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Abstract—We propose a multiscale extension of a well-known
line segment detector, LSD. We show that its multiscale nature
makes it much less prone to over-segmentation, more robust
to low contrast and less sensitive to noise, while keeping the
parameterless advantage of LSD and still being fast. Moreover,
we show that in scenes with little or no feature points, but where
it is however possible to perform structure from motion from
matched line segments, the accuracy is significantly improved.
This provides an objective and automatic quantitative assessment
of our detector that goes much beyond the usual qualitative visual
inspection found in the literature.

I. INTRODUCTION

In many common settings, Structure from Motion (SfM)
techniques based on detected salient points are reliable enough
to estimate the relative pose of cameras and reconstruct a
3D point geometry. However these techniques may fail or
yield inaccurate results on low-textured scenes, such as indoor
environments with large uniform wall surfaces, which have
not, or not enough salient points. Another failure case is with
buildings with large glass areas, where reflection on windows
invalidates point matching. Mostly planar scenes may also lead
to degenerate settings for point-based camera calibration.

To address these issues, a number of authors advocate the
use of lines rather than points in such situations. Indeed, lines
can generally be detected even in presence of uniform areas,
at edges. Lines at window edges are also robust to reflection
variations when the viewpoint changes, and calibration with
lines naturally deals well with scenes that may be planar. As
a matter of fact, a few line-based SfM methods [2], [9], [13]
have recently been developed, that outperform classical point-
based methods on this kind of scenes, while not relying on
segment endpoints, which are too uncertain with all known
segment detectors.

The argument that lines are useful for calibration and
3D reconstruction is heavily hammered home by authors
that propose new lines detectors and/or new line matchers
[7], [11], [12]. However, their validation is often “visual”,
i.e., qualitative based on displayed detections or matches.
When quantitative data is provided, it only evaluates quality
indirectly and unreliably, possibly with an arbitrary bias due
to a human assessment. Typical such measures include the
number of detected lines, supposed to be low as an indicator
for little over-segmentation [7], possibly using synthetic data
(sketched lines) where the number of lines is known. Another
measure is a human count of the number of matches [11],

Fig. 1: Original 15 Mpx picture (top left); lines detected with
LSD [6] (top right), EDLines [1] (bottom left),

our method (MLSD, bottom right).

[12], which can be done only at a small scale, with an
arbitrary notion of perceived lines and possibly a penalized
score for over-segmentation [7]. To evaluate robustness, the
same assessments can be performed with noise [5], [6] or other
image transformations [11].

Although it is presented as one of their main motivation,
these papers do not evaluate the quality of their line detector
or matcher w.r.t. image registration and 3D reconstruction. Yet
our experiments show that, indeed, line-based SfM is sensi-
tive to the quality of detections and matches. Detectors and
matchers that put forward SfM as an application should thus
be crafted w.r.t. an actual quantitative SfM evaluation, not just
a qualitative assessment, or indirect/unreliable measurements.

In this paper, we propose a new, enhanced line segment
detector that is based on a multiscale exploration (MLSD). It
detects some lines that fail to be detected by other detectors
while reducing over-segmentation. Besides, it detects lines
more accurately. We show, using not only qualitative but also
quantitative results, that our detector does improve both the
robustness and the accuracy of line-based SfM, i.e., calibration
and reconstruction. For this, we compare our method to state-
of-the-art line detectors, namely LSD [6] and EDLines [1].



Fig. 2: From left to right: crop of the original high-resolution picture (suspended ceiling), multiscale clusters,
detections with LSD, and final detections with MLSD. Colored rectangles filled with black represent coarse segments

upsampled to the finest scale. Colored clusters inside are connected components of pixels with compatible gradient directions.

II. RELATED WORK

LSD [6] and EDLines [1] are currently state-of-the-art meth-
ods for line detection and are thus used in the mentioned SfM
approaches [2], [9], [13]. They are based on an a contrario
theory that automatically defines if a line is meaningful or not
with a score called Number of False Alarms (NFA).

In LSD [6], segments are detected as connected compo-
nents of pixels with similar gradient direction. The similarity
criterion not being transitive, the authors use a greedy method
to compute these components. However, because of noise or
lack of contrast, some components may be separated by a few
pixels and the detector then yields several shorter segments.
This causes an over-segmentation phenomenon, especially
with high resolution images (see Fig. 1).

Actually, both methods [1], [6] tend to compute lots of
short segments (≤ 5% of the image size), which turns out
to be redundant and noisy information for the matching and
calibration methods that follow. The accuracy of these methods
thus does not improve with high quality pictures.

