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A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond

In this paper, we propose a unified theory for convex structured sparsity-inducing norms on vectors associated with combinatorial penalty functions. Specifically, we consider the situation of a model simultaneously (a) penalized by a set-function defined on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in p- norm. We show that each of the obtained combinatorial optimization problems admits a natural relaxation as an optimization problem regularized by a matching sparsity-inducing norm.

To characterize the tightness of the relaxation, we introduce a notion of lower combinatorial envelope of a set-function. Symmetrically, a notion of upper combinatorial envelope produces the most concise norm expression. We show that these relaxations take the form of combinatorial latent group Lassos associated with min-cover penalties also known as block-coding schemes. For submodular penalty functions, the associated norm, dual norm and the corresponding proximal operator can be computed efficiently using a generic divide-and-conquer algorithm.

Our framework obtains constructive derivations for the Lasso, group Lasso, exclusive Lasso, the OWL, OSCAR and SLOPE penalties, the k-support norm, several hierarchical penalties considered in the literature for chains and tree structures, and produces also new norms. It leads to general efficient algorithms for all these norms, recovering as special cases several algorithms proposed in the literature and yielding improved procedures for some cases.

For norms associated with submodular penalties, including a large number of non-decomposable norms, we generalize classical support recovery and fast rates convergence results based respectively on generalization of the irrepresentability condition and the restricted eigenvalue condition.

Introduction

The last years have seen the emergence of the field of structured sparsity, which aims at identifying a model of small complexity given a priori knowledge on its possible structure.

Various regularizations, in particular convex, have been proposed that formalized the notion that prior information can be expressed through functions encoding the set of possible or encouraged supports 1 in the model. Several convex regularizers for structured sparsity arose as generalizations 1 By support, we mean the set of indices of non-zero parameters.

1 of the group Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] to the case of overlapping groups [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF]Jenatton et al., 2011a;[START_REF] Mairal | Convex and network flow optimization for structured sparsity[END_REF], in particular to tree-structured groups [START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF][START_REF] Kim | Tree-guided group lasso for multi-task regression with structured sparsity[END_REF][START_REF] Zhao | Grouped and hierarchical model selection through composite absolute penalties[END_REF]. Other formulations have been considered based on variational formulations [START_REF] Micchelli | Regularizers for structured sparsity[END_REF], the perspective of multiple kernel learning [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF], submodular functions [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF] and norms defined as convex hulls [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Obozinski | Group Lasso with overlaps: the Latent Group Lasso approach[END_REF]. Non convex approaches were introduced as well, by [START_REF] Baraniuk | Model-based compressive sensing[END_REF]; [START_REF] He | Exploiting structure in wavelet-based Bayesian compressive sensing[END_REF]; [START_REF] Huang | Learning with structured sparsity[END_REF]. We refer the reader to [START_REF] Huang | Learning with structured sparsity[END_REF] for a concise overview and discussion of the related literature and to [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF] for a more detailed tutorial presentation.

In this context, and given a model parametrized by a vector of coefficients w ∈ R V with V = {1, . . . , d}, the main objective of this paper is to find an appropriate way to combine together combinatorial penalties, that control the structure of a model in terms of the sets of variables allowed or favored to enter the function learned, with continuous regularizers -such as p -norms, that control the magnitude of their coefficients -into a convex regularization that would control both.

Part of our motivation stems from previous work on regularizers that "convexify" combinatorial penalties. [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF] proposes to consider the tightest convex relaxation of the restriction of a submodular penalty to a unit ∞ -ball in the space of model parameters w ∈ R d . However, this relaxation scheme implicitly assumes that the coefficients are in a unit ∞ -ball; then, the obtained relaxation induces clustering artifacts of the values of the learned vector. It would thus seem desirable to propose relaxation schemes that do not assume that coefficients are bounded but rather to control continuously their magnitude and to find alternatives to the ∞ -norm. Finally the class of functions considered is restricted to submodular functions.

Yet another motivation is to follow loosely the principle of two-part or multiple-part codes from minimum description length (MDL) theory [START_REF] Rissanen | Modeling by shortest data description[END_REF]. In particular if the model is parametrized by a vector of parameters w, it is possible to encode (an approximation of) w itself with a two-part code, by encoding first the support Supp(w) -or set of non-zero values -of w with a code length of the form F (Supp(w)) and by encoding the actual values of w using a code based on a log prior distribution on the vector w that could motivate the choice of an p -norm as a surrogate for the code length. This leads naturally to consider penalties of the form µF (Supp(w)) + ν w p p and to find appropriate notions of relaxation.

In this paper, we therefore consider combined penalties of the form mentioned above and propose first an appropriate convex relaxation in Section 2; first elementary examples are listed in Section 2.1; the properties of general combinatorial functions preserved by the relaxation are captured by the notion of lower combinatorial envelope introduced in Section 2.2. In Section 2.3, we introduce the upper combinatorial envelope, which provides concise representation of the norm and establishes links with atomic norms. Section 3 relates the obtained norms to the latent group Lasso and to set-cover penalties. In Section 4, we provide first examples of instances of the norms, in particular, by considering what we call overlap count Lasso norms; we relate the proposed norms to overlapped and fast rates based on a restricted eigenvalue condition. Finally, we present some experiments in Section 9.

Notations. When indexing vectors of R d with a set A or B in exponent, x A and x B ∈ R d refer to two a priori unrelated vectors; by contrast, when using A as an index, and given a vector x ∈ R d , x A denotes the vector of R d such that [x A ] i = x i , i ∈ A and [x A ] i = 0, i / ∈ A. If s is a vector in R d , we use the shorthand s(A) := i∈A s i and |s| denotes the vector whose elements are the absolute values |s i | of the elements s i in s. For p ≥ 1, we define q through the relation 1 p + 1 q = 1. The q -norm of a vector w will be noted w q = i w q i 1/q . For a function f : R d → R, we will denote by f * is Fenchel-Legendre conjugate. We will write R + for R + ∪ {+∞}. We will denote by ι x∈S the indicator function of the set S, taking value 0 on the set and +∞ outside. We will write [[k 1 , k 2 ]] to denote the discrete interval {k 1 , . . . , k 2 }.

Penalties and convex relaxations

Let V = {1, . . . , d} and 2 V = {A | A ⊂ V } its power-set. We will consider positive-valued setfunctions of the form F : 2 V → R + such that F (∅) = 0 and F (A) > 0 for all A = ∅. We do not necessarily assume that F is non-decreasing, even if it would a priori be natural for a penalty function of the support. We however assume that the domain of F , defined as D 0 := {A | F (A) < ∞}, covers V , i.e., satisfies ∪ A∈D0 A = V (if F is non-decreasing, this just implies that it should be finite on singletons).

With the motivations of the previous section, and denoting by Supp(w) the set of non-zero coefficients of a vector w, we consider a penalty involving both a combinatorial function F and p -regularization:

pen : w → µ F (Supp(w)) + ν w p p ,

where µ and ν are strictly positive scalar coefficients. Since such non-convex discontinuous penalizations are untractable computationally, we undertake to construct an appropriate convex relaxation.

The most natural convex surrogate for a non-convex function, say A, is arguably its convex envelope (i.e., its tightest convex lower bound) which can be computed as its Fenchel-Legendre bidual A * * . However, one relatively natural requirement for a regularizer is to ask that it be also positively homogeneous (p.h.) since this leads to formulations that are invariant by rescaling of the data. Our goal will therefore be to construct the tightest positively homogeneous convex lower bound of the penalty considered. Now, it is a classical result that, given a function A, its tightest p.h. (but not necessarily convex) lower bound A h is A h (w) = inf λ>0 A(λw) λ

(see Rockafellar, 1970, p.35). This is instrumental here given the following proposition: Proposition 1. Let A : R d → R + be a real valued function, A h defined as above. Then C, the tightest positively homogeneous and convex lower bound of A, is well-defined and C = A * * h .

Proof. The set of convex p.h. lower bounds of A is non-empty (since it contains the constant zero function) and stable by taking pointwise suprema. Therefore it has a unique majorant, which we call C. We have for all w ∈ R d , A * * h (w) C(w) A(w), by definition of C, the fact that A h is an p.h. lower bound on A and that Fenchel bi-conjugation preserves homogeneity. (It can indeed be checked that the conjugate of a homogeneous function h is the indicator of the polar of {w | h(w) ≤ 1}; then, since polar sets are closed convex sets containing the origin, the biconjugate function is the support function of this polar set and must therefore be a gauge; finally gauges are homogeneous (see [START_REF] Rockafellar | Convex Analysis[END_REF], for more details)). We thus have for all λ > 0, A * * h (λw)λ -1 C(λw)λ -1 A(λw)λ -1 , which implies that for all w ∈ R d , A * * h (w) C(w) A h (w). Since C is convex, we must have C = A * * h , hence the desired result.

Using its definition we can easily compute the tightest positively homogeneous lower bound of the penalization of Eq. ( 1), which we denote pen h : pen h (w) = inf λ>0 µ λ F (Supp(w)) + ν λ p-1 w p p .

Setting the gradient of the convex objective to 0, one gets that the minimum is obtained for λ = µq νp 1/p F (Supp(w)) 1/p w -1 p , and that pen h (w) = (qµ) 1/q (pν) 1/p Θ(w),

where we introduced the notation Θ(w) := F (Supp(w)) 1/q w p .

Up to a constant factor depending on the choices of µ and ν, we are therefore led to consider the positively homogeneous penalty Θ we just defined, which combines the two terms multiplicatively.

Consider the norm Ω p (or Ω F p if a reference to F is needed) whose dual norm2 is defined as

Ω * p (s) := max A⊂V,A =∅ s A q F (A) 1/q .
(2)

We have the following result:

Proposition 2 (Convex relaxation). The norm Ω p is the convex envelope of Θ.

Proof. Denote Θ(w) = w p F (Supp(w)) 1/q , and compute its Fenchel conjugate: Θ * (s) = max w A s A -w A p F (A) 1/q by decomposing on subsets of V,

= max A⊂V ι { s A q F (A) 1/q } = ι {Ω * p (s) 1} ,
where ι {s∈S} is the indicator of the set S, that is the function equal to 0 on S and +∞ on S c . The Fenchel bidual of Θ, i.e., its largest (thus tightest) convex lower bound, is therefore exactly Ω p .

Note that the function F is not assumed submodular in the previous result. Since the function Θ depends on w only through |w|, by symmetry, the norm Ω p is also a function of |w|; such norms are often called absolute [START_REF] Stewart | Matrix Perturbation Theory[END_REF]. Given Proposition 1, we have the immediate corollary:

Corollary 1 (Two parts-code relaxation). Let p > 1. The norm w → (qµ) 1/q (pν) 1/p Ω p (w) is the tightest convex positively homogeneous lower bound of the function w → µF (Supp(w)) + ν w p p .

The penalties and relaxation results considered in this section are illustrated on Figure 1. 

Special cases

Case p = 1. In that case, we have q = ∞, and we always have Ω 1 = • 1 , which can be seen from the definition of Θ or from Eq. ( 2). But regularizing with an 1 -norm leads to estimators that can potentially have all possible sparsity patterns and in that sense an 1 -norm cannot encode hard structural constraints on the patterns. Since this means in other words that the 1 -relaxations essentially lose the combinatorial structure of allowed sparsity patterns possibly encoded in F , we focus, from now on, on the case p > 1.

Lasso, group Lasso. Our norm Ω p instantiates as the 1 , p and 1 / p -norms for the simplest functions:

• If F (A) = |A|, then Ω p (w) = w 1 , since Ω * p (s) = max A⊂V s A q |A| 1/q = max A⊂V |s| q (A) |A| 1/q = s ∞ .
It is interesting that the cardinality function is always relaxed to the 1 -norm for all p -relaxations, and that it is not an artifact of the traditional relaxation on an ∞ -ball.

• If F (A) = 1 {A =∅} , then Ω p (w) = w p , since Ω * p (s) = max A⊂V s A q = s q . • If F (A) = g j=1 1 {A∩Gj =∅} , for (G j ) j∈{1,.
..,g} a partition of V , then Ω p (w) = g j=1 w Gj p is the group Lasso or 1 / p -norm [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. This result provides a principled derivation for the form of these norms, which did not exist in the literature. For groups which do not form a partition, this identity does in fact not hold in general for p < ∞, as we discuss in Section 4.1.

Submodular functions and p = ∞. For a submodular function F and in the p = ∞ case, the norm Ω F ∞ that we derived actually coincides with the relaxation proposed by [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF], and as showed in that work, Ω F ∞ (w) = f (|w|), where f is a function associated with F and called the Lovász extension of F . We discuss the case of submodular functions in detail in Section 6.

Lower combinatorial envelope

The fact that, when F is a submodular function, Ω F ∞ is equal to the Lovász extension f on the positive orthant provides a guarantee on the tightness of the relaxation. Indeed f is called an "extension" because ∀A ⊂ 2 V , f (1 A ) = F (A), so that f can be seen to extend the function F to R d (set-functions are naturally defined as functions on the vertices of the hypercube, that is, {0, 1} d , and thus f extends this representation of set-functions).

As a consequence, when

F is submodular, Ω F ∞ (1 A ) = f (1 A ) = F (A)
, which means that the relaxation is tight for all w of the form w = c 1 A , for any scalar constant c ∈ R and any set A ⊂ V . If F is not submodular, this property does not necessarily hold, thereby suggesting that the relaxation could be less tight in general. To characterize to which extend this is true, we introduce a couple of new concepts.

Many of the properties of Ω p , for any p > 1, are captured by the unit ball of Ω * ∞ or its intersection with the positive orthant. In fact, as we will see in the sequel, the ∞ -relaxation plays a particular role, to establish properties of the norm, to construct algorithms and for the statistical analysis, since it it reflects most directly the combinatorial structure of the function F .

We define the canonical polyhedron3 associated with the combinatorial function as the polyhedron P F defined by

P F = s ∈ R d + , ∀A ⊂ V, s(A) ≤ F (A) .
By construction, it is immediate that the unit ball of

Ω * ∞ is {s ∈ R d | |s| ∈ P F }.
From this polyhedron, we construct a new set-function which reflects the features of F that are captured by P F : Definition 2 (Lower combinatorial envelope). Define the lower combinatorial envelope (LCE) of F as the set-function F -defined by:

F -(A) = max s∈P F s(A) = max s∈R d + , ∀B⊂V,s(B) F (B) s(A).
By construction, (a) for any A ⊂ V , F -(A) F (A) and, (b) even when F is not monotonic, F -is always non-decreasing (because P F ⊂ R d + ). One of the key properties of the lower combinatorial envelope is that, as shown in the next lemma, Ω F ∞ is an extension of F -(and not of F in general), in the same way that the Lovász extension is an extension of F when F is submodular.

Lemma 1 (Extension property). For any

A ⊂ V , we have Ω F ∞ (1 A ) = F -(A).
Proof. From the definitions of P F and F -, we get:

Ω F ∞ (1 A ) = max [Ω F ∞ ] * (s)≤1 1 A s = max s∈P F s 1 A = F -(A).
A second important property is that a function F and its LCE F -share the same canonical polyhedron P F .

Lemma 2 (Equality of canonical polyhedra).

P F = P F-. Proof. Since F -≤ F , any s ∈ P F-is such that s(A) ≤ F -(A) ≤ F (A)
for any A so that clearly P F-⊂ P F . Now conversely, for any s ∈ P F , any for any A, we have

s(A) ≤ max s ∈P F s (A) = F -(A), so that s ∈ P F-which implies P F ⊂ P F-. But the sets {w ∈ R d | |w| ∈ P F } and {w ∈ R d | |w| ∈ P F-} are respectively the unit balls of Ω F ∞ and Ω F- ∞ .
As a direct consequence, we have: 

Lemma 3 (Equality of norms). For all p ≥ 1, Ω F p = Ω F- p . F -({1}) F({1}) F({1}) F({1}) F({2}) F({2}) F({2}) F({1,2}) F({1,2}) F({1,2}) F -({1,2})
(B) ≤ F (B), B ∈ 2 V . From left to right: (i) submodular case, that is, D F = 2 V and F -= F = F + ; (ii) D F = {{2}, {1, 2}} and F -({1}) < F ({1}); (iii) D F = {{1}, {2}} corresponding to a weighted 1 -norm.
Lemma 4 (Lower envelope properties). The operator L :

F → F -is order-preserving (i.e., if G ≤ F then G -≤ F -), idempotent (i.e., F --= F -)
, and F -is the unique pointwise smallest combinatorial function among all functions G such that

P F = P G . Proof. To see that L is order preserving, note that if G ≤ F , then P G ⊂ P F so that G -(A) = max s∈P G s(A) ≤ max s∈P F s(A) = F -(A).
Idempotence follows from Lemma 2: indeed, since

P F = P F-, we have F --(A) = max s∈P F -s(A) = max s∈P F s(A) = F -(A)
, which shows the result. Finally, if P F = P G we have G -= F -, in particular F -≤ G. Since F -itself satisfies the property that P F = P F-, this shows that this is indeed the smallest element in that set.

Note that this shows that F -is really a combinatorial counterpart of the convex envelope. Indeed, the operator which maps the function f to its convex envelope is also order-preserving and idempotent, and while the convex envelope of f provides a lower bound of f which is the pointwise infimum of all the functions that are above all the affine functions smaller than f , the LCE is a lower bound of F which is the pointwise infimum of all the function that are greater than all the non-decreasing modular functions smaller than F .

Figure 2 illustrates the fact that F and F -share the same canonical polyhedron and that the value of F -(A) is determined by the values that F takes on other sets. This figure also suggests that some constraints { s(A) ≤ F (A) } can never be active and could therefore be removed. This will be formalized in Section 2.3.

To illustrate the relevance of the concept of lower combinatorial envelope, we compute it for a few examples.

Example 1 (Basic functions). For A → |A|, we have |A| -= |A| because by the extension property

|A| -= Ω |•| ∞ (1 A ) = 1 A 1 = |A|. Likewise, for F : A → 1 {A =∅} , F -(A) = 1 A ∞ = F (A)
and for the combinatorial function associated with the group Lasso and defined by

F (A) := B∈G 1 {A∩B =∅} , with B a partition of V , we have F -(A) = B∈G [1 A ] B ∞ = B∈G [1 A∩B ∞ = F (A).
In fact, since all these functions are submodular we have

Ω F ∞ (w) = f (|w|) for f the Lovász extension of F , which satisfies f (1 A ) = F (A), so that we necessarily have F -(A) = f (1 A ) = F (A).
Example 2 (Range function). Consider, on V = [[1, d ]], the range function F : A → max(A)min(A) + 1 where min(A) (resp. max(A)) is the smallest (resp. largest) element in A. A motivation to consider this function is that it induces the selection of supports that are exactly intervals.

Since the range is always larger than the cardinality we have F (A) ≥ |A| for all A and so since taking LCEs is order-preserving and using that

|A| -= |A| we have F -(A) ≥ |A| -= |A|. On the other hand, F -(A) = max s∈P F s(A) ≤ i∈A s i ≤ |A| because s i ≤ F ({i}) = 1. Combining these inequalities proves that F -(A) = |A|.
As an immediate consequence Ω F p = • 1 which does not tend to favor supports that are intervals. In this case, the structure encoded in the combinatorial function is lost in the relaxation...

To summarize, the LCE of a function F is the combinatorial function that is actually extended by the norm Ω F p . It thus essentially worth considering only combinatorial functions that are equal to their LCE.

Upper combinatorial envelope

Let F be a set-function and P F its canonical polyhedron. In this section, we follow an intuition conveyed by Figure 2 and find a compact representation of F : the polyhedron P F has in many cases a number of faces which much smaller than 2 d . We formalize this in the next lemma. Lemma 5 (Core set). There exists a unique minimal subset

D F of 2 V such that for s ∈ R d + , s ∈ P F ⇔ (∀A ∈ D F , s(A) ≤ F (A)). Proof. If C F is the convex hull of {0} ∪ {F (A) -1 1 A } A⊂V,A =∅ and A F the set of vertices of the polytope C F that are different from 0, then, for s ∈ R d + we have s ∈ P F ⇔ max ∅ =A⊂V s, F (A) -1 1 A ≤ 1 ⇔ max c∈C F s, c ≤ 1 ⇔ max a∈A F s, a ≤ 1 .
But we must have A F ⊂ {F (A) -1 1 A } A⊂V,A =∅ and so there exists a set D F such that A F = {F (A) -1 1 A } A∈D F . This set satisfies the property announced in the lemma and is clearly minimal, because removing a vertex would lead to a convex hull strictly included in C F whose polar would strictly include P F .

We call D F the core set of F . It corresponds to the set of faces of dimension d -1 of P F . Note that the set A F is almost the set of atoms characterizing the norm in the sense of [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]. More precisely, since the norm Ω F ∞ is such that Ω F ∞ (w) = Ω F ∞ (|w|), i.e. the norm is an absolute norm (Bach et al., 2012, p. 27), it follows from the previous result that Ω F ∞ is the atomic norm in the sense of [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF] associated with the collection of atoms

A sym F := a ∈ {-1, 0, 1} d | |a| ∈ A F .
Similarly, it is easy to show that Ω F p is the atomic norm associated with the following set of atoms {u ∈ R d , u p = 1, u A c = 0 for some A ∈ D F }. This is illustrated in Figure 4 and5. This notion motivates the definition of a new set-function: Definition 3 (Upper combinatorial envelope). We call upper combinatorial envelope (UCE) the function F + defined by

F + (A) = F (A) for A ∈ D F and F + (A) = ∞ otherwise.
As the reader might expect at this point, F + provides a compact representation which captures all the information about F that is preserved in the relaxation: Proposition 3 (Equality of canonical polyhedra). F, F -and F + all define the same canonical polyhedron P F-= P F = P F+ and share the same core set

D F . Moreover, ∀A ∈ D F , F -(A) = F (A) = F + (A).
Proof. To show that Ω F+ p = Ω F p we just need to show P F+ = P F . By the definition of F + we have

P F+ = {s ∈ R d | s(A) ≤ F (A), A ∈ D F }
but the previous lemma precisely states that the last set is equal to P F . We now argue that, for all A ∈ D F , F -(A) = F (A) = F + (A). Indeed, the equality F (A) = F + (A) holds by definition, and, for all A ∈ D F , we need to have F (A) = F -(A): by polarity, and with notations of Lemma 5, the fact that P F = P F-entails that C F = C F-, so that F -(A) -1 1 A ∈ C F , and, if we had F -(A) < F (A) then F (A) -1 1 A would be a strict convex combination of the origin and F -(A) -1 1 A , which contradicts the fact that F (A) -1 1 A is an extreme point of C F .

Finally, the term "upper combinatorial envelope" is motivated by the following lemma:

Lemma 6 (Upper envelope property). F + is the pointwise supremum of all the set-functions H such that P H = P F .

Proof. If P F = P H then we must have

C F+ = C H , which is only possible if F (A) -1 1 A ∈ C H for all A;
in particular, for all A ∈ D F , since F (A) -1 1 A is an extreme point of C F+ it must also be an extreme point of C H because of the inclusion C H ⊂ C F+ , so that we must have

H(A) = F (A) = F + (A) for all A ∈ D F . For any set A / ∈ D F , we clearly have H(A) ≤ F + (A) since F + (A) = +∞.
Finally, we proved in 3 that P F+ = P F so that F + is indeed the largest element in the above defined set of functions.

Example 3. (Basic functions)

• For F = | • |, we have (Ω F ∞ ) * = • ∞ so that P F = [0, 1] d . This shows that D F is the set of singletons D F = {1}, . . . , {d} . • For F = 1 {A =∅} , since (Ω F ∞ ) * = • 1 , we have P F = {s ∈ R d + | s(V ) ≤ F (V )} so that the coreset is D F = {V }.
• For the group Lasso with G a partition of V , we have (Ω F ∞ ) * (s) = max B∈G s(B) 1 , so that

P F = {s ∈ R d + | s(B) ≤ F (B), B ∈ G}.
Clearly, given that G is a partition, none of the constraints indexed by G can be removed so that D F = G.

The picture that emerges at this point from the results above is rather simple: any combinatorial function F defines a polyhedron P F whose faces of dimension d -1 are indexed by a set D F ⊂ 2 V that we called the core set. In symbolic notation:

P F = {s ∈ R d | s(A) ≤ F (A), A ∈ D F }.
All the combinatorial functions which are equal to F on D F and which otherwise take values that are larger than its lower combinatorial envelope F -, have the same p tightest positively homogeneous convex relaxation Ω F p for all p > 1, the smallest such function being F -and the largest

F + . Moreover F -(A) = Ω F ∞ (A), so that Ω F ∞ is an extension of F -.
By construction, and even if F is a nondecreasing function, F -is non-decreasing, while F + is obviously not a non-decreasing function, even though its restriction to D F is. It might therefore seem an odd set-function to consider; however if D F is a small set, since Ω F p = Ω F+ p , it provides a potentially much more compact representation of the norm, which we now relate to a norm previously introduced in the literature.

3 Latent group Lasso, block-coding and set-cover penalties

The norm Ω p is actually not a new norm. It was introduced from a different point of view by [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF] (see also [START_REF] Obozinski | Group Lasso with overlaps: the Latent Group Lasso approach[END_REF] as one of the possible generalizations of the group Lasso to the case where groups overlap.

To establish the connection, we now provide a more explicit form for Ω p , which is different from the definition via its dual norm which we have exploited so far.

We consider models that are parameterized by a vector w ∈ R V and associate to them latent variables that are tuples of vectors of R V indexed by the power-set of V . Precisely, with the notation

V = v = (v A ) A⊂V ∈ R V 2 V s.t. Supp(v A ) ⊂ A ,
given a set function F : 2 V → R+ , we define the norms Ω p as (see an illustration in Figure 3): An elementary proof of this result is provided by [START_REF] Obozinski | Group Lasso with overlaps: the Latent Group Lasso approach[END_REF] 4 . We propose a slightly more abstract proof of this result in appendix A using explicitly the fact that Ω p is defined as an infimal convolution.

Ω p (w) = min v∈V A⊂V F (A) 1 q v A p s.t. w = A⊂V v A . (3) w v {1} v {2} v {1,2} v {1,
We will refer to this norm Ω p as the latent group Lasso since it is defined by introducing latent variables v A that are themselves regularized instead of the original model parameters. We refer the reader to [START_REF] Obozinski | Group Lasso with overlaps: the Latent Group Lasso approach[END_REF] for a detailed presentation of this norm, some of its properties and some support recovery results in terms of the support of the latent variables. In [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF] the expansion (3) did not involve all terms of the power-set but only a subcollection of sets G ⊂ 2 V . The notion of core set discussed in Section 2.3 is dual to the notion of redundant set introduced by Obozinski et al. (2011, Sec. 8.1).

The motivation of [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF] was to find a convex regularization which would induce sparsity patterns that are unions of groups in G and explain the estimated vector w as a combination of a small number of latent components, each supported on one group of G. The motivation is very similar in [START_REF] Huang | Learning with structured sparsity[END_REF] who consider an 0 -type penalty they call block coding, where each support is penalized by the minimal sum of the coding complexities of a certain number of elementary sets called "blocks" which cover the support. In both cases the underlying combinatorial penalty is the minimal weighted set cover defined for a set B ⊂ V by:

F (B) = min (δ A ) A⊂V A⊂V F (A) δ A s.t. A⊂V δ A 1 A ≥ 1 B , δ A ∈ {0, 1}, A ⊂ V .
While the norm proposed by [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF] can be viewed as a form of "relaxation" of the cover-set problem, a rigorous link between the 0 and convex formulation is missing. We will make this statement rigorous through a new interpretation of the lower combinatorial envelope of F .

Indeed, assume w.l.o.g. that w ∈ R d + . For x, y ∈ R V , we write x ≥ y if x i ≥ y i for all i ∈ V . Then,

Ω ∞ (w) = min v∈V A⊂V F (A) v A ∞ s.t. A⊂V v A ≥ w = min δ A ∈R+ A⊂V F (A) δ A s.t. A⊂V δ A 1 A ≥ w, since if (v A ) A⊂V is a solution so is (δ A 1 A ) A⊂V with δ A = v A ∞ .
We then have

F -(B) = min (δ A ) A⊂V F (A) δ A , s.t. A⊂V δ A 1 A ≥ 1 B , δ A ∈ [0, 1], A ⊂ V , (4) 
because constraining δ to the unit cube does not change the optimal solution, given that 1 B ≤ 1.

But the optimization problem in ( 4) is exactly the fractional weighted set-cover problem [START_REF] Lovász | On the ratio of optimal integral and fractional covers[END_REF], a classical relaxation of the weighted cover set problem in Eq. ( 4), where δ ∈ {0, 1} is replaced by δ ∈ [0, 1].

Combining Proposition 2 with the fact that F -(A) is the fractional weighted set-cover, now yields:

Theorem 4. Ω p (w) is the tightest convex relaxation of the function w → w p F (Supp(w)) 1/q where F (Supp(w)) is the weighted set-cover of the support of w.

Proof. We have F -(A) ≤ F (A) ≤ F (A) so that, since F -is the lower combinatorial envelope of F , it is also the lower combinatorial envelope of F , and therefore Ω

F- p = Ω F p = Ω F p .
This proves that the norm Ω F p proposed by [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF] is indeed in a rigorous sense a relaxation of the block-coding or set-cover penalty. Example 4. To illustrate the above results consider the block-coding scheme for subsets of V = {1, 2, 3} with blocks consisting only of pairs, i.e., chosen from the collection A := {1, 2}, {2, 3}, {1, 3} with costs all equal to 1. The following table lists the values of F , F -and F :

∅ {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3} F 0 ∞ ∞ ∞ 1 1 1 ∞ F 0 1 1 1 1 1 1 2 F - 0 1 1 1 1 1 1 3/2
Here, F is equal to its UCE (except that F + (∅) = ∞) and takes therefore non trivial values only on the core set D F = A 0 . All non-empty sets except V can be covered by exactly one set, which explains the cases where F -and F take the value one. F (V ) = 2 since V is covered by any pair of blocks and a slight improvement is obtained if fractional covers is allowed since for

δ 1 = δ 2 = δ 3 = 1 2 , we have 1 V = δ 1 1 {2,3} + δ 2 1 {3,1} + δ 3 1 {1,2} and therefore F -(V ) = δ 1 + δ 2 + δ 3 = 3 2 .
The interpretation of the LCE as the value of a minimum fractional weighted set cover suggests a new interpretation of F + (or equivalently of D F ) as defining the smallest set of blocks (D F ) and their costs, that induce a fractional set over problem with the same optimal value.

It is interesting to note that it is [START_REF] Lovász | On the ratio of optimal integral and fractional covers[END_REF] who introduced the concept of optimal fractional weighted set cover, while we just showed that the value of that cover is precisely F -, i.e., the combinatorial function which is the restriction on indicators of sets of the function Ω

F+ ∞ = Ω F- ∞ = f • | • |, where, if F -is submodular, f is its Lovász extension. As an immediate consequence, if F + is submodular, F + = F -is equal itself to its associated fractional weighted set cover.
The interpretation of F -as the value of a minimum fractional weighted cover set problem allows us also to show a result which is dual to the property of LCEs, and which we now present.

(1,1)/F({1,2}) 

(1,0)/F({1}) (0,1)/F({2}) (0,1)/ F({2}) (1,1)/ 2F({1,2}) (1,0)/ F({1})
F (A) = F -(A) = |A| 1/2 (
all possible extreme points); and from left to right on the middle and bottom rows: 

F (A) = |A| (leading to • 1 ), F (A) = F -(A) = min{|A|, 1} (leading to • p ), F (A) = F -(A) = 1 2 1 {A∩{2} =∅} + 1 {A =∅} . F (A) = 1 {A∩{3} =∅} + 1 {A∩{1,2} =∅} Ω2(w) = |w3| + w {1,2} 2 
F (A) = |A| 1/2 all possible extreme points F (A) = 1 {A∩{1,2,3} =∅} +1 {A∩{2,3} =∅} + 1 {A∩{2} =∅}

Largest convex positively homogeneous extension

By symmetry with the characterization of the lower combinatorial envelope as the smallest combinatorial function that has the same tightest convex and positively homogeneous (p.h.) relaxation as a given combinatorial function F , we can, given a convex positively homogeneous function g, define the combinatorial function F : A → g(1 A ), which by construction, is the combinatorial function which g extends (in the sense of Lovász ) to R d + , and ask if there exists a largest convex and p.h. function g + among all such functions. It turns out that this problem is well-posed if the question is restricted to functions that are also coordinate-wise non-decreasing. Perhaps not surprisingly, it is then the case that the largest convex p.h. function extending the same induced combinatorial function is precisely Ω F ∞ , as we show in the next lemma. Lemma 8 (Largest convex positively homogeneous extension). Let g be a convex, p.h. and coordinatewise non-decreasing function defined on R d + . Define F as F : A → g(1 A ) and denote by F -its lower combinatorial envelope. Then

F = F -and ∀w ∈ R d , g(|w|) ≤ Ω F ∞ (w).
Proof. From Equation ( 4), we know that F -can be written as the value of a minimal weighted fractional set-cover.

But if 1 B ≤ A⊂V δ A 1 A , we have A⊂V δ A g(1 A ) ≥ g A⊂V δ A ≥ g(1 B ),
where the first inequality results from the convexity and homogeneity of g, and the second from the assumption that it is coordinate-wise non-decreasing. As a consequence, injecting the above inequality in (4), we have F -(B) ≥ F (B). But since, we always have F -≤ F , this proves the equality.

For the second statement, using the coordinate-wise monotonicity of g and its homogeneity, we have

g(|w|) ≤ w ∞ g(1 Supp(w) ) = w ∞ F (Supp(w)).
Then, taking the convex envelope of functions on both sides of the inequality we get 

g(| • |) * * ≤ • ∞ F (Supp(•)) * * = Ω F ∞ ,

Examples

In this section, we present the main examples of existing and new norms that fall into our framework. For more advanced examples, see Section 7.

Overlap count functions, their relaxations and the 1 / p -norms

A natural family of set functions to consider are the functions that, given a collection of sets G ⊂ 2 V are defined as the (weighted with positive weights d B , B ∈ G) number of these sets that are intersected by the support:

F ∩ (A) = B∈G d B 1 {A∩B =∅} .
(5)

Since A → 1 {A∩B =∅} is clearly submodular and since submodular functions form a positive cone, all these functions are submodular, which implies that Ω F∩ p is a tight relaxation of F ∩ . We call them overlap count functions.

Overlap count functions vs. set-covers. As mentioned in Section 2.1, if G is a partition, the norm Ω F∩ p is the 1 / p -norm; in this special case, F ∩ is actually the value of the minimal (integervalued) weighted set-cover associated with the sets in G and the weights d G .

However, it should be noted that, in general, the values of functions of the form F ∩ are quite different from values of a minimal weighted set-covers. It has rather the flavor of some sort of "maximal weighted set-cover" in the sense that any set that has a non-empty intersection in the support would be included in the cover.

p -relaxations of F ∩ vs. 1 / p -norms. In the case where p = ∞, [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF] showed that even when groups overlap we have Ω F∩ ∞ (w) = B∈G d B w G ∞ , since the Lovász extension of a sum of submodular functions is just the sum of the Lovász extensions of the terms in the sum, and given that on the positive orthant the Lovász extension of

A → d B 1 {A∩B =∅} (which is a submodular function) coincides with w → d B w B ∞ .
The situation is more subtle when p < ∞: in that case, and perhaps surprisingly, Ω F∩ p is not the weighted 1 / p norm with overlap (Jenatton et al., 2011a), also referred to as the overlapping group Lasso (which should clearly be distinguished from the latent group Lasso) and which is the norm defined as Ω p : w → B∈G d B w B p . The differences between the norm Ω F∩ p and Ω p is illustrated in Example 5, Table 1 andFigure 6. The norm Ω F∩ p does not have a simple closed form in general. In terms of sparsity patterns induced however, Ω F∩ p behaves like Ω F∩ ∞ , and as a result the sparsity patterns allowed by Ω F∩ p are the same as those allowed by the corresponding weighted 1 / p norm with overlap. However, the definition of Ω F∩ p as a convex relaxation leads to fewer overpenalization artefacts than the 1 / p -norm with overlap (see Section 9).

p -relaxation of F ∩ vs. latent group Lasso based on G. It should be clear as well that Ω F∩ p is not itself the latent group Lasso associated with the collection G and the weights d G in the sense of [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF]. Indeed, the latter corresponds to the function F ∪ such that F ∪ (A) = d A for A ∈ G and F ∪ (A) = ∞ otherwise, and whose LCE is the value of the minimal fractional weighted set cover by elements in G and with the weights (d G ) G∈G . Clearly, F ∪ is in general strictly smaller than F ∩ and since the relaxation of the latter is tight, it cannot be equal to the relaxation of the former, if the combinatorial functions are themselves different. Obviously, the function Ω F∩ p is still (see Table 1) another latent group Lasso corresponding to a fractional weighted set cover and involving a larger number of sets that the ones in G (possibly all of 2 V ). This last statement leads us to what might appear to be a paradox, which we discuss next.

Example 5. To illustrate the difference between the norms Ω F∪ , Ω F∩ and the weighted 1 / p -norm associated with a given set of groups G with associated weights (d G ) G∈G , consider the case where G = {{1, 2}, {2, 3}} and all weights equal 1. By definition

F ∩ (A) = 1 {A∩{1,2} =∅} + 1 {A∩{2,3} =∅} , F ∪ (A) = F ∪,+ (A) = 1 for A ∈ G and ∞ otherwise, and F ∪,-(A) = min δ,δ δ + δ | 1 A ≤ δ 1 {1,2} + δ 1 {2,3} . We have the table below: ∅ {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3} F ∪ ∞ ∞ ∞ ∞ 1 1 ∞ ∞ F ∪,- 0 1 1 1 1 1 2 2 F ∩ 0 1 2 1 2 2 2 2 F ∩,+ ∞ 1 ∞ 1 ∞ ∞ ∞ 2 
The two set functions F ∪,-and F ∩ are clearly different. In fact, we have 

F ∪ (A) = max(|A ∩ {1, 3}|, |A ∩ {2}|)
F F ∪ (A) F ∩ (A) = f A - Def. min δ∈[0,1] |G| B∈G d B δ B | B∈G 1 B δ B ≥ 1 A f A := B∈G d B 1 {A∩B =∅} - Ω p (w) min v∈V(w,G) B∈G d 1/q B v B p min v∈V(w) B⊂V f 1/q B v B p B∈G d 1/q B w B p Ω * p (s) max B∈G d -1/q B s B q max B⊂V f -1/q B s B q min z∈V(s,G) max B∈G d -1/q B z B q
Table 1: Three norms naturally associated with a set of blocks B ∈ G with associated weights d B either via minimal-set cover, or "overlap count". For the two first norms that are tight relaxations of a combinatorial function the latter is given in the first and second rows. The notation used is

V(w, G) = v ∈ V | w = B∈G v B and V(w) = V(w, 2 V
), with V defined in Section 3. When p = ∞, the norms of the two last columns are equal, with the correspondence between d B and f B given by the definition of f A := F ∩ (A). See appendix B for a proof of the form of the dual norm of the 1 / p -norm with overlap.

of the 1 / 2 -norm with overlap. As can be seen on the figure, the non-trivial supports induced by Ω F∪ 2 are {1, 2}, {2, 3}, while the nontrivial supports induced by the other norms are {3} = {1, 2} c and {1} = {2, 3} c . Supports stable by intersection vs. formed as unions. Jenatton et al. (2011a) have shown that the family of norms they considered induces possible supports which form a family that is stable by intersection, in the sense that the intersection of any two possible support is also a possible support. But since as mentioned above they have the same support as the norms Ω F∩ p , for 1 < p ≤ ∞, which are latent group Lasso norms, and since [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF] have discussed the fact that the supports induced by any norm Ω p are formed by unions of elements of the core set A, this might appear paradoxical that the allowed support can be described at the same time as intersections and as unions. There is in fact no contradiction because in general the set of supports that are induced

Ω F∪ 2 (w) ≤ 1 Ω F∩ 2 (w) ≤ 1 w {1,2} 2 + w {2,3} 2 ≤ 1
Figure 6: Units balls for Ω F∪ 2 , Ω F∩ 2 and 1 / 2 with overlap for the groups G = {{1, 2}{2, 3}} in R 3 .

by the latent group Lasso are in fact not necessarily stable by union: for some set A obtained exactly as a union it is possible to have another set B with A B and

F ( A) = F ( B).
Three different norms. To conclude, we must, given a set of groups G and a collection of weights (d G ) G∈G , distinguish three norms that can be defined from it, the weighted 1 / p -norm with overlap, the norm Ω F∩ p obtained as the p relaxation of the submodular penalty F ∩ , and finally, the norm Ω F∪ p obtained as the relaxation of the set-cover or block-coding penalty with the weights d G . For sets of groups that form a partition, they are all equal, but not in general. Some of the advantages of using a tight relaxation still need to be assessed empirically and theoretically, but the possibility of using p -relaxation for p < ∞ removes the artifacts that were specific to the ∞ case.

Submodular range function

The weighted 1 / p -norm with overlap has been, among others, used to induce interval patterns on chains and rectangular or convex patterns on grids (Jenatton et al., 2011a). In particular, one of the norms considered by Jenatton et al. (2011a) provides a nice example of an overlap count function, which it is worth presenting.

Example 6 (Modified range function). A shown in Example 2 in Section 2.2, the natural range function on a sequence leads to a trivial LCE. Consider now the penalty with the form of Eq. ( 5) with G the set of groups defined as

G = [[1, k]] | 1 ≤ k ≤ p ∪ [[k, p]] | 1 ≤ k ≤ p .
A simple calculation shows that F ∩ (∅) = 0 and that for A = ∅, F ∩ (A) = d -1 + range(A). This function is submodular as a sum of submodular functions, and thus equal to it lower combinatorial envelope, which implies that the relaxation retains the structural a prior encoded by the combinatorial function itself. We will consider the 2 relaxation of this submodular function in the experiments (see Section 9) and compare it with the 1 / 2 -norm with overlap of Jenatton et al. (2011a).

Exclusive Lasso

The exclusive Lasso is a formulation proposed by [START_REF] Zhou | Exclusive lasso for multi-task feature selection[END_REF] which considers the case where a partition G = {G 1 , . . . , G k } of V is given and the sparsity imposed is that w should have at most one non-zero coefficient in each group G j . The regularizer proposed by [START_REF] Zhou | Exclusive lasso for multi-task feature selection[END_REF] is the p / 1 -norm defined5 by w p / 1 = ( G∈G w G p 1 ) 1/p . Is this the tightest relaxation? A natural combinatorial function corresponding to the desired constraint is the function

F (A) defined by F (A) = 1 if max G∈G |A ∩ G| = 1 and F (A) = ∞ otherwise.
To characterize the corresponding Ω p we can compute explicitly its dual norm Ω * p :

Ω * p (w) q = max A⊂V s A q q F (A) = max A⊂V s A q q s.t. |A ∩ G| ≤ 1, G ∈ G = max ij ∈Gj , 1≤j≤k k j=1 |s ij | q = k j=1 max i∈Gj |s i | q = k j=1 s Gj q ∞ ,
which shows that Ω * p is the q / ∞ -norm or equivalently that Ω p is the p / 1 -norm and provides a theoretical justification for the choice of this norm: it is indeed the tightest relaxation! It is interesting to compute the lower combinatorial extension of F which is

F -(A) = Ω F ∞ (1 A ) = 1 A ∞/ 1 = max G∈G |A ∩ G|.
This last function is also a natural combinatorial function to consider; by the previous result F -has the same convex relaxation as F , but it would be however less obvious to show directly that Ω Fp is the p / 1 -norm (see appendix C for a direct proof which uses Lemma 8). It is easy to check that F -is not submodular.

A variational forms of the norm

Several results on Ω p rely on the fact that it can be related variationally to Ω ∞ . Lemma 9 (variational formulation). Ω p admits the two following variational formulations:

Ω p (w) = max κ∈R d + i∈V κ 1/q i |w i | s.t. ∀A ⊂ V, κ(A) ≤ F (A) (6) 
= min

η∈R d + i∈V 1 p |w i | p η p-1 i + 1 q Ω ∞ (η). ( 7 
)
Proof. Using Fenchel duality, we have:

Ω p (w) = max s∈R d s w s.t. Ω * p (w) ≤ 1 = max s∈R d s w s.t. ∀A ⊂ V, s A q q ≤ F (A) by definition of Ω * p , = max s∈R d + s |w| s.t. ∀A ⊂ V, s q (A) ≤ F (A) = max κ∈R d + i∈V κ 1/q i |w i | s.t. ∀A ⊂ V, κ(A) ≤ F (A) by a change of variable.
But it is easy to verify that κ

1/q i |w i | = min ηi∈R+ 1 p |w i | p η p-1 i + 1 q η i κ i with the minimum attained for η i = |wi| κ 1/p i .
We therefore get:

Ω p (w) = max κ∈R d + min η∈R d + i∈V 1 p |w i | p η p-1 i + 1 q η κ s.t. ∀A ⊂ V, κ(A) ≤ F (A) = min η∈R d + max κ∈R d + i∈V 1 p |w i | p η p-1 i + 1 q η κ s.t. ∀A ⊂ V, κ(A) ≤ F (A) = min η∈R d + i∈V 1 p |w i | p η p-1 i + 1 q Ω ∞ (η),
where we could exchange minimization and maximization since the function is convex-concave in η and κ, and where we eliminated formally κ by introducing the value of the dual norm Ω ∞ (η) = max κ∈P F κ η.

Since Ω ∞ is convex, the last formulation is actually jointly convex in (w, η) since (x, z) Boyd and Vandenberghe, 2004, p. 89).

→ 1 p x p p z p-1 + 1 q z is convex, as (x, z) → x p p z p-1 is the perspective function of x → x p p (see
It should be noted that the norms Ω p therefore belong to the broad family of H-norms as defined6 in Bach et al. (2012, Sec. 1.4.2.) and studied by [START_REF] Micchelli | Regularizers for structured sparsity[END_REF].

The above result is particularly interesting if F is submodular since Ω ∞ is then equal to the Lovász extension of F on the positive orthant [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF]. In this case in particular, it is possible, as we will see in the next section to propose efficient algorithms to compute Ω p and Ω * p , the associated proximal operators, and algorithms to solve learning problems regularized with Ω p , thanks to the above variational form.

Using the variational form to compute the proximal operator of the norm. Consider the proximal problem min w∈R d 1 2 w -u 2 2 + λΩ 2 (w). Expressing the norm, with the variational form ( 16) and minimizing with respect to w shows that the solution satisfies

w i = 1 + λ η i -1 u i , with
η the solution of the optimization problem in which w has been eliminated and which after some algebra takes the form min

η∈R d + i∈V u 2 i η i + λ + Ω ∞ (η). (8) 
For submodular functions, these variational forms are also the basis for the local decomposability result of Section 8.1 which is key to establish support recovery in Section 8.2.

The case of submodular penalties

In this section, we focus on the case where the combinatorial function F is submodular.

Specifically, we will consider a function F defined on the power set 2 V of V = {1, . . . , d}, which is nondecreasing and submodular, meaning that it satisfies respectively

∀A, B ⊂ V, A ⊂ B ⇒ F (A) F (B), ∀A, B ⊂ V, F (A) + F (B) F (A ∩ B) + F (A ∪ B).
Moreover, we assume that F (∅) = 0. These set-functions are often referred to as polymatroid setfunctions [START_REF] Edmonds | Submodular functions, matroids, and certain polyhedra[END_REF][START_REF] Fujishige | Submodular Functions and Optimization[END_REF]. Also, without loss of generality, we assume that F is strictly positive on singletons, i.e., for all k ∈ V , F ({k}) > 0. Indeed, if F ({k}) = 0, then by submodularity and monotonicity, if A k, F (A) = F (A\{k}) and thus we can simply consider

V \{k} instead of V .
Classical examples are the cardinality function and, given a partition of

V into G 1 ∪ • • • ∪ G k = V , the set-function A → F (A)
which is equal to the number of groups G 1 , . . . , G k with non empty intersection with A, which, as mentioned in Section 2.1 leads to the grouped 1 / p -norm.

With a slightly different perspective than the approach of this paper, [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF] studied the special case of the norm Ω F p when p = ∞ and F is submodular. As mentioned previously, he showed that in that case the norm Ω F ∞ is the Lovász extension of the submodular function F , which is a well studied mathematical object.

Before presenting results on p -relaxations of submodular penalties, we review a certain number of relevant properties and concepts from submodular analysis. For more details, see, e.g., [START_REF] Fujishige | Submodular Functions and Optimization[END_REF], and, for a review with proofs derived from classical convex analysis, see [START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF].

Review of submodular function theory

Lovász extension. Given any set-function F , one can define its Lovász extension f : R d + → R, as follows: given w ∈ R d + , we can order the components of w in decreasing order w j1 • • • w jp 0, the value f (w) is then defined as

f (w) = p-1 k=1 (x j k -x j k+1 )F ({j 1 , . . . , j k }) + x jp F ({j 1 , . . . , j p }) (9) = p k=1 w j k [F ({j 1 , . . . , j k }) -F ({j 1 , . . . , j k-1 })]. (10) 
We will refer to this formula as the Choquet integral form of the function. The Lovász extension f is always piecewise-linear, and when F is submodular, it is also convex-see, e.g., [START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF]; [START_REF] Fujishige | Submodular Functions and Optimization[END_REF]. Moreover, for all δ ∈ {0, 1} d , f (δ) = F (Supp(δ)) and f is in that sense an extension of F from vectors in {0, 1} d (which can be identified with indicator vectors of sets) to all vectors in R d + . Moreover, it turns out that minimizing F over subsets, i.e., minimizing f over {0, 1} d is equivalent to minimizing f over [0, 1] d [START_REF] Edmonds | Submodular functions, matroids, and certain polyhedra[END_REF].

Canonical polyhedron and norm. For consistency with notations, we denote by P F the canonical polyhedron which we define as the set of s ∈ R d + such that for all A ⊂ V , s(A) F (A), i.e.,

P F = {s ∈ R d + , ∀A ⊂ V, s(A) F (A)}
, where we use the notation s(A) = k∈A s k . The submodular polyhedron P F = {s ∈ R d , ∀A ⊂ V, s(A) F (A)}, is a classical polyhedron considered in submodular theory [START_REF] Fujishige | Submodular Functions and Optimization[END_REF]. Our canonical polyhedron is thus P F = P F ∩ R d + , which is also called the positive submodular polyhedron. One important result in submodular analysis is that, if F is a nondecreasing submodular function, then we have a representation of f as a maximum of linear functions [START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF][START_REF] Fujishige | Submodular Functions and Optimization[END_REF]. In particular, for all w ∈ R d + ,

f (w) = max s∈P F w s. ( 11 
)
We recognize here that the Lovász extension of a submodular function

F is directly related to the norm Ω F ∞ in that f (|w|) = Ω F ∞ (w) for all w ∈ R d .
A striking consequence of submodularity is that the extension f can be computed in closed form (via the Choquet integral).

Greedy algorithm. Instead of solving a linear program with d + 2 d constraints, a solution s to (11) may be obtained by the following algorithm (a.k.a. "greedy algorithm"): order the components of w in decreasing order w j1

• • • w j d , and then take for all k ∈ V , s j k = F ({j 1 , . . . , j k }) -F ({j 1 , . . . , j k-1 }). Moreover, if w ∈ R d has some negative components, then, to obtain a solution to max s∈P w s, we can take s j k to be simply equal to zero for all k such that w j k is negative [START_REF] Edmonds | Submodular functions, matroids, and certain polyhedra[END_REF].

Contraction and restriction of a submodular function. Given a submodular function F and a set J, two related functions, which are submodular as well, will play a crucial role both algorithmically and for the theoretical analysis of the norm. Those are the restriction of F to a set J, denoted F J , and the contraction of F on J, denoted F J . They are defined respectively as

F J : A → F (A ∩ J)
and

F J : A → F (A ∪ J) -F (A).
Both F J and F J are submodular if F is.

In particular the norms Ω F J p : R J → R + and Ω F J p : R J c → R + associated respectively with F J and F J will be useful to "decompose" Ω F p in the sequel. We will denote these two norms by Ω J and Ω J for short. Note that their domains are not R d but the vectors with support in J and J c respectively.

Stable sets. Another concept which will be key in this section is that of stable set. A set A is said stable if it cannot be augmented without increasing F , i.e., if for all sets B ⊃ A, B = A ⇒ F (B) > F (A). If F is strictly increasing (such as for the cardinality), then all sets are stable. The set of stable sets is closed by intersection. In the case p = ∞, Bach (2013) has shown that these stable sets were the only allowed sparsity patterns. [START_REF] Edmonds | Submodular functions, matroids, and certain polyhedra[END_REF], the submodular polytope P F has full dimension d as soon as F is strictly positive on all singletons, and its faces are exactly the sets {s(A) = F (A)} for stable and inseparable sets A. With the terminology that we introduced in Section 2.3, this means that the core set D F of F is here exactly the set of its stable and inseparable sets. The core set will clearly play a role when deriving concentration inequalities in Section 8.2. For the cardinality function, stable and inseparable sets are singletons.

Separable sets. A set A is separable if we can find a partition of

A into A = B 1 ∪ • • • ∪ B k such that F (A) = F (B 1 )+• • •+F (B k ). A set A is inseparable if it is not separable. As shown by

Submodular function and lower combinatorial envelope

A few comments are in order to confront submodularity to the previously introduced notions associated with cover-sets, and lower and upper combinatorial envelopes. We have showed that

F -(A) = Ω ∞ (1 A ). But for a submodular function Ω ∞ (1 A ) = f (1 A ) = F (A)
since f is the Lovász extension of F . This shows that a submodular function is its own lower combinatorial envelope. However the converse is not true: a lower combinatorial envelope is not submodular in general. E.g., in Example 4, we have

F -({1, 2}) + F -({2, 3}) F -({2}) + F -({1, 2, 3}).
The core set of a submodular function is the set D F of its stable and inseparable sets, which implies that F can be retrieved as the value of the minimal fractional weighted set cover the sets A ∈ D F with weights F (A).

Optimization algorithms for the submodular case

In the context of sparsity and structured sparsity, proximal methods have emerged as methods of choice to design efficient algorithm to minimize objectives of the form f (w) + λΩ p (w), where f is a smooth function with Lipschitz gradients and Ω p is a proper convex function [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF]. In a nutshell, their principle is to linearize f at each iteration and to solve the problem min

w∈R d ∇f (w t ) (w -w t ) + L 2 w -w t 2 + λΩ p (w),
for some constant L. Setting λ = λ L This problem is a special case of the so-called proximal problem:

min w∈R d 1 2 w -z 2 2 + λ Ω p (w). ( 12 
)
The function mapping z to the solution of the above problem is called proximal operator. If this proximal operator can be computed efficiently, then proximal algorithm provide good rates of convergence especially for strongly convex objectives. We show in this section that the structure of submodular functions can be leveraged to compute efficiently Ω p , Ω * p and the proximal operator.

Computation of Ω p and Ω * p .

A simple approach to compute the norm is to maximize in κ in the variational formulation (8). This can be done efficiently using for example a conditional gradient algorithm, given that maximizing a linear form over the submodular polyhedron is done easily with the greedy algorithm (see Section 6.1).

We will propose another algorithm to compute the norm based on the so-called decomposition algorithm, which is a classical algorithm of the submodular analysis literature that makes it possible to minimize a separable convex function over the submodular polytope efficiently (see, e.g., Bach, 2013, Section 8.6).

As we show in the following proposition, we can also compute Ω * p (s) using Algorithm 1.

Algorithm 1 Dual norm computation algorithm 1: Initialization: λ 0 = 0, t = 0 2: while ϕ(λ t ) = 0 do 3:

S t ← Argmax A⊂V s A q q -λ t F (A) 4: A t ← argmin A∈St F (A) 5: λ t+1 ← s A q q F (A)
6:

t ← t + 1 7: end while 8: return λ t Proposition 4. The sequence (λ t ) t generated by Algorithm 1 is monotonically increasing and converges in a finite number of iterations to Ω * p .

Proof. As the maximum of a finite number non-increasing linear functions of a scalar argument, the function ϕ : λ → max A⊂V s A q q -λF (A) is a non-increasing, continuous, piecewise linear convex function. It is also non negative because s ∅

p p = 0 = F (∅). It is immediate to check that λ * := min{λ | ϕ(λ) = 0} = max ∅⊂A⊂V s A q q
F (A) . At each iteration, if ϕ(λ t ) = 0, we must have λ t+1 > λ t , because the function λ → s At q q -λF (A t ) is strictly positive for λ = λ t and equal to 0 for λ = λ t+1 . Moreover by construction, the sets A t are all distinct, as long as ϕ(λ t ) = 0. As a consequence we must reach ϕ(λ T ) = 0 after a finite number of iterations T . At the end of the algorithm, ϕ(λ T ) = 0 entails that ∀A ⊂ V, s A p p ≤ λ T F (A), which entails that for all

A = ∅, F (A) -1 s A p p ≤ λ T = F (A T -1 ) -1 s A T -1 p p .
This shows that λ T = Ω * (s). This concludes the proof. The choice of taking the maximizer with smallest value of F (A) on line 4 of the algorithm is not key to ensure convergence of the algorithm, but aims at (a) computing the right-derivative which maximizes the step size in λ, and simultaneously (b) obtaining a maximizing set as sparse as possible.

Note that this algorithm is closely related to the algorithm of [START_REF] Dinkelbach | On nonlinear fractional programming[END_REF] to maximize a ratio of functions, and in fact applies to all functions F ; but step 3 in the algorithm requires to minimize a function (A → λF (A) -s A p p ) which can be done in polynomial time for submodular functions. Moreover, for submodular functions, the number of iterations may be bounded by d, because the algorithm may be reinterpreted as the divide-and-conquer algorithm for a certain separable function (see Bach, 2013, p. 160); for the general case, it may only be bounded in general by 2 d .

Computation of the proximal operator. Using Eq. ( 8), we can reformulate problem (12) as min

w∈R d 1 2 w -z 2 2 + λΩ p (w) = min w∈R d max κ∈R d + ∩P 1 2 w -z 2 2 + λ i∈V κ 1/q i |w i | = max κ∈R d + ∩P i∈V min wi∈R 1 2 (w i -z i ) 2 + λκ 1/q i |w i | = max κ∈R d + ∩P i∈V ψ i (κ i ), with ψ i : κ i → min wi∈R 1 2 (w i -z i ) 2 + λκ 1/q i |w i | .
Thus, solving the proximal problem is equivalent to maximizing a concave separable function i ψ i (κ i ) over the submodular polytope. For a submodular function, this can be solved as well using the divide-and-conquer algorithm. More precisely, this algorithm also called decomposition algorithm involves a sequence of submodular function minimizations (see [START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF][START_REF] Groenevelt | Two algorithms for maximizing a separable concave function over a polymatroid feasible region[END_REF]. This yields an algorithm which finds a decomposition of the norm and applies recursively the proximal algorithm to the two parts of the decomposition corresponding respectively to a restriction and a contraction of the submodular function. We explicit this algorithm as Algorithm 2 for the case p = 2.

Algorithm 2 Computation x = Prox λΩ F 2 (z) Require: z ∈ R d , λ > 0 1: Let A = {j | z j = 0} 2: if A = V then 3: Set x A = Prox λΩ F A 2 (z A ) 4: Set x A c = 0 5: return x by concatenating x A and x A c 6: end if 7: Let t ∈ R d with κ i = z 2 i z 2 2 F (V ) 8: Find A minimizing the submodular function F -t 9: if A = V then 10: return x = z 2 -λ F (V ) + z z 2 11: end if 12: Let x A = Prox λΩ F A 2 (z A ) 13: Let x A c = Prox λΩ F A 2 (z A c ) 14: return x by concatenating x A and x A c
The derivation of this algorithm and the general form of the algorithm for the p -case can be found in appendix F.1. It is possible to construct a similar decomposition algorithm, namely Algorithm 5 in appendix F.2, to compute the norm itself. 

1 {A =∅} ∨ |A| k k-support norm (p = 2) concave f. of cardinality h(|A|), h concave OWL (p = ∞) λ 1 |A| + λ 2 d k -d-|A| k OSCAR (p = ∞, k = 2) |A| i=1 Φ -1 1 -qi 2d SLOPE (p = ∞) chain length h(max(A)) wedge penalty tree leaf volume i∈T B f i graphical hull volume i∈A B d i
Table 2: Combinatorial functions and the corresponding norms. All the norms in this table are instances of the family of norms we study in this paper. See section 4.3 for the Exclusive lasso, section 7.3 for functions of the cardinality, and the current section for tree and graph penalties.

More examples

Having presented some elements of the theory of submodular functions and presented some general results, we are in position to develop more sophisticated examples, namely combinatorial functions inducing hierarchical sparsity patterns and leading to norms such as the wedge penalty considered by [START_REF] Micchelli | Regularizers for structured sparsity[END_REF] (see also [START_REF] Yan | Hierarchical sparse modeling: A choice of two regularizers[END_REF], the ∞ -version of the tree-structured norm considered by [START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF]; Zhao et al. (2009a) as well as tighter relaxations for the p -case, and more general functions of the cardinality which lead to the k-support norm of [START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF], the dual of the vector Ky-Fan k-norm, and the OWL penalties of [START_REF] Figueiredo | Sparse estimation with strongly correlated variables using ordered weighted 1 regularization[END_REF] with as particular cases the OSCAR penalty [START_REF] Bondell | Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR[END_REF] and the SLOPE penalty [START_REF] Bogdan | SLOPE: adaptive variable selection via convex optimization[END_REF], but also in each case to a number of new norms with algorithms to compute them as well as the corresponding proximal operators.

Overlap count Lasso

Mairal et al. ( 2011) studied regularization with overlapped group 1 / ∞ -norms; they showed in particular that the proximal problem could be solved efficiently by reformulating it as a quadratic mincost flow problem and using an efficient divide-and-conquer algorithm proposed by [START_REF] Hochbaum | About strongly polynomial time algorithms for quadratic optimization over submodular constraints[END_REF] and [START_REF] Gallo | A fast parametric maximum flow algorithm and applications[END_REF]. We provide an interpretation of this result in the light of the theory developed in this paper. As discussion in Section 4.1, the function F ∩ (A) = B∈G d B 1 {A∩B =∅} is submodular as a positive combination of simple submodular functions. For any [START_REF] Mairal | Convex and network flow optimization for structured sparsity[END_REF]. However, for p < ∞, Ω F∩ p (w) = B∈G d B w B p . To work with a given submodular function it is key to be able to solve min A λF (A) -s(A) for s ∈ R d + , but this problem is equivalent to solving min w∈[0,1] d λf (w) -s, w . Yet, λf (w) = max κ: Ω * ∞ (κ)≤λ κ, w so that by duality the initial submodular minimization is equivalent to

v ∈ R d + , its Lovász extension satisfies f (v) = B∈G d B max j∈B v j . The corresponding norm Ω F∩ ∞ is thus equal to the overlapped 1 / ∞ -norm Ω F∩ ∞ (w) = B∈G d B w B ∞ studied by
max κ∈R d - d i=1 (s i -κ i ) + s.t. Ω * ∞ (κ) ≤ λ, with Ω * ∞ (κ) = inf ξ max B∈G d -1 B ξ (B) 1 | κ = B∈G ξ (B) , ∀B ∈ G, ξ (B) B c = 0 .
Since s ≥ 0, we can let κ, ξ ≥ 0, and we can rewrite the previous problem as

max 0≤κ≤s d i=1 κ i -s(V ) s.t. ∀i, κ i = B i ξ (B) i
, and ∀B ∈ G,

j∈B ξ (B) j ≤ d B λ.
This last problem can be interpreted as a max-flow problem with the following structure: Let σ and τ be respectively a source and a sink, and consider the directed graph with nodes {σ, τ } ∪ [[1, d ]] ∪ G and with the following set of edges

     ∀B ∈ G, (σ, B) with capacity d B λ ∀B ∈ G, i ∈ B, (B, i) with unlimited capacity ∀i ∈ [[1, d ]],
(i, τ ) with capacity s i .

Then ξ (B) i

and κ i are respectively interpreted as the flows on the edges (B, i) and (i, τ ), and the previous optimization problem is equivalent to the maximization of the flow between σ and τ . [START_REF] Mairal | Convex and network flow optimization for structured sparsity[END_REF] write the counterpart of this formulation for the proximal problem of Ω F∩ ∞ which involves the same graph, but with additional variables u i related to the quadratic term. By reformulating directly the submodular minimization as a max-flow problem, we can extend the results for p = ∞ to p < ∞ and compute efficiently all norms Ω F∩ p (with Algorithm 5) and their proximal operators (with e.g. Algorithm 2 for p = 2 and Algorithm 4 for general p). If some groups are nested the max-flow formulation can be simplified to some extent: see [START_REF] Mairal | Convex and network flow optimization for structured sparsity[END_REF] for more details. It is interesting to note that other submodular functions such as cut functions that lead to extensions that are variant of the total variation can take advantage of the same divide-and-conquer algorithm with other max-flow formulations [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum flows[END_REF][START_REF] Luss | Generalized isotonic regression[END_REF].

Hierarchical sparsity

In a number of applications, the variables or group of variables are naturally organized on a chain, a tree or more generally a directed acyclic graph G = (V, E), in a hierarchical fashion. Obtaining sparsity patterns that satisfy hierarchical relations is however not easy and has been the focus of a number of papers [START_REF] Bien | A lasso for hierarchical interactions[END_REF][START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF][START_REF] Mairal | Convex and network flow optimization for structured sparsity[END_REF][START_REF] Yan | Hierarchical sparse modeling: A choice of two regularizers[END_REF][START_REF] Yuan | Structured variable selection and estimation[END_REF]Zhao et al., 2009a).

With the usual terminology of graph theory, the variable associated to node i has therefore a set of descendants D i (the set of nodes j such that there exists a directed path from i to j, including by convention the node i itself) and ascendants A i (the set of nodes j such that i ∈ D j ). As usual, the set of immediate descendants is called the set of children and denoted C i and the set of immediate ancestors is called the set of parents and denoted Π i . For trees, π i will denote the only parent of a node i which is not the root. We will call the hull of B the set A B of ancestors of B, that is the set A B := ∪ i∈B A i . We will call set of terminal nodes of B the set T B of nodes of B that do not have any descendant in B (except themselves).

In this type of setting, functions of the form F ∩ and F ∪ are naturally associated to the graph by choosing G to be either the collection of ancestor sets G = {A i } i∈V or the collection of descendant sets G = {D i } i∈V . Indeed, given non-negative weights d i and f i , it is natural to define the counting function

F ∩ (B) := i∈V d i 1 {B∩Di =∅} = i∈A B d i , (13) 
and the function defined as the weighted set-cover by the ancestor sets

(A i ) i∈V F ∪ (B) := inf I⊂V i∈I f i | B ⊂ i∈I A i . (14) 
Obviously, the role of the descendant sets and the ascendant sets in both functions can be exchanged by considering the graph with flipped edges. Note that without loss of generality the weights f i can be assumed non-decreasing w.r.t. to the graph (i.e., such that (j ∈ D i ) ⇒ (f i ≤ f j ) since they can be modified to satisfy this property without changing the function F ∪ : to see this, note that F ∪ is a weighted min-cover, and that j ∈ D i is equivalent to

A i ⊂ A j , therefore if f i > f j , F (A i ) > F -(A i )
and so A i will never enter the cover; therefore, decreasing the value of f i to f j does not change anything (A i is still never selected). Given this argument, using the weights f - i := min j∈Di f j yields the same function F ∪ . In fact,

f - i = F ∪,-(A i ). If d i = 1 for all i, F ∩ reduces to B → |A B |, the size of the hull of B.

Special cases and comparison between F ∩ and F ∪ .

To illustrate the relevance of combinatorial function and norms defined on a graph, we consider the special case when the graph is either a chain or a tree.

Case of the chain. In a chain on p nodes, oriented from left to right, we have

D i = [[i, p]], A B = [[1, max(B)]] and T B = {max(B)}.

So that

F ∩ (B) = max(B) i=1 d i and F ∪ (B) = f max(B) .
These two functions are thus equal if and only if,

for i ∈ [[1, p]], d i = f i -f i-1 with f 0 = F (∅) = 0.
The counting and set-cover functions thus define here the same family of combinatorial functions.

In the 2 -case the variational form of the norm Ω 2 (w) = min

η∈R d + 1 2 n i=1 w 2 i η i + η i d i s.t. ∀i > 1, η i ≤ η i-1
shows that this norm is the wedge penalty considered by [START_REF] Micchelli | Regularizers for structured sparsity[END_REF]. We will show in Corollaries 5 and 6 that this norm and its proximal operators can be computed very efficiently, in fact in linear time, using the PAV algorithm [START_REF] Best | Active set algorithms for isotonic regression; a unifying framework[END_REF]. [START_REF] Yan | Hierarchical sparse modeling: A choice of two regularizers[END_REF] compared the norms Ω F∪ 2 with the norms Ω 2 of Jenatton et al. (2011b) (see Sec. 4 and the next paragraph on trees) and concluded that, even in the chain case these norms are different, and that the norm Ω 2 over-penalizes elements at the ends of the chain; in the light of our work, this is not surprising since the norm Ω p do not provide a tight relaxation of F ∪ as opposed to Ω F∩ 2 .

Case of a tree. In the case of a tree, we first show that the two families of functions are not equivalent. Indeed, consider the tree consisting of a root 1 with two children 2 and 3. F ∩ and F ∪ are defined respectively as weighted intersection counts with descendants set D i and by minimum weight set-cover by collections of ancestor sets A i , with weights associated to sets and resulting values reported in Figure 7 below. For the two functions to be equal, we would need to have d 1 = f 1 = 0. This shows that the families of functions are in general distinct for trees. Furthermore, we can only have the inequality

set weight D 1 = {1, 2, 3} d 1 F ∩ D 2 = {2} d 2 D 3 = {3} d 2 set weight A 1 = {1} f 1 F ∪ A 2 = {1, 2} f 2 A 3 = {1, 3} f 2 ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} F ∩ 0 d 1 d 1 + d 2 d 1 + d 2 d 1 + d 2 d 1 + d 2 d 1 +2d 2 d 1 +2d 2 F ∪ 0 f 1 f 2 f 2 f 2 f 2 2f 2 2f 2
F ∪ ({1, 2}) + F ∪ ({1, 3}) = 2f 2 ≥ f 1 + 2f 2 = F ∪ ({1}) + F ∪ ({1, 2, 3}) if f 1 = 0 which shows that F ∪ is not submodular 7 .
For the function F ∩ , we have

Ω F∩ ∞ (w) = i∈V d i w Di ∞ .
Clearly, this norm is an instance of the weighted 1 / p -norms of the form

Ω p (w) = i∈V d i w Di p , p ∈ {2, ∞},
that were considered by [START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF]. It should be noted however that Ω F∩ p = Ω p for any p ∈ (1, ∞), with Ω F∩ p having no simple established closed form; the only value of p for which the two norm coincide is p = ∞. Note that for p = ∞ and p = 2, the proximal operator for Ω p can be computed efficiently in closed form, as a composition of proximal operators for groups of descendants starting from the leaves [START_REF] Jenatton | Proximal methods for sparse hierarchical dictionary learning[END_REF].

For F ∪ , if the f i are assumed non decreasing w.r.t. to the tree (i.e. such that ∀i ∈ V, f πi ≤ f i ), then if we call T B the set of terminal nodes (or leaves) of the tree induced on a set B of nodes, that is, the subset of nodes i of B such that

D i ∩ B = {i}, then we have F ∪ (B) = i∈T B f i . In particular, if f i = 1 for all i, then F ∪ (B) = |T B |.
Note however that in that last case, the only possible supports are unions of paths from the root to a leaf of the tree: in order to obtain a penalty that allows as possible sparsity patterns all rooted subtrees it is necessary to impose that i → f i is strictly increasing along the graph.

Computations of norms and proximal operators for the hierarchical F ∩

The following lemma shows that the norms Ω ∞ can be computed in linear time and the norms Ω p and Prox Ω2 can be computed by solving a general isotonic regression problem on the graph (V, E).

7 except in very degenerate cases.

Lemma 10 (Computation of Ω p , Ω * p and Prox Ω2 for F ∩ ). For the function F : B → i∈A B d i , with A B the set of ancestors of B:

1. When p = ∞, we have Ω ∞ (w) = i∈V d i w Di ∞ so that Ω ∞ (w) is computed recursively (in
reverse topological order on the graph) in linear time.

2. For any 1 < p ≤ ∞, we have Ω * p (s) = max B⊂V F (A B ) -1/q s A B q . The norm Ω * p can be computed using Algorithm 1 via a sequence of minimization of functions of the form

A → λF (A) -s A q q . 3. When 1 < p < ∞, Ω p (w) = min η∈R d + 1 p w p i η p-1 i + 1 q n i=1 d i η i s.t. ∀(i, j) ∈ E, η i ≥ η j .

The proximal operator Prox

Ω2 satisfies [Prox Ω2 (u)] i = 1 + λ η i -1 u i where η is the solution of min η∈R d + i∈V u 2 i η i + λ + d i η i s.t. ∀(i, j) ∈ E, η i ≥ η j . (15) 
Proof.

1. The form of Ω ∞ follows from the fact that F is a counting function.

2. The form of the dual norm stems from the fact that the core set D F consists of the sets that are hulls. We discuss in section 7.2.4 that, for a tree, the minimization of

A → λF (A) -s(A) for s ∈ R n + can be done in O(n).
For a more general DAG, the general max-flow formulation of Section 7.1 can be used, but unfortunately the DAG structure cannot a priori be easily leveraged to obtain a formulation scaling linearly with the number of nodes or edges.

We have for

η ∈ R d + , Ω ∞ (η) = d i=1 d i max j∈Di η j .
As a consequence, using the variational formula (6) we have Ω p (w) = min

η∈R d + 1 p w p i η p-1 i + 1 q n i=1 d i max j∈Di η j = min η∈R d + 1 p w p i η p-1 i + 1 q n i=1 d i η i s.t. ∀(i, j) ∈ E, η i ≥ η j , (16) 
where the second equality stems from the fact that η i → w 2 i ηi is non-increasing so that at the optimum, we should have η i = max j∈Di η j and thus η i ≥ η j for all j ∈ D i .

4. The proof for the proximal problem when p = 2 uses the same argument by rewriting (8).

Since Eq. ( 15) is the minimization of the separable convex function subject to isotonic constraints, it can be solved using the divide-and-conquer algorithm for minimizing i∈V

u 2 i ηi+λ + d i η i + h(η),
for h(η) the Lovász extension h(η) = M (i,j)∈E (η j -η i ) + of a cut funtion, and for M sufficiently large (Bach, 2013, Section 9.1); see also [START_REF] Luss | Generalized isotonic regression[END_REF].

Note that the variational formulations show clearly that the sparsity pattern obtained have a hierarchical structure. Indeed, the inequality constraint η i ≥ η j for (i, j) ∈ E enforces that if η i = 0 then η j = 0 for all j ∈ D i , and since (η j = 0) ⇒ (w j = 0) this entails as well that w Di = 0. Note however, that the norm does not impose the type of constraint |w i | ≥ |w j | introduced in some of the previous literature [START_REF] Bien | A lasso for hierarchical interactions[END_REF][START_REF] Yuan | Structured variable selection and estimation[END_REF] which imposed that the estimated coefficient where decreasing in magnitude.

Computations of norms and proximal operators for the chain case

In this section, we show that in the chain case (considered in [START_REF] Micchelli | Regularizers for structured sparsity[END_REF] and [START_REF] Yan | Hierarchical sparse modeling: A choice of two regularizers[END_REF]) the optimization problems from Lemma 10 defining respectively Ω p and the proximal operator for Ω 2 can be both solved as a general isotonic regression problem with a total order. Consider the following form of the classical isotonic regression with a total order min

x∈R d 1 2 d i=1 ω i (x i -y i ) 2 s.t. x 1 ≤ . . . ≤ x d ≤ b, (IRC(ω, y, b))
where ω i > 0 for all i ∈ V = {1, . . . , d} and b ∈ R. Note that the objective being strongly convex, the problem has a unique solution. This optimization problem is known to be solved efficiently by the pooled adjacent violators (PAV) algorithm [START_REF] Best | Active set algorithms for isotonic regression; a unifying framework[END_REF].

Following [START_REF] Barlow | The isotonic regression problem and its dual[END_REF], we show that a form of generalized isotonic regression problem with total order can be reduced to solving a classical isotonic regression, and thus benefits also from the efficiency of that algorithm.

Lemma 11. For c ∈ R d + , z ∈ R d + with z 1 > 0 and ψ a nonnegative differentiable, decreasing and strictly convex function, consider the optimization problem:

min η∈R d d i=1 c i ψ(η i ) + z i η i s.t. b ≤ η d ≤ . . . ≤ η 1 . (GIRC(c, z, b )) If ∀i, c i = 0, then if x * is the solution of IRC(ω, y, b) with ω i = c i , y i = zi ci and b = -lim η→b ψ (η), then the vector η * with components η * i = (ψ ) -1 (-x * i ) is the unique solution to GIRC(c, z, b ).
If for some indices i, c i = 0, the problem reduces to the previous one after clustering or removing some of the variables η i .

A more detailed version of this lemma and a proof are provided in appendix F.4.

Corollary 5. For a chain, problem (16) can be solved by applying Lemma 11 with

ψ(η) = q p η 1-p , b = 0, c i = w p i , z i = d i , so that b = +∞ and ∀i ∈ I, ω i = w p i , ȳi = zi w -p i and η * i = x * i -1/p
, where x * is the solution of IRC(ω, ȳ, +∞).

Corollary 6. For a chain, problem (15) can be solved by applying Lemma 11 with

ψ(η) = (η + λ) -1 , b = 0, c i = u 2 i , z i = d i , so that b = λ -2 and ∀i ∈ I, ω i = u 2 i , ȳi = zi u -2 i and η * i = x * i -1/2 -λ, where x * is the solution of IRC(ω, ȳ, λ -2 ).
As a consequence, for chains, problems ( 15) and ( 16) can be solved efficiently using the PAV algorithm. [START_REF] Yan | Hierarchical sparse modeling: A choice of two regularizers[END_REF] propose an algorithm to compute the proximal operator in the chain case, but its complexity is quadratic in the length of the chain, while PAV is linear.

Computations for F ∩ on a tree

If the graph is a tree and if the nodes are indexed in topological order, [START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF] showed that, for p ∈ {2, ∞}, the proximal operator of the norm Ω p : z → n i=1 d i z Di p is computed as

Prox Ωp = Prox (1) p • . . . • Prox (n) p with Prox (i) p (z) = arg min x 1 2 x -z 2 2 + λd i x Di p .
Since Ω F∩ ∞ = Ω ∞ , this provides an efficient algorithm to compute the proximal operator in that case. [START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF] show (see their Lemma 7) that when p = ∞ this algorithm can be implemented with a complexity of O(hn), where h is the h is the height of the tree. This suggests that its complexity is similar to that of the divide-and-conquer algorithm (which is however likely to be more efficient for tall thin trees).

In the case p < ∞ and in particular when p = 2, Ω F∩ p = Ω p , whether it is possible to compute the norm or the proximal operator with similar dynamic programs remains open. Nevertheless, for a tree, the divide-and-conquer algorithms to compute the norm and the proximal operator (Alg. 2) are efficient, because the submodular function of the form A → λF (A) -s(A) for s ∈ R n + can be minimized in linear time. The minimizer has to be a stable set, thus here a rooted subtree, and the optimal one is computed by Algorithm 3 (see Appendix F.3 for a proof). Moreover the restriction F A and the contraction F A are both themselves of the same form F ∩ for a tree/forest graph: F A is of the same form on the tree induced by the restriction on A and F A is of the same form on the forest induced on the complement of A.

Whether it is possible to leverage efficient algorithms for isotonic regression that have been proposed for trees [START_REF] Pardalos | Algorithms for a class of isotonic regression problems[END_REF] or under other assumptions [START_REF] Stout | Isotonic regression via partitioning[END_REF] to solve problems ( 16) and ( 15) with more efficient algorithms for more general graphs is left open.

Algorithm 3 Minimizing λF (A) -s(A) for s ∈ R n + 1: Require: Nodes indexed in topological order, (π i ) i parents, (C i ) i children sets. 2: for i = n to 1 do 3: s πi ← s πi + (s i -λ) + 4: u i = 1 {si>λ} 5: end for 6: A ←rectree(1, u) 7: return A with 1: function rectree(k, u) 2: A ← ∅ 3: if u k = 1 then 4: A ← {k} ∪ rectree(j 1 , u) ∪ . . . ∪ rectree(j κ , u) with {j 1 , . . . , j κ } := C k 5: end if 6: return A 7.2.5 Computations of Ω ∞ for F ∪ on a tree
The construction of norms associated to F ∪ on a DAG (as defined in Equation ( 14)) has been recently discussed in [START_REF] Yan | Hierarchical sparse modeling: A choice of two regularizers[END_REF]. For trees, the dual norms (Ω F∪ p ) * can clearly be computed efficiently by dynamic programming. Unfortunately, even for a tree F ∪ is clearly not submodular as discussed after Figure 7. It is however possible to compute efficiently the primal norm Ω F∪ ∞ with dynamic programming.

Proposition 5. For the function F ∪ defined as the minimal weighted set cover by the ancestor sets (A i ) i∈V with weights f i , if C i denotes the set of children of node i, π i denotes the parent of node i and with

d i := f i -f πi , the associated norm Ω F∪ ∞ is computed as Ω F∪ ∞ (w) = d i=1 d i ζ i with ζ i defined by the recursion ζ i = max |w i |, j∈Ci ζ j .
Proof.

Ω ∞ (w) = max κ∈R d + κ |w| s.t. ∀j ∈ V, i∈Aj κ i ≤ f j = min µ∈R d + max κ∈R d + κ |w| - j∈V µ j i∈Aj κ i -f j = min µ∈R d + max κ∈R d + i∈V κ i |w i | - j∈Di µ j κ i + µ i f i = min µ∈R d + i∈V µ i f i s.t. ∀i ∈ V, |w i | ≤ j∈Di µ j . = i∈V ζ i f i -f πi s.t. ∀i ∈ V, |w i | ≤ ζ i , ζ i ≥ j∈Ci ζ j .
Hence the result by minimizing recursively over ζ i in reverse topological order.

The possibility of designing efficient optimization schemes for the computation of Ω p , Ω * p and the corresponding proximal operators for the case of functions F ∪ on a tree, let alone on a general graph, remains an open problem.

Functions of the cardinality

Another particular instance of combinatorial functions are functions that only depend on the cardinality of the set, i.e., functions of the form

F (A) = d k=1 f k 1 {|A|=k} . (17) 
We have already discussed the cardinality function which is relaxed into the 1 -norm and the function B → 1 {B =∅} , whose p relaxation is simply the p -norm, but as we will see other functions are also of interest. To consider more elaborate examples and since we are interested by the convex relaxation of these functions, only the LCEs of this type should retain our attention. Given the interpretation of the LCE in terms of fractional weighted set-cover, we can essentially restrict ourselves to functions that are non-decreasing and sublinear, where sublinearity follows from the fact that for any sets A and B, we must have In general the dual norm can be computed in linear time since we have

F (A ∪ B) ≤ F (A) + F (B) which implies that f k+l ≤ f k + f l . Note that the function k → f k is concave if
Ω * p (w) q = max 1≤j≤d 1 f j j i=1 |s| q (i) , Now, if F is submodular (i.e. k → f k is the restriction of a concave function), Ω ∞ takes the very simple form Ω ∞ (w) = d i=1 (f i -f i-1 ) |w| (i) , (18) 
where |w| (i) is the ith largest order statistic of the vector |w|, and with f 0 = 0. We thus obtain the family of ordered weighted 1 -norms, introduced as the ordered weighted Lasso (OWL) penalties by [START_REF] Figueiredo | Sparse estimation with strongly correlated variables using ordered weighted 1 regularization[END_REF].

Furthermore, in this submodular situation, the reformulation of the proximal problem provided by ( 8) provides a way to compute the norm Ω p for all p ∈ (1, ∞) and the proximal operator for p ∈ {2, ∞} in O(n) using the Pooled Adjacent Violators algorithm (PAV) via a reduction to the case of the chain.

Indeed, for a function F which depends only on the cardinality, the function f is a symmetric function of its arguments and so for any η ∈ R d + and any permutation σ, we have

f (η) = f (η (σ) ) with η (σ) = (η σ(1) , . . . , η σ(d) ).
Proximal operator when F is submodular and p = ∞. When p = ∞, the proximal problem takes the form: min

w∈R d 1 2 w -u 2 + λΩ ∞ (w).
Since the norms Ω p are absolute norms [START_REF] Bauer | Absolute and monotonic norms[END_REF] 

(i.e. Ω p (w) = Ω p (|w|)) we have [Prox Ωp (u)] i = [Prox Ωp (|u|) i sign(u i ).
Without loss of generality, we can thus assume that u ∈ R d + . Since the norm is also symmetric, we can assume u 1 ≥ . . . ≥ u d . But because of symmetry, the components of the solution w of the proximal problem must then be in the same order as u: indeed, first, if u i = u j then w i = w j by symmetry, and second, since Ω p (w) does not depend on the order and since we have (u

1 -w 2 ) 2 + (u 2 -w 1 ) 2 -(u 1 -w 1 ) 2 + (u 2 -w 2 ) 2 = 2(w 1 -w 2 )(u 1 -u 2 )
which is negative if u 1 > u 2 and w 2 > w 1 , the objective is decreased by any transposition which brings {u i , u j } and {w i , w j } in the same order. So for u 1 ≥ . . . ≥ u d ≥ 0, using the Choquet integral representation of f , the proximal problem is equivalent to min

w∈R d + 1 2 w -u 2 + λ d i=1 w i (f i -f i -1), s.t. w 1 ≥ . . . ≥ w d ,
which is a classical isotonic regression problem with total order. We recover the algorithm of [START_REF] Figueiredo | Sparse estimation with strongly correlated variables using ordered weighted 1 regularization[END_REF].

Proximal operator when F is submodular and p = 2. Consider the computation of the proximal operator for a vector u which w.l.o.g. satisfies u 1 ≥ . . . ≥ u d ; if η is the solution of (8) then we must have η 1 ≥ . . . ≥ η d . Indeed, if this is not the case then consider the vector η (σ) obtained by sorting the components of η in decreasing order: it leads to a smaller value of the term involving u and does not change the value of f (η). This implies (assuming u 1 ≥ . . . ≥ u d ) that ( 8) is equivalent to min

η∈R d + i∈V u 2 i η i + λ + f (η) s.t. η 1 ≥ . . . ≥ η d .
Now, given that the order of the coefficients of η is fixed, by the Choquet integral representation of f the latter is linear, the problem is thus min

η∈R d + i∈V u 2 i η i + λ + η i (f i -f i-1 ) s.t. η 1 ≥ . . . ≥ η d .
which is the same as in the chain case and can be solved thanks to Corollary 6 using a PAV algorithm.

As in Lemma 10, similarly, for any p < ∞, the computation of the norm reduces to a problem of the form (16) which can be solved efficiently by a PAV algorithm thanks to Corollary 5.

Computation of proximal operator when the function is not submodular. It is important to stress that these reductions to generalized isotonic formulation is not possible when the function is not submodular because in that case f (η) is not linear given the ordering constraints. It is however possible to propose an efficient algorithm to compute the proximal operator for some of these functions. The k-support norm is an example of such as case.

Illustration 1: The k-support norm and the vector Ky-Fan k-norm. One of the simplest functions that depends only on the cardinality is the function

F : A →      0 if A = ∅ 1 if |A| = k, ∞ if |A| / ∈ {0, k}.
The norms Ω p associated with this function are naturally of the form of a Latent group Lasso, since the domain of F is restricted to sets of of cardinality k or 0. Clearly, the dual norm Ω * p satisfies Ω * p (s) = max A:|A|=k s A q . This shows first that Ω 2 is the k-support norm introduced by [START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF]. It also implies that

Ω * ∞ (s) = max A:|A|=k s A 1 = |s (1) | + . . . + |s (k) |, where |s (1) |, . . . , |s (d) | are the order statistics of (|s 1 |, . . . , |s d |), so that Ω * ∞ is the vector Ky-Fan k-norm 8 . The LCE of F is the function F -(B) = 1 {B =∅} ∨ |B| k .
It is immediate to check that F - is not submodular by considering a pair of sets of cardinality k. Extensions of k-support norms considered in [START_REF] Mcdonald | New perspectives on k-support and cluster norms[END_REF] could also be cast in this framework.

Illustration 2: The SLOPE penalty introduced in Bogdan et al. ( 2015) is clearly of the form of ( 18) with

f i -f i-1 = Φ -1 (1 -iq 2d )
, where Φ is the cumulative density function the standard Gaussian distribution. Since Φ in an increasing function, f i -f i-1 is positive and decreasing, which shows that i → f i an increasing concave function. It is therefore submodular and the theory develops in this section applies. In particular it retrieves the algorithm of [START_REF] Bogdan | SLOPE: adaptive variable selection via convex optimization[END_REF] to compute the proximal operator, and propose p variants of SLOPE.

Illustration 3: The OSCAR penalty. A norm of the form w → λ 1 w 1 +λ 2 i<j max |w i |, |w j | was introduced in [START_REF] Bondell | Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR[END_REF] because its non-differentiabilities when |w i | = |w j | induce some clustering of the amplitudes of the coefficients. Clearly, the second term in the definition of the OSCAR penalty is of the form Ω ∞ (w) = A:|A|=k w A ∞ . This is a particular instance of an Overlap Count Lasso. The LCE of the combinatorial functions associated with Ω ∞ is the counting (and thus submodular) function F (B) = A:|A|=k 1 {A∩B =∅} . Clearly,

F (B) = {A : |A| = k, A B c } = f l := d k - d -|B| k ,
and we have

Ω * ∞ (s) = max 1≤l≤d 1 f l l i=1 |s (i) |.
As shown in Section 6, since F is submodular, Ω ∞ is its Lovász extension and using the so-called Choquet integral representation (10) of F , and since F depends only on the cardinality, we have

Ω ∞ (w) = d l=1 |w (l) | F ({1, . . . , l}) -F ({1, . . . , l -1}) = d l=1 |w (l) | d -l k - d -l -1 k = d l=1 |w (l) | d -l -1 k -1 .
It should be noted that essentially any submodular function of the form ( 17), with a sequence (f k ) k that is strictly increasing can be considered as a possible alternative to the OSCAR penalty, since it provides, like the latter, a norm whose core set contains all the subsets of {1, . . . , d} and therefore has sharp faces of dimension l for all groups of size of coefficients with equal amplitude. Moreover for any such norm the proximal operator is computed efficiently, as shown already by [START_REF] Figueiredo | Sparse estimation with strongly correlated variables using ordered weighted 1 regularization[END_REF].

In particular, the algorithm proposed by [START_REF] Zhong | Efficient sparse modeling with automatic feature grouping[END_REF] to compute the proximal operator of the OSCAR penalty is a special instance of the algorithm proposed above.

Statistical analysis for submodular functions

In this section, we show that two classical theoretical results that can be proved for the Lasso and more generally for problems regularized by decomposable norms [START_REF] Negahban | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF], can be extended to the family of norms we considered in this paper when the associated function F is submodular. Namely, if the data is generated from a sparse linear model, it is possible to show that (a) under a generalization of the usual irrepresentability condition, the smallest stable subset containing the true support is identified with high probability for n sufficiently large, (b) under a generalization of the restricted eigenvalue condition the estimator is consistent in prediction error with so-called fast rates of convergence.

8.1 Weak and local decomposability of the norm for submodular functions.

The work of [START_REF] Negahban | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF] has shown that when a norm is decomposable with respect to a pair of subspaces A and B, meaning that for all α ∈ A and β ∈ B ⊥ we have Ω(α+β) = Ω(α)+Ω(β), then common proof schemes allows to (a) show support recovery results and (b) fast rates of convergence in prediction error. For the norms we are considering, this type of assumption would be too strong.

However, based on a notion of weak decomposability [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF], tackled the p = ∞. case. Weak decomposability was also proposed in van de Geer (2014), who obtained sparsity oracle inequalities based on an analysis that is similar to the one we develop, and applied it in particular to the norms proposed in [START_REF] Micchelli | Regularizers for structured sparsity[END_REF].

For the norms we consider, we use the notions of weak and local decomposability with decompositions that involve Ω J and Ω J , that are respectively the norms associated with the restriction and the contraction of the submodular function F to or on the set J.

In terms of prediction error the next proposition extends results based on restricted eigenvalue conditions (see, e.g. [START_REF] Negahban | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF].

Proposition 8 (Consistency). Assume that y = Xw * + σε, where ε is a standard multivariate normal vector. Let Q = 1 n X X ∈ R d×d . Denote by J the smallest stable set containing the support Supp(w * ) of w * .

If the following Ω J -Restricted Eigenvalue condition holds:

∀∆ ∈ R d , Ω J (∆ J c ) 3Ω J (∆ J ) ⇒ ∆ Q∆ κ Ω J (∆ J ) 2 ,
then we have

Ω( ŵ -w * ) 24 2 λ κρ 2 and 1 n X ŵ -Xw * 2 2 36λ 2 κρ 2 ,
with probability larger than

1 -P Ω * (z) > λρ √ n 2σ
where z is a multivariate normal with covariance matrix Q.

The concentration of the values of Ω * (z) for z is a multivariate normal with covariance matrix Q can be controlled via the following result that implies that if λ is larger then a constant times log |D F |, then the probability in the proposition is close to one. We thus recover known results for the Lasso (where |D F | = d) and the group Lasso [START_REF] Negahban | Joint support recovery under high-dimensional scaling: Benefits and perils of 1 -∞ -regularization[END_REF].

Proposition 9. Let z be a normal variable with covariance matrix Q that has unit diagonal. Let D F be the set of stable inseparable sets. Then

P Ω * (z) 4 q log(2|D F |) max A∈D F |A| 1/q F (A) 1/q + u max A∈D F |A| (1/q-1/2)+ F (A) 1/q e -u 2 /2 . ( 20 
)

Experiments

We illustrate the use of the theory presented in this paper by an application to the estimation of the parameter vector of linear least-squares regression, when this parameter vector is either supported on an interval on or a rectangular region in a two dimensional grid. In particular, we compare the performance on synthetic data of the estimators obtained, using different norms either classical or particularly tailored to the problem considered, both in terms of error in support estimation in Hamming distance and in 2 -error.

Setting

To illustrate the results presented in this paper we consider the problem of estimating the support of a parameter vector w ∈ R d , when its support is assumed either

(i) to form an interval in [[1, d ]], or (ii) to form a rectangle [[k min , k max ]] × [[k min , k max ]] ⊂ [[1, d 1 ]] × [[1, d 2 ]], with d = d 1 d 2 .
These two settings were considered by Jenatton et al. (2011a). These authors showed that, for both types of supports, it was possible to construct an 1 / 2 -norm with overlap based on a well-chosen collection of overlapping groups, so that the obtained estimators almost surely have a support of ∼ N (0, 1)) are the ones used in reported results.

the correct form. Specifically, it was shown in Jenatton et al. (2011a) that norms of the form w → B∈G w B 2 induce sparsity patterns that are exactly intervals of V = {1, . . . , p} if

G = [1, k] | 1 ≤ k ≤ p ∪ [k, p] | 1 ≤ k ≤ p ,
and induce rectangular supports on

V = V 1 × V 2 with V 1 := {1, . . . , p 1 } and V 2 := {1, . . . , p 2 } if G = [[1, k]] × V 2 | 1 ≤ k ≤ p 1 ∪ [[k, p 1 ]] × V 2 | 1 ≤ k ≤ p 1 ∪ V 1 × [[1, k]] | 1 ≤ k ≤ p 2 ∪ V 1 × [[k, p 2 ]]} | 1 ≤ k ≤ p 2 .
These sets of groups are illustrated on Figure 8, and, for the first case, the set G has already discussed in Example 6 to define a modified range function which is submodular.

Moreover, the authors showed that with a weighting scheme introduced inside the groups and leading to a norm of the form w → B∈G w B • d B , where • denotes the Hadamard product and d B ∈ R d + is a certain vector of weights designed specifically for these case9 it is possible to obtain compelling empirical results in terms of support recovery, especially in the 1D case.

Interval supports. From the point of view of our work, that is, approaching the problem in terms of combinatorial functions, for supports constrained to be intervals, it is natural to consider the range function as a possible form of penalty: F 0 (A) := range(A) = i max (A) -i min (A) + 1. Indeed the range function assigns the same penalty to sets with the same range, regardless of whether these sets are connected or have "holes"; this clearly favors intervals since they are exactly the sets with the largest support for a given value of the penalty. Unfortunately, as discussed in the Example 2 of Section 2.2, the combinatorial lower envelope of the range function is A → |A|, the cardinality function, which implies that Ω F0 p is just the 1 -norm: in this case, the structure implicitly encoded in F 0 is lost through the convex relaxation.

However, as mentioned by [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF] and discussed in Example 6 the function F r defined by F r (A) = d -1 + range(A) for A = ∅ and F (∅) = 0 is submodular, which means that Ω Fr p is a tight relaxation and that regularizing with it leads to tractable convex optimization problems.

Rectangular supports. For the case of rectangles on the grid, a good candidate is the function

F 2 with F 2 (A) = F r (Π 1 (A)) + F r (Π 2 (A)
) with Π i (A) the projection of the set A along the ith axis of the grid. This makes of Ω Fr p and Ω F2 p two good candidates to estimate a vector w whose support matches respectively the two described a priori.

Methodology

We consider a simple regression setting in which w ∈ R d is a vector such that Supp(w) is either an interval on [1, d] or a rectangle on a fixed 2D grid. We draw the design matrix X ∈ R n×d and a noise vector ∈ R n both with i.i.d. standard Gaussian entries and compute y = Xw + . We then solve problem ( 19), with Ω chosen in turn to be the 1 -norm (Lasso), the elastic net, the norms Ω F p for p ∈ {2, ∞} and F chosen to be F r or F 2 in 1D and 2D respectively; we consider also the overlapping 1 / 2 -norm proposed by Jenatton et al. (2011a) and the weighted overlapping 1 / 2 -norm proposed by the same authors, i.e., Ω(w) = B∈G w B • d B 2 with the same notations as before10 . We assess the estimators obtained through the different regularizers both in terms of support recovery and in terms of mean-squared error in the following way: assuming that held out data permits to choose an optimal point on the regularization path obtained with each norm, we determine along each such path, the solution which either has a support with minimal Hamming distance to the true support or the solution which as the best 2 distance, and we report the corresponding distances as a function the sample size on Figures 10 and 11 respectively for the 1D and the 2D case. Finally, we assess the incidence of the fluctuation in amplitude of the coefficients in the vector w generating the data: we consider different cases among which:

(i) the case where w has a constant value on the support, (ii) the case where w i varies as a modulated cosine, with w i = g(c • i) for c a constant scaling and g : x → | cos(x) cos(5x)| (iii) the case where w i is drawn i.i.d. from a standard normal distribution.

These cases (and two others for which we do not report results) are illustrated on Figure 9.

Results

Results reported for the Hamming distances in the left columns of Figures 10 and11 show that the norms Ω Fr 2 and Ω F2 2 perform quite well for support recovery overall and tend to outperform significantly their ∞ counterpart in most cases. In 1D, several norms achieve reasonably small Hamming distance, including the 1 -norm, the norm Ω Fr 2 and the weighted overlapping 1 / 2 -norm although the latter clearly dominates for small values of n.

In 2D, Ω F2

2 leads clearly to smaller Hamming distances than other norms for the larger values of n, while is outperformed by the 1 -norm for small sample sizes. It should be noted that neither Ω F2 ∞ nor the weighted overlapping 1 / 2 -norm that performed so well in 1D achieve good results.

The performance of the 2 -relaxation tends to be comparatively better when the vector of parameter w has entries that vary a lot, especially when compared to the ∞ -relaxation. Indeed, the choice of the value of p for the relaxation can be interpreted as encoding a prior on the joint distribution of the amplitudes of the w i : as discussed before, and as illustrated in [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF] the unit balls for the ∞ relaxations display additional "edges and corners" that lead to estimates with clustered values of |w i |, corresponding to an priori that many entries in w have identical amplitudes. More generally, large values of p correspond to the prior that the amplitude varies little while their vary more significantly for small p.

The effect of this other type of a priori encoded in the regularization is visible when considering the performance in terms of 2 error. Overall, both in 1D and 2D all methods perform similarly in

Conclusion

We proposed a family of convex norms defined as relaxations of penalizations that combine a combinatorial set-function with an p -norm. Our formulation allows to recover in a principled way a number of sparsity inducing regularizations that have appeared in the literature such as the 1 -norm, the group Lasso, the exclusive Lasso, the k-support norm, the OWL penalties (including OSCAR and SLOPE penalties), that are all specific instances. In addition, this formulation establishes that the latent group Lasso is the tightest relaxation of block-coding penalties. We discuss the use of the proposed formulation for the construction of relaxation for different hierarchical penalties on a DAG, and recover both new and existing norms.

There are several directions for future research. First, it would be of interest to determine for which combinatorial functions beyond submodular ones, efficient algorithms and consistency results can be established. Then a sharper analysis of the relative performance of the estimators using different levels of a priori would be needed to answer question such as: When is using a structured a priori likely to yield better estimators? When could it degrade the performance? What is the relation to the performance of an oracle given a specified structured a priori?

B Relation between different norms

Proposition 10. The functions

Ω : w → B∈G d 1/q B w B
and Ω

• : s → inf z∈V(s,G) max B∈G z B q d 1/q B
are norms and polar to each other.

Proof. It is clear that Ω is a norm since B∈G B = {1, . . . , d}. Then Ω • is a convex function because Ω • (s) = inf z∈V(s,G) ψ(s, z) with ψ : (s, z) → max B∈G d -1/q B z B q + ι {s= B∈G z B } ,
and ψ(s, z) is a proper, l.s.c., jointly convex function in (s, z). Moreover, since Ω • is also symmetric, homogeneous, everywhere finite and satisfies (Ω

• (s) = 0) ⇒ (s = 0), then Ω • is a norm. Finally, max s:Ω • (s)≤1 w, s = max z B∈G w, z B | ∀B ∈ G, z B q ≤ d 1/q B , z B B c = 0 = B∈G d 1/q B w B p ,
which shows that Ω is the Fenchel conjugate of s → ι {Ω • (•)≤1} . Since Ω and Ω • are norms this establishes that they are polar to each other.

C Example of the Exclusive Lasso

We showed in Section 4.3 that the p exclusive Lasso norm, also called p / 1 -norm, defined by the

mapping w → G∈G w G p 1 1/p
, for some partition G, is a norm Ω F p providing the p tightest convex p.h. relaxation in the sense defined in this paper of a certain combinatorial function F . A computation of the lower combinatorial envelope of that function F yields the function F

-: A → max G∈G |A ∩ G|.
This last function is also a natural combinatorial function to consider and by the properties of a LCE it has the same convex relaxation. It should be noted that it is however less obvious to show directly that Ω Fp is the p / 1 norm... We thus show a direct proof of that result since it illustrates how the results on LCE and UCE can be used to analyze norms and derive such results.

Lemma 12. Let G = {G 1 , . . . , G k } be a partition of V . For F : A → max G∈G |A ∩ G|, we have Ω F ∞ (w) = max G∈G w G 1 . Proof. Consider the function f : w → max G∈G w G 1 and the set function F 0 : A → f (1 A ). We have F 0 (A) = max G∈G 1 A∩G 1 = F (A). But by Lemma 8, this implies that f (w) ≤ Ω F ∞ (w) since f = f (| • |) is convex positively homogeneous and coordinatewise non-decreasing on R d + . We could remark first that since F (A) = f (1 A ) ≤ Ω F ∞ (1 A ) ≤ F (A), this shows that F = F -is a lower combinatorial envelope. Now note that (Ω F ∞ ) * (s) = max A⊂V,A =∅ min G∈G s A 1 |A ∩ G| ≥ max A⊂V, |A∩G|=1, G∈G s A 1 = G∈G max i∈G |s i | = G∈G s G ∞ .
This shows that (Ω F ∞ ) * (s) ≥ G∈G s G ∞ , which implies for dual norms that Ω F ∞ (w) ≤ f (w). Finally, since we showed above the opposite inequality Ω F ∞ = f which shows the result.

D Properties of the norm Ω F p when F is submodular

In this section, we first derive upper bounds and lower bounds for our norms, as well as a local formulation as a sum of p -norms on subsets of indices.

D.1 Some important inequalities.

We now derive inequalities which will be useful later in the theoretical analysis. By definition, the dual norm satisfies the following inequalities:

s ∞ M 1 q ≤ max k∈V s {k} q F ({k}) 1 q ≤ Ω * p (s) = max A⊂V,A =∅ s A q F (A) 1 q ≤ s q min A⊂V,A =∅ F (A) 1 q ≤ s q m 1 q , (21) 
for m = min k∈V F ({k}) and M = max k∈V F ({k}). These inequalities imply immediately inequalities for Ω p (and therefore for f since for η

∈ R d + , f (η) = Ω ∞ (η)):
m 1/q w p Ω p (w) M 1/q w 1 .

We also have Ω p (w) F (V ) 1/q w p , using the following lower bound for the dual norm: Ω * p (s)

s p F (V ) 1/q .
Since by submodularity, we in fact have M = max A,k / ∈A F (A ∪ {k}) -F (A), it makes sense to introduce m = min A,k,F (A∪{k})>F (A) F (A ∪ {k}) -F (A) ≤ m. Indeed, we consider in Section 8.2 the norm Ω p,J (resp. Ω J p ) associated with restrictions of F to J (resp. contractions of F on J) and it follows from the previous inequalities that for all J ⊂ V , we have: m1/q w p m 1/q w p Ω p,J (w) M 1/q w 1 and m1/q w p Ω J p (w) M 1/q w 1 .

D.2 Some optimality conditions for η.

While exact necessary and sufficient conditions for η to be a solution of Eq. ( 8) would be tedious to formulate precisely, we provide three necessary and two sufficient conditions, which together characterize a non-trivial subset of the solutions, which will be useful in the subsequent analysis.

Proposition 11 (Optimality conditions for η). Let F be a non-increasing submodular function. Let p > 1 and w ∈ R d , K = Supp(w) and J the smallest stable set containing K. Let H(w) the set of minimizers of Eq. ( 8). Then, (a) the set {η K , η ∈ H(w)} is a singleton with strictly positive components, which we denote {η K (w)}, i.e., Eq. ( 8) uniquely determines η K .

(b) For all η ∈ H(w), then η J c = 0.

(c) If A 1 ∪ • • • ∪ A m are
the ordered level sets of η K , i.e., η is constant on each A j and the values on A j form a strictly decreasing sequence, then

F (A 1 ∪ • • • ∪ A j ) -F (A 1 ∪ • • • ∪ A j-1 ) > 0 and the value on A j is equal to η Aj (w) = w A j p [F (A1∪•••∪Aj )-F (A1∪•••∪Aj-1)] 1/p . (d) If η K is equal to η K (w), max k∈J\K η k min k∈K η k (w)
, and η J c = 0, then η ∈ H(w). (b) If there is j ∈ J c such that η ∈ H(w) and η j = 0, then (since w j = 0) because f is nondecreasing with respect to each of its arguments, we may take η j infinitesimally small and all other η k for k ∈ K c equal to zero, and we have f (η) = f K (η K (w)) + η j [F (K ∪ {j}) -F (K)]. Since F (K ∪ {j}) -F (K) F (J ∪ {j}) -F (J) > 0 (because J is stable), we have f (η) > f K (η K (w)), which is a contradiction.

(c) Given the ordered level sets, we have

f (η) = m j=1 η Aj [F (A 1 ∪ • • • ∪ A j ) -F (A 1 ∪ • • • ∪ A j-1
)], which leads to a closed-form expression η Aj (w) =

w A j p [F (A1∪•••∪Aj )-F (A1∪•••∪Aj-1)] 1/p . If F (A 1 ∪ • • • ∪ A j ) -F (A 1 ∪ • • • ∪ A j-1 )
= 0, since w Aj p > 0, we have η Aj as large as possible, i.e., it has to be equal to η Aj-1 , thus it is not a possible ordered partition. q f (η) = Ω K (w K ). Since we always have Ω(w) Ω K (w K ), then η is optimal in Eq. ( 8).

(e) We take the largest elements from (d) and bounds the components of η K using (c).

Note that from property (c), we can explicit the value of the norm as:

Ω p (w) = k j=1 (F (A 1 ∪ . . . ∪ A j ) -F (A 1 ∪ . . . ∪ A j-1 )) 1 q w Aj \Aj-1 p (22) 
= Ω p,A1 (w A1 ) + (b) Assume that J is stable, and w J c p ≤ c 1/p min i∈J |w i |, then Ω(w) = Ω J (w J ) + Ω J (w J c ).

(c) Assume that K is non stable and J is the smallest stable set containing K, and that w J c p ≤ c 1/p min i∈K |w i |, then Ω(w) = Ω J (w J ) + Ω J (w J c ).

Proof. We first prove the first statement s |w| = Ω J (w J ) + Ω J (w J c ).

In order to prove (b), we consider an optimal η J for w J and Ω J and an optimal η J c for Ω J . Because of our inequalities, and because we have assume that J is stable (so that the value m for Ω J is indeed lower bounded by m), we have η J c ∞ w J c p m1/p . Moreover, we have min j∈J η j min i∈J |wi| M 1/p (inequality proved in the main paper). Thus when concatenating η J and η J c we obtain an optimal η for w (since then the Lovász extension decomposes as a sum of two terms), hence the desired result.

In order to prove (c), we simply notice that since F (J) = F (K), the value of η J\K is irrelevant (the variational formulation does not depend on it), and we may take it equal to the largest known possible value, i.e., one which is largest than min i∈J |wi|

M 1/p
, and the same reasoning than for (b) applies.

Note that when p = ∞, the condition in (b) becomes min i∈J |w i | max i∈J c |w i |, and we recover exactly the corresponding result from [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF].

F Algorithmic results

F.1 Proximal operator of the norm Ω F p and proof of Algorithm 2.

We provide in this section the decomposition algorithm presented as Algorithm 4 to compute the proximal operator of a norm Ω F p , for any value of p ∈ (1, ∞], when F is submodular. Algorithm 2 is the particular instance of that algorithm where all steps are closed form and other simplifications can be made. Algorithm 4 is a particular instance of the decomposition algorithm for the optimization of a convex function over the canonical polyhedron12 (see e.g. section 8.4 and 9.1 of [START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF]). Indeed, denoting ψ i (κ i ) = min xi∈R 1 2 (x i -z i ) 2 + λκ 1/q i |x i |, the computation of the proximal operator amounts to solving in κ the problem max κ∈P F i∈V ψ i (κ i ).

Following the decomposition algorithm, one has to solve first max

κ∈R d + i∈V ψ i (κ i ) s.t. i∈V κ i ≤ F (V ) = min x∈R d max κ∈R d + 1 2 x -z 2 2 + λ i∈V κ 1/q i |x i | s.t. i∈V κ i ≤ F (V ) = min x∈R d 1 2 x -z 2 2 + λF (V ) 1/q x p ,
where the last equation is obtained by solving the maximization problem in κ. Let x * denote the solution to the above problem.

We consider first the case p < ∞.

If x * = 0, then i κ

1/q i |x * i | = F (V )
x * p so that we must have κ i = |x * i | p x * p p F (V ). If x * = 0, then, given that x * i = (z i -λκ 1/q i ) + , we must also have z i -λκ 1/q i ≤ 0, which entails κ i ≥ zi λ q . But if

x * = 0, then we must have z q ≤ λF (V ) 1/q . So that if we set κ i = |zi| q z q q F (V ), then κ(V ) = F (V ) and κ i ≥ zi λ q .

In particular, when p = 2, we have x * = ( z 2 -λ F (V )) + z z 2 if z = 0 and x * = 0 else. And since x * ∝ z, then κ i = F (V )

z 2 i z 2
2 is always a solution, which explains the simplification made in Algorithm 2.

When p = ∞, if x * = 0, we have i κ i |x * i | = F (V ) x * ∞ so that with the constraint κ(V ) = F (V ) we must have κ i = 1 {|x * i |= x * ∞} F (V ). The case x * = 0 is the same as for p < ∞. Following the decomposition algorithm, one then has to find the minimizer of the submodular function A → F (A) -κ(A). Then one needs to solve max

κ A ∈R |A| + ∩P(F A ) i∈A ψ i (κ i )
and max

κ V \A ∈R |V \A| + ∩P(F A ) i∈V \A ψ i (κ i ).
Using the expression of ψ i and exchanging as above the minimization in w and the maximization in κ, one obtains directly that these two problems correspond respectively to the computation of the proximal operators of Ω F A on z A and of the proximal operator of Ω F A on z V \A .

The decomposition algorithm used here is proved to be correct in section 8.4 of [START_REF] Bach | Learning with submodular functions: A convex optimization perspective[END_REF] under the assumption that κ i → ψ(κ i ) is a strictly convex function. The functions we consider here are not strongly convex, and in particular, as mentioned above the solution in κ is not unique in case w * = 0. The proof of Bach (2013) however goes through using any solution of the maximization problem in κ. Let κ ∈ R d with κ i = |zi| