ‖etrn+1‖ = εL (in the
case of saturated phase transformation). The situation is more complicated
when τM > 0. For simplicity we only discuss the case of unsaturated phase
transformation. Note from (26) that the ball with center τMe

tr
n /‖etrn ‖ and

radius RY defines the elastic domain at time tn. If the trial elastic state
a is outside of that domain, a correction is performed in such fashion that
an+1 = 2G′(e′− etrn+1) falls on the boundary of the elasticity domain at time
tn+1, i.e., satisfies ‖an+1−τMetrn+1/‖etrn+1‖‖ = RY . When τM 6= 0, the correc-
tion an+1 − a is no longer parallel to a, as can be seen from Eq. (32). The
situation is represented in Fig. 2. The increment etrn+1 − etrn is parallel to
the correction an+1 − a. Also note that a, an+1 are aligned with the center
τMe

tr
n+1/‖etrn+1‖ of the elasticity domain at time tn+1. All those geometric

properties are direct consequences of Eq. (30).
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Input : etrn , e
′

Output: etrn+1

. Step 1
a← 2G′(e′ − etrn );
if etrn 6= 0 then

if ‖a− τM etrn
‖etrn ‖
‖ ≤ RY then . Elastic evolution

etrn+1 ← etrn ;
return etrn+1;

end

if ‖2G′e′ +RY
etrn
‖etrn ‖
‖ ≤ τM then . Fully reversed transformation

etrn+1 ← 0;
return etrn+1;

end

else
if ‖a‖ ≤ RY + τM then
etrn+1 ← 0;
return etrn+1;

end

end
. Step 2

Solve f(x) = 0 ;
b← a− τM

x
etrn ;

etrn+1 ← etrn + b
‖b‖

(
‖b‖−RY

τM/x+2G′

)
;

if ‖etrn+1‖ > εL then . Saturated phase transformation
if τM > 0 then

Solve g(x) = 0;
γn+1 ← τM/x;

else
Solve h(γn+1) = 0;

end
b← a− γn+1e

tr
n ;

etrn+1 ← etrn + b
‖b‖

(
‖b‖−RY

γn+1+2G′

)
;

end
return etrn+1;

Algorithm 1: Proposed radial return algorithm for SMAs.
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an+1
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Figure 1: Radial return for τM = 0, case of unsaturated phase transformation.

4.5. Tangent stiffness operator

Using the expressions given in Sects. 4.1-4.3, the tangent stiffness oper-
ator dσn+1/dε can be calculated explicitly. In the structure of Algorithm
1 there appear 4 distinct regimes: elastic evolution (etrn+1 = etrn ), fully re-
versed phase transformation (etrn+1 = 0), unsaturated phase transformation
(0 < ‖etrn+1‖ < εL with etrn+1 6= etrn ) and saturated phase transformation
(‖etrn+1‖ = εL with etrn+1 6= etrn ). The operator dσn+1/dε takes a different
expressions in each one of those regimes. In the case etrn+1 = etrn or etrn+1 = 0,
we have dσn+1/dε = C, where C is the elasticity tensor of the material, see
Eq. (42). The expressions get more involved in the remaining cases. More
precisely, we have

• in the case 0 < ‖etrn+1‖ < εL (with etrn+1 6= etrn ):

dσn+1

dε
= C− 4G2x(‖b‖ −RY )

‖b‖‖c‖
(
K +X11ẽ

tr
n+1 ⊗ ẽtrn+1 +X22b̃⊗ b̃

+X12(ẽtrn+1 ⊗ b̃+ b̃⊗ ẽtrn+1)
) (43)

• in the case ‖etrn+1‖ = εL (with etrn+1 6= etrn ):

dσn+1

dε
= C−4G2 εL(‖b‖ −RY )

‖b‖‖c‖
(K−ẽtrn+1⊗ẽtrn+1+

RY

‖b‖ −RY (1− α2)
b⊥⊗b⊥)

(44)
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τM

Figure 2: Radial return for τM > 0, case of unsaturated phase transformation.

Recall that, in the case ‖etrn+1‖ = εL with etrn+1 = etrn , we have dσn+1/dε =
C.

In Eqs. (43-44), ẽtrn+1 and b̃ are the unit tensors defined as ẽtrn+1 =

etrn+1/‖etrn+1‖ and b̃ = b/‖b‖, respectively. The tensor b⊥ is the projection of

b̃ on the orthogonal of etrn+1, i.e., b⊥ = b̃ − αẽtrn+1 with α = ẽtrn+1 : b̃. The
scalars X11, X22, X12 in (43) are defined by

X11 =
(‖b‖ −RY )τM

X
, X22 =

RY

X
(
‖b‖‖c‖
‖b‖ −RY

− τM), X12 =
αRY τM
X

, (45)

where X = ‖b‖(‖c‖ − τM) + (1− α2)RY τM .
The derivation of Eqs. (43-44) is detailed in Appendix B. We emphasize

the fact that expressions (43-44) are fully explicit and do not involve any
matrix inversion, thus making for an efficient numerical computation of the
tangent stiffness operator.
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5. Numerical simulations

This section presents several numerical simulations to show the perfor-
mance of the proposed radial return algorithm. The conducted finite element
analyses include simple uniaxial and biaxial tests as well as two complex sim-
ulations, reproducing both pseudoelasticity and shape memory effect. The
algorithm proposed in Auricchio and Petrini (2004) (in the following, denoted
as classical for simplicity) has been implemented to provide a comparison.
The adopted material parameters are reported in Table 1.

The proposed algorithm has been implemented within a user-defined ma-
terial subroutine (UMAT) of the finite element software ABAQUS/Standard
(Abaqus, 2010). We use the package AceGen (Korelc, 2002) of the symbolic
software Mathematica to generate the UMAT, according to the methodology
proposed in Boatti et al. (2016).

Table 1: Material parameters adopted in all the numerical simulations (Auricchio et al.,
2009a). Regularization δ is used only in the classical algorithm.

Symbol Value Unit
E 53,000 MPa
ν 0.33 -
h 1,000 MPa
εL 0.056 -
T ∗ 243 K
β 6.1 MPa/K
RY 100 MPa
δ 10-6 -

5.1. Isothermal tests

We start by considering several three-dimensional isothermal tests.
First, we simulate uniaxial tension-compression tests on a single 8-node

hexahedral element, under displacement control and prescribed homogeneous
temperature. Figure 3(a) shows the applied boundary conditions. In par-
ticular, a displacement is applied and increased up to 0.07 mm and three
temperature values of 350, 255, and 200 K are considered.

Figures 4(a), 4(c), and 4(e) reports the stress-strain curves predicted by
the proposed algorithm for time steps, respectively, of 0.002, 0.02, and 0.2
s, corresponding to 1000, 100, and 10 increments. The curves demonstrate
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Figure 3: Applied boundary conditions for the (a) uniaxial tension-compression and (b)
biaxial tests under displacement-control and constant prescribed temperature.

the robustness of the proposed solution algorithm. In order to verify model
response, Figures 4(b), 4(d), and 4(f) compares the curves obtained with the
proposed and the classical algorithm for 350, 255, and 200 K, respectively.
A qualitative agreement between the two algorithms is evident; however, the
predicted responses differ at the beginning of the forward phase transforma-
tion and at the end of the reverse phase transformation. This is due to the
presence of the regularized parameter δ in the classical algorithm, which af-
fects model response, especially when the norm of the transformation strain
‖etr‖ tends to zero.

As a further comparison, we consider the uniaxial tensile test at constant
temperature of 350 K and time step of 0.02 s. Figures 5(a) and (b) report
the number of iterations required by the (local) Newton-Raphson scheme in
the unsaturated and saturated cases (see Sections 4.2 and 4.3) versus the
controlled strain component ε33, for the two algorithms during loading and
unloading, respectively. The local iteration number is the same for all the in-
tegration points. The values ε33 = 6.72 ·10−2 and ε33 = 7.00 ·10−2 correspond
to the saturated case for both the algorithms. Moreover, it is noticed that
the classical algorithm starts the phase transformation earlier during loading
(i.e., at ε33 = 2.80 · 10−3) and ends the phase transformation later during
unloading (i.e., again at ε33 = 2.80 · 10−3). This increases the computational
time for the classical algorithm, since it has to solve a nonlinear system of
equations, while the proposed algorithm has to perform an elastic check and
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the iteration number is equal to zero in Figure 5. It can be noticed that the
number of iterations is higher for the classical algorithm in the unsaturated
case, thus resulting in longer computational times.

We now consider biaxial tests on a single 8-node hexahedral element,
under displacement control and prescribed homogeneous temperature. Fig-
ure 3(b) shows the applied boundary conditions. The loading consists of a
butterfly-shaped history at a constant temperature of 400 K. A maximum
displacement of 0.1 mm is applied, as shown in Figure 6. To demonstrate
the robustness of the proposed solution algorithm, Figure 7(a) reports the
curves in terms of the non-zero stress components predicted by the proposed
algorithm for time steps, respectively, of 0.004, 0.04, and 0.4 s, correspond-
ing to 1000, 100, and 10 increments. Figure 7(b) shows a good matching
between the curves obtained with the proposed and the classical algorithm.
Differences between the two algorithms are clearer in Figure 8, where the
transformation strain norm ‖etr‖ is plotted. The classical algorithm does
not reach zero values of the norm under zero stress and strain states (see
time instants of 2 and 4 s).

Finally, we conclude this subsection with the simulation of a square plate
with a circular hole, subjected to displacement-control loading at a constant
high temperature. The plate has an edge length of 100 mm, a thickness of
2 mm, and a central circular hole of radius 10 mm. According to the sym-
metry of the problem, we model only one quarter of the plate by applying
appropriate boundary conditions. The mesh is composed of 8,712 8-node
hexahedral elements and 13,467 nodes, as shown in Figure 9; a mesh refine-
ment has been performed to choose the appropriate mesh. A displacement
uY is applied at the top side of the plate at a temperature of 400 K (see
Figure 9). A maximum value of 5 mm is applied and then set back to zero,
as reported in Figure 10(a). The simulation is performed using variable time
steps between 10−6 and 0.1 s.

The deformed mesh under the maximum displacement is reported in Fig-
ure 10(b). Figure 11 shows the reaction force of the bottom side of the plate
versus the applied displacement diagram; a comparison with the results ob-
tained with the classical algorithm is also provided. As it can be observed,
the pseudoelastic response of the plate is correctly reproduced by both the
algorithms, but differences are evident mostly at the beginning of forward
transformation and at the end of reverse transformation, i.e., around dis-
placements of 0.2 and 1.3 mm. This is clear from Figure 12 which represents
the contour plot of the norm of the transformation strain ‖etr‖ at different
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Figure 4: Uniaxial tests under displacement-control and constant prescribed temperatures
of 350, 255, and 200 K. (a)-(c)-(e) Stress-strain curves obtained with the proposed algo-
rithm for different time steps ∆t. (b)-(d)-(f) Comparison between the proposed and the
classical algorithm. 24
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Figure 5: Uniaxial test under displacement-control and constant prescribed temperatures
of 350 K. Comparison between the number of iterations required by the (local) Newton-
Raphson scheme at the integration point level in the unsaturated and saturated case for
the classical and proposed algorithm. (a) Loading and (b) unloading cases.
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Figure 6: Biaxial test under displacement-control and constant prescribed temperature of
400 K. The applied butterfly-shaped history is represented.
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Figure 7: Biaxial test under displacement-control and constant prescribed temperature of
400 K. Curves in terms of the non-zero stress components. (a) Results for the proposed
algorithm for different time steps ∆t. (b) Comparison between the proposed and the
classical algorithm.
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Figure 8: Biaxial test under displacement-control and constant prescribed temperature of
400 K. Trend of the norm of the transformation strain ‖etr‖ obtained with the proposed
and classical algorithm.
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uY

Figure 9: Pseudoelastic test on a square plate with a circular hole. Adopted mesh and
applied boundary conditions.

time instants. Main discrepancies in the distribution are evident at the be-
ginning of the analysis at 0.125 s and corresponding displacement of 1.25
mm.

To assess the computational efficiency of the proposed algorithm, Figures
13(a) and 13(b) report, respectively, the loading time increments and the to-
tal global iterations during the analysis. The results are compared to those
obtained with the classical algorithm. As it can be observed, the classical
algorithm requires smaller time increments to converge, especially in corre-
spondence of phase transformation. On the contrary, the proposed algorithm
needs a larger number of iterations; this can be due to the use of larger time
increments. Table 2 reports the total increments to complete the analysis
for the two algorithms; it is worth to highlight the lower number of time
increments for the proposed solution scheme. As a further comparison, we
also report the wall-clock times necessary to complete the analysis in Table 3.
The values clearly show the lower times required by the proposed algorithm.

5.2. Thermal-cycling tests

We now consider several three-dimensional thermal-cycling tests.
First we reproduce the shape memory effect through a uniaxial test on

a single 8-node hexahedral element under force-control and constant low
temperature, followed by a heating cycle. The applied boundary conditions
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Figure 10: Pseudoelastic test on a square plate with a circular hole. (a) Loading history
in terms of the applied displacement uY and (b) deformed mesh at the maximum applied
displacement.
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Figure 11: Pseudoelastic test on a square plate with a circular hole. Curves in terms
of reaction force of the bottom side of the plate and applied displacement. Comparison
between the proposed and the classical algorithm.

are those considered for the tension-compression uniaxial tests (see Figure
3(a)), except that a force is now applied on the top surface of the element.
Initially, a temperature of 200 K is prescribed and a force of 400 N is applied
and then set back to zero. Then, the temperature is increased up to 400 K at
zero stress. Figure 14 reports the stress-strain-temperature curves predicted
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Figure 12: Pseudoelastic test on a square plate with a circular hole. Contour plot of
the norm of the transformation strain ‖etr‖ at three different time instants. Comparison
between the proposed and the classical algorithm.
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Figure 13: Pseudoelastic test on a square plate with a circular hole. Trends of (a) the
loading time increments and (b) the total global iterations during the analysis. Comparison
between the proposed and the classical algorithm.
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Table 2: Total time increments to complete the analysis. Comparison between the pro-
posed and the classical algorithm.

Analysis Proposed Classical
Pseudoelastic plate with hole 128 174

Spring actuator 230 812

Table 3: Wall-clock times [s] to complete the performed analyses with one CPU. Compar-
ison between the proposed and the classical algorithm.

Analysis Proposed Classical
Pseudoelastic plate with hole 2781 3923

Spring actuator 3507 15053

by the proposed algorithm for time steps, respectively, of 0.003, 0.03, and 0.3
s, corresponding to 1000, 100, and 10 increments. Figures 15(a) and 15(b)
compares the curves obtained with the proposed and the classical algorithm.
The differences are evident at around 260 K, when phase transformation
starts.

We now simulate a uniaxial test on a 8-node hexahedral element under
force-control and constant high temperature, followed by a thermal cycle.
Initially, a temperature of 303 K is prescribed and a force of 300 N is applied
and kept constant. Then, the temperature is decreased up to 121.2 K and
finally increased up to 454.5 K. Figure 16(a) reports the strain-temperature
curves predicted by the proposed algorithm for time steps, respectively, of
0.001, 0.01, and 0.1 s, corresponding to 17000, 1700, and 170 increments. Fig-
ures 16(b) compares the curves obtained with the proposed and the classical
algorithm.

Finally, we conclude with the simulation of a helical spring actuator,
subjected first to a tensile force at constant high temperature and then to a
thermal cycling at constant applied force. The spring has a wire diameter
of 1.0 mm, an external coil diameter of 6.0 mm, a pitch of 2.5 mm, 2 active
coils, and an initial length of 5.0 mm. The mesh is composed of 3712 8-
node hexahedral elements and 4486 nodes, as shown in Figure17(a); a mesh
refinement has been performed to choose the appropriate mesh. An axial
tensile force F of 20 N is applied at one section of the spring at a temperature
of 423 K, while the other section is fixed (see Figure 17(a)). All the nodes
of the section where the force is applied are constrained against the two
translations in the directions orthogonal to the axial one. A thermal cycling
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Figure 14: Uniaxial test under force-control and constant low temperature, followed by a
heating cycle. Stress-strain-temperature curves obtained with the proposed algorithm for
different time steps ∆t.
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Figure 15: Uniaxial test under force-control and constant low temperature, followed by a
heating cycle. Comparison between the proposed and the classical algorithm. (a) Stress-
strain and (b) strain-temperature curves.
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Figure 16: Strain-temperature curves for a uniaxial test with force control and at constant
high temperature, followed by a thermal cycle. (a) Results of the proposed algorithm
for different loading time increments ∆t. (b) Comparison between the proposed and the
classical algorithm.

is applied at constant force F , by cooling the spring up to 169.2 K and then
heating up to the initial temperature (see Figure 18(a)). The simulation
is performed using variable time step increments between 10−6 and 0.01 s.
The deformed mesh at 169.2 K is reported in Figure 17(b), while Figure 12
represents the related contour plot of the norm of the transformation strain
‖etr‖.

Figure 18(b) shows the displacement of the free end of the spring ver-
sus temperature; a comparison with the results obtained with the classical
algorithm is also provided. As it can be observed, the two models present dif-
ferences at the beginning of forward transformation and at the end of reverse
transformation.

To assess the computational efficiency of the proposed algorithm, Figures
20(a) and 20(b) report, respectively, the loading time increments and the to-
tal global iterations during the analysis. The results are compared to those
obtained with the classical algorithm. As it can be observed, the classical
algorithm requires smaller time increments to converge, especially in corre-
spondence of phase transformation. On the contrary, the proposed algorithm
proceeds with a larger number of iterations; this is attributed to the use of
larger time increments. Table 2 reports the total increments to complete the
analysis for the two formulations; it is worth to highlight the lower number
of time increments for the proposed solution scheme. To provide a further
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Figure 17: Thermal cycling at constant tensile axial force on a helical spring. (a) Adopted
mesh and applied boundary conditions. (b) Deformed spring after cooling at 169.2 K and
constant force of 20 N.

comparison, we also report the wall-clock time necessary to complete the
analysis in Table 3, which is considerably lower (about 1/4) for the proposed
algorithm.

6. Conclusions

This paper has presented a new algorithmic scheme for the Souza-Auricchio
model. The main idea relies in the exploitation of the variational structure
of model equations, based on an incremental energy minimization approach.
This results in a nonsmooth optimization problem which, using convex anal-
ysis, can be solved without any kind of regularization. This is a welcome
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Figure 18: Thermal cycling at constant tensile axial force on a helical spring. (a) Loading
history. (b) Curves in terms of displacement of the free end of the spring and prescribed
temperature. Comparison between the proposed and the classical algorithm.

feature in practice: as illustrated in Section 5, adding a regularization biases
the structural response, especially at the onset of phase transformation.

The proposed approach leads to a radial return scheme that is simple to
implement. That scheme has the key feature of being based on the solution
of a single scalar equation. The presented approach has been verified to
be efficient in practice through several numerical finite element simulations,
leading to low computational costs. Such an advantage can be exploited for
the computer-based design of complex SMA-based devices.

We note that the proposed approach can be adapted to SMA constitutive
models involving tensorial internal variables and constraints. On a related
note, the easy implementation offers the possibility of extending it to more
complex models, e.g., (Auricchio et al., 2007).

In this paper, thermal equilibrium was assumed to hold at each time, so
that the temperature was acting as a given external parameter. That as-
sumption is valid for small loading rates. When the loading rate increases,
thermomechanical effects – most notably through latent heat and thermal
diffusion effects – may become significant. Handling such effects can be
achieved by combining the proposed approach with incremental variational
principles proposed by Peigney and Seguin (2013) for coupled thermome-
chanical problems.
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Figure 19: Contour plot of the norm of the transformation strain ‖etr‖ at 169.2 K, obtained
with the proposed and classical algorithm for the thermal cycling at constant tensile axial
force on the helical spring.
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Figure 20: Thermal cycling at constant tensile axial force on a helical spring. Trends of
(a) the loading time increments and (b) the total global iterations during the analysis.
Comparison between the proposed and the classical algorithm.
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Appendix A. Variational formulation of the Euler implicit scheme

Let (un+1, e
tr
n+1) be a solution to the minimization problem (15). We show

in the following that (un+1, e
tr
n+1) necessarily satisfies the set of equations

(11) that define the Euler implicit scheme. A solution (un+1, e
tr
n+1) to the

minimization problem (15) necessarily satisfies the optimality condition

(0, 0) ∈ ∂F(un+1, e
tr
n+1) (A.1)

where ∂F is the subdifferential of F (Brézis, 1972; Rockafellar, 1970). Ob-
serve that F is differentiable with respect to u. Eq. (A.1) can be rewritten
as

0 = ∂uF(un+1, e
tr
n+1), (A.2)

0 ∈ ∂etrF(un+1, e
tr
n+1), (A.3)
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where ∂uF is the derivative of the F with respect to u, and ∂etrF is the
subdifferential of F with respect to etr. Reproducing the classical reasoning
used in linear elasticity, Eq. (A.2) leads to Eqs. (11.1-2).

Eq. (A.3) needs to be treated more carefully because F is only subdif-
ferentiable with respect to etr. Since etr is free from differential constraints,
first observe that (A.3) gives the local equation

0 ∈ ∂etr(Ψ + Φ)(un+1(x), etrn+1(x)) ∀x ∈ Ω (A.4)

where Φ(etr) = RY ‖etr − etrn ‖. Further note from (2) that Ψ can be written
as Ψ = Ψ0 + Ψ1 + IεL with Ψ0 = (1/2)κ θ2 + G ‖e− etr‖2 + (1/2) h ‖etr‖2

and Ψ1 = τM ‖etr‖. Since all the functions Φ, Ψ0, Ψ1, IεL are proper,
lower-semicontinuous and convex, we have (Brézis, 1972; Rockafellar, 1970)

∂etr(Ψ + Φ) = ∂etrΨ0 + ∂etrΨ1 + ∂etrIεL + ∂etrΦ.

The expressions of ∂etrΨ1 and ∂etrIεL have been given in Sect. 2.1. We have

∂etrΨ0(etrn+1) = −sn+1 + hetrn+1

and

∂etrΦ(etrn+1) =

{
RY

etrn+1−etrn
‖etrn+1−etrn ‖

if etrn+1 6= etrn ,

{RY τ : tr τ = 0, ‖τ‖ ≤ 1} if etrn+1 = etrn .
(A.5)

Hence, defining Xn+1 as in (11.3)-(11.5), Eq. (A.3) gives

0 ∈ −Xn+1 + ∂etrΦ(etrn+1). (A.6)

Using (A.5), Eq. (A.6) can be seen to be equivalent to (11.4)(11.6). This
completes the proof that the stationarity conditions (A.1) coincide with the
local equations (11) of the Euler implicit scheme.

Appendix B. Derivation of the tangent stiffness operator

From (42) we have

dσn+1

dε
= C− 2G

detrn+1

dε
. (B.1)
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Now etrn+1 only depends on ε through the deviatoric tensor e′ = (G/G′)e =
(G/G′)K : ε. Hence

dσn+1

dε
= C− 2

G2

G′
detrn+1

de′
K. (B.2)

Both for unsaturated and saturated transformation, etrn+1 satisfies an equa-
tion of the form

0 = 2G′(etrn+1 − e′) + τM
etrn+1

x
+RY

etrn+1 − etrn
‖etrn+1 − etrn ‖

, (B.3)

where x is a function of etrn+1. Differentiating (B.3) gives

2G′de′ = −τM
x2
etrn+1dx+

[
(2G′ +

τM
x

+
RY

‖etrn+1 − etrn ‖
)I

− RY

‖etrn+1 − etrn ‖3
(etrn+1 − etrn )⊗ (etrn+1 − etrn )

]
: detrn+1.

(B.4)

Introducing the unit tensor b̃ = b/‖b‖, we have by (33)

‖etrn+1 − etrn ‖ =
‖b‖ −RY

τM/x+ 2G′
,
etrn+1 − etrn
‖etrn+1 − etrn ‖

= b̃.

Hence (B.4) simplifies as

2G′de′ = −τM
x2
etrn+1dx+

(2G′ + τM
x

)

‖b‖ −RY

[
‖b‖I−RY b̃⊗ b̃

]
: detrn+1. (B.5)

At this point is is necessary to distinguish between unsaturated phase
transformation.

Appendix B.1. Unsaturated phase transformation (0 < ‖etrn+1‖ < εL)

For unsaturated phase transformation, we have x = ‖etrn+1‖, hence dx =
−ẽtrn+1 : detrn+1 where ẽtrn+1 = etrn+1/‖etrn+1‖. Moreover, we have ‖c‖ = τM +
2G′x by (35). Therefore (B.5) becomes

2G′de′ =
‖b‖‖c‖

x(‖b‖ −RY )
B : detrn+1,

where

B = I− RY

‖b‖
b̃⊗ b̃− τM

(‖b‖ −RY )

‖b‖‖c‖
ẽtrn+1 ⊗ ẽtrn+1. (B.6)
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It follows that
detrn+1

de′
= 2G′x

‖b‖ −RY

‖b‖‖c‖
B−1. (B.7)

Because of its special structure, the tensor B can be inverted in closed form,
to give:

B−1 = I +X11ẽ
tr
n+1 ⊗ ẽtrn+1 +X22b̃⊗ b̃+X12(ẽtrn+1 ⊗ b̃+ b̃⊗ ẽtrn+1),

where the scalars X11, X22, X12 are defined by (45). Substituting in (B.7)
and (B.2) we arrive at the expression (43) for the tangent stiffness operator.

Appendix B.2. Saturated phase transformation (‖etrn+1‖ = εL)

In the case of saturated transformation, the constraint ‖etrn+1‖ = εL im-
plies that etrn+1 : detrn+1 = 0. Moreover (40) gives 2G′ + τM/x = ‖c‖/εL.
Hence projecting (B.5) on etrn+1, we obtain:

2G′de′ : etrn+1 = −τM
x2
ε2Ldx−

RY ‖c‖
(‖b‖ −RY )εL

(b̃ : etrn+1)(b̃ : detrn+1)

which gives the expression of dx. Substituting the result in (B.5), we obtain
the relation

2G′(I− ẽtrn+1 ⊗ ẽtrn+1) : de′ =
‖b‖‖c‖

(‖b‖ −RY )εL
(I− RY

‖b‖
b⊥ ⊗ b̃) : detrn+1 (B.8)

where b⊥ = b̃−αẽtrn+1 is the projection of b̃ on the orthogonal of etrn+1. Noting
that b : detrn+1 = b⊥ : detrn+1, (B.8) can be equivalently rewritten as

2G′(I− ẽtrn+1 ⊗ ẽtrn+1) : de′ =
‖b‖‖c‖

(‖b‖ −RY )εL
A : detrn+1,

where A is the symmetric fourth-order tensor defined as:

A = I− RY

‖b‖
b⊥ ⊗ b⊥.

Hence
detrn+1

de′
= 2G′

(‖b‖ −RY )εL
‖b‖‖c‖

A−1 : (I− ẽtrn+1 ⊗ ẽtrn+1). (B.9)

The tensor A can be inverted in closed form to give:

A−1 = I + Y b⊥ ⊗ b⊥
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with

Y =
RY

‖b‖ −RY (1− α2)
.

Replacing in (B.9) and recalling that b⊥ : ẽtrn+1 = 0, we find:

detrn+1

de′
= 2G′

(‖b‖ −RY )εL
‖b‖‖c‖

(I− ẽtrn+1 ⊗ ẽtrn+1 + Y b⊥ ⊗ b⊥).

Substituting in (B.2) gives the expression (44) for the tangent stiffness oper-
ator.
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