Other authors [7] propose a multiscale method to detect
lines without over-segmenting them. However, they use many
different thresholds to merge their segments, based on param-
eters such as direction similarity, distance between endpoints
and lines, line proximity, etc. If these parameters make sense,
they can easily fail when used on different pictures, e.g., in the
presence of slight curves, grid patterns, close parallel lines.

The absence of parameters in a contrario methods is the
main reason for the quality of their results compared to
others, such as Hough-based methods. They do not depend on
parameter tuning and are consistently as efficient for different
kinds of scenes. In this paper, we present a multiscale method
to detect and arrange line segments at different scales. How-
ever, we stick to the a contrario framework to automatically
define which segments should be merged. Although one LSD
article [5] presents some experiments showing the influence
of noise and the importance of detecting at lower resolutions,
these were just illustrative and did not specify a way to choose
the right resolution for detection and how to avoid detection
redundancy across different scales.

In Sect. III, we propose a new multiscale segment detector
based on LSD. In Sect. IV, we present qualitative and quanti-
tative results. Finally, we draw some conclusions in Sect. V.

III. MULTISCALE SEGMENT DETECTOR

A. Number of False Alarms for segments and multi-segments

We use the same background model as generally used in a
contrario methods: as in LSD, this model assumes that gradi-
ent directions are independent and uniformly distributed within
the image. Significant deviations from this “null hypothesis”
are deemed relevant and reveal the presence of a line segment,
hence the a contrario principle of the approach.

We consider that a segment s is defined by a rectangle,
and can thus have a width greater than 1 pixel. We note |s|
the area of s, p the probability that a random pixel q has the
same direction θ(q) (orthogonal to its gradient) than s up to
an angular tolerance of π p, and ks the number of pixels inside
the rectangle that have the same direction than s up to π p.

In LSD, the NFA of a segment s is defined for a given
angular tolerance π p as

NFA(s, p) = γNLB(|s|, ks, p) (1)

where NL is the number of possible segments in the image,
γ is a normalizing value (number of different tested values
for p), and B(|s|, ks, p) is the tail of the binomial distribution:

B(|s|, ks, p) =
|s|∑
j=ks

(
|s|
j

)
pj(1− p)|s|−j . (2)

A segment is considered meaningful if and only if its NFA is
below a given threshold (whose “natural” value is 1). In LSD
[6], the authors show that the threshold value can be changed
without significant differences for the detections.

Besides, Grompone von Gioi et al. [4] define an NFA for
lines which is a 1D version of (1), as they only look for
clusters of pixels that are perfectly aligned. They also define
an NFAM for multiple lines, to compare the meaningfulness
of segmented lines to their merged version. We generalize this
formula to a set of n segments S = {s1, ..., sn} inside a sub-
area of the picture of size N ×M :

NFAM(S, p) = γNL

(
(NM)

5
2

n

) n∏
i=1

(|si|+ 1)B(|si|, ksi , p)

(3)
where (NM)

5
2 approximates the number of possible segments

in an area of size N ×M , as in LSD [6].
Given n segments S = {s1, ..., sn}, let Seg(∪ni=1si) be

the best segment computed from the union of the clusters si,



defined as the smallest rectangle that contains the rectangles
associated to all segments si. The corresponding fusion score
of the set of segments is defined as:

F(s1, ..., sn) = log

(
NFAM(s1, ..., sn, p)

NFAM(Seg(∪ni=1si), p)

)
. (4)

If the fusion score is positive, it means that the NFAM is lower
for the merged segment than for the segments individually, and
thus that they should be merged. This defines a criterion for
segment merging that does not rely on any parameter.

B. Multiscale processing

Input: Image I
Output: Set of segments S
for k = 0 to K do

Compute downscaled image Ik

Sk ← ∅
if k 6= 0 then

Upscale Sk−1
forall the si ∈ Sk−1 do

Compute the connected components of Pki (5)
Merge w.r.t. fusion score (4) with greedy
strategy
Add in Sk the meaningful segments if any,
else si

Add in Sk the segments detected with LSD in Ik

forall the si ∈ Sk in increasing NFA order do
Find aligned neighbors
Merge w.r.t. fusion score (4)

return SK

Algorithm 1: Multiscale Line Segment Detector

As observed in [5], the size of the picture matters a lot for
segment detection. A smaller version of the same picture often
yields fewer but proportionally longer segment detections,
while the original picture may yield a lot of fragmented
segments. We thus use a multiscale approach to find long
segments at coarse scales, refining their location at a finer
scale. At each scale, as described below, we consider new
segment candidates at the same locations than segments at the
previous scale, possibly merge them using the multi-segment
criterion (4), and keep the resulting segments that pass the
NFA condition (1). In the following, we denote with an upper
index the scale of the image, from 0 (coarsest) to K (finest):
I = IK is the original image and Ik is its downscaled version
by a factor 2K−k in both width and height. Following LSD [6],
we also convolve with a Gaussian kernel to smooth each image
Ik before any further detection.

At the coarsest scale, we only detect segments classically
with LSD. At subsequent scales, we first use information
from the previous scale to find new segments. Given a coarse
segment sk−1i of direction θ(sk−1i ) detected with some angular
tolerance π pk−1i , we define Aki as the rectangular area of sk−1i

upscaled in Ik, and Pki as the subset of pixels in Aki that have
the same direction as sk−1i up to π pk−1i :

Pki =
{
q ∈ Aki s.t. |θ(q)− θ(sk−1i )|(mod π) < π pk−1i

}
. (5)

We then compute the set Cki of all the connected components
in Pki , using 8-neighborhood connectivity. These potential new
segments are illustrated in Fig. 2. Different cases can occur,
e.g., the components can belong to the same line, or to parallel
and close lines that were merged at a coarser scale.

As a set Cki can contain many tentative segments, we cannot
test all the possible fusion combinations to find the best ones.
We thus resort to a greedy strategy to iterate over potential
segments to merge. Beginning with the component c in Cki
with lowest NFA (i.e., the most meaningful), we compute all
the other components that are sufficiently aligned with it:

I(c) = {c′ ∈ Cki \{c} s.t. l(c) ∩ c′ 6= ∅} (6)

where l(c) is the line passing through the center of c, with
angle θ(c). We compute the fusion score of I(c) and, if
positive, we replace the subsegments in I(c) by their merged
version. This algorithm is iterated until all tentative segments c
in Cki have been tested for fusion.

Finally, we compute the usual NFA on all these segments
to only keep the meaningful ones. For a given coarse seg-
ment sk−1i , it may happen, e.g., with noise and/or when
contrast is low (see Fig. 3), that no derived segment at
the current finer scale is kept because none meets the NFA
condition. In this case, we keep the original coarse segment,
with scale information, but no longer try to find finer segments
at the same locations at finer scales.

Line segments are then detected with LSD at current scale.

C. Post-detection merging

The multiscale processing helps finding low-contrast seg-
ments and merging some of the over-segmentations. However,
as the segments used for fusion are detected at coarse scales,
there still remain segmented parts. We thus add a refinement
step that tries to merge segments after each multiscale detec-
tion, similar to the inter-scale merging above (Sect. III-B).

For each detected segment, in increasing NFA order, we
find the neighboring segments with similar alignments. For
this, we extend the segment to its corresponding line and find
the intersected segments with similar directions as in (6). They
are merged if the corresponding fusion score (4) is positive.

The whole algorithm is summarized in Algo. 1.

IV. EXPERIMENTS

In this section, we compare our detector (MLSD) to LSD
[6] and EDLines [1]. For this, we use the following datasets:
• Strecha et al.’s: a standard dataset used for SfM, contain-

ing several outdoor scenes (e.g., castle courtyard), with a
picture resolution of 6 Mpx [10]. The camera parameters
are known and a LiDAR ground truth is available for a
couple of scenes.

• Hall: a dataset of a hall building from [3] with a picture
resolution of 6 Mpx.



Fig. 3: From left to right: detection upon a low contrast area for LSD [6], EDLines [1] and our method. Notice that our
method does not suffer from over-segmentation and that upper and lateral borders of the white board are detected.

Dataset
Method LSD

[6]
EDLines

[1]
MLSD
(ours)

Castle
[10]

# segments 5996 4568 4112
average length 26.3 31.9 51.5

total length 158k 146k 212k
run. time 3.9 0.7 9.1

Office

# segments 5708 2849 1683
average length 44.4 88.9 190.0

total length 253k 253k 320k
run. time 6.0 1.4 14.5

Hall

# segments 4291 2996 1787
average length 26.8 39.1 86.2

total length 115k 117k 154k
run. time 2.1 0.7 4.3

TABLE I: Output of different line detectors:
number of detected segments, average length (in pixels),
total length (in pixels), computation time (in seconds).

• Office: our own dataset of an office room with a picture
resolution of 18 Mpx. It contains a calibration ground
truth obtained by taking auxiliary pictures at the same
camera positions but with a video-projected pattern rich
in feature points, allowing to perform accurate structure
from motion based on point matches [8].

• Building: our own dataset of urban pictures (18 Mpx).

A. Visual results

We detected segments using each method on all datasets.
Fig 4 illustrates some of the detections. Comparing the first
two rows to the last two, we can observe that our method
is especially efficient for high resolution pictures (Office and
Building), where it merges many segments that belong to the
same line. It also better detects low-contrast lines where noise
and shadows make it difficult for classical detection methods.

Although visual inspection shows the quality of our results,
it cannot be measured objectively this way. We also give in
Table I a quantitative comparison of these methods, reporting
the number of segments, their average length and the sum of

Dataset
Method LSD

[6]
EDLines

[1]
MLSD
(ours)

Strecha et al.’s [10] 0.47 1.32 0.29
Office 2.77 2.02 0.72

TABLE II: Average rotation error (in ◦) of line-based
external calibration [2] for different detectors.

their length. We observe that our method tends to detect fewer
but significantly longer segments than other methods, hence
being less prone to over-segmentation. The visual inspection of
Fig. 4 confirms that our method tends to give a better structural
information compared to the others. The multiscale processing
and fusion process have an acceptable computation overhead:
they double or so the time of LSD, which is a fast algorithm
with an online, real-time demonstrator [6].

B. Calibration results

To compare quantitatively the different line segment detec-
tors, we compare their impact on the accuracy of line-based
external calibration. For this, we use an automatic line matcher,
LBD+S&G [12]. Matched segments are then provided as input
to a line-based SfM algorithm [2] that computes the relative
rotations between pairs of images. It relies on vanishing points
to identify projections of 3D parallel lines and assumes a
Manhattan world, with orthogonal principal vanishing points.
It uses a minimal solver using two parallel lines and one line
in an orthogonal direction, which is embedded in a RANSAC
procedure to ensure robustness w.r.t. outliers.

The average rotation error between pairs of images for the
datasets with calibration ground truth are reported in Table II.
The segments detected by MLSD yield a significantly better
accuracy than the segments detected by LSD or EDLines.

C. 3D reconstruction results

Strecha et al.’s dataset [10] also contains a LiDAR point
cloud used as a ground truth for reconstruction. We project
all the matching segments computed by the different detectors



Scene LSD EDLines Multiscale LSD

Fig. 4: Visual results for different line segment detectors and datasets. Top to bottom: Castle (from Strecha et al.’s), Office,
Hall, Building. Left to right: original image and detections with LSD [6], EDLines [1] and our multiscale LSD (MLSD).

Note that our method also merges segments following a grid pattern (see red ellipse areas) and
better detects segments in areas with high noise or low contrast (see blue ellipses).



Scene LSD EDLines Multiscale LSD
Fig. 5: Fronto-parallel 3D reconstructions of matched segments (only inliers according to the ground truth) on scenes

Fountain-P11 (top) and Herz-Jesu-P8 (bottom) from Strecha et al.’s. The tested methods are LSD [6], EDLines [1] and the
proposed multiscale LSD. Notice that our method has more relevant segments than the other two.

Dataset
Distance (m)

1 0.1 0.01 0.001

Herz-Jesu-P8 [10]
LSD [6] 246 214 174 118

EDLines [1] 309 244 172 97
MLSD 357 287 230 137

Fountain-P11 [10]
LSD [6] 268 230 180 124

EDLines [1] 319 267 177 97
MLSD 372 297 214 140

TABLE III: Number of correct matches up to a given
distance to the ground-truth mesh. Our MLSD method

outperforms the others: although it detects fewer segments
(see Table I), more inliers are present.

and use the distance to the point cloud to define inlier and
outlier matches (see Table III).

In Fig. 5, we also display some reconstructions, keeping
only inliers as the presence of several outliers impedes the
understanding of the scene. No bundle adjustment was per-
formed, which explains why some 3D lines are not perfect.
Our method yields a denser reconstruction.

V. CONCLUSION

We presented MLSD, a multiscale extension to the popular
Line Segment Detector (LSD). MLSD is less prone to over-
segmentation and is more robust to noise and low contrast.
Being based on the a contrario theory, it retains the parameter-
less advantage of LSD, at a moderate additional computation
cost. Not only are the visual results better but, more impor-
tantly, the improvement can be measured quantitatively by the
accuracy of line-based structure from motion. We argue that
such an objective quantitative measure is very important for
assessing the quality of line segment detectors. This is in stark
contrast with usual experiments presented in the literature,
where little or no quantitative measures are provided, and
when they are, they are not as objective as residual SfM errors.
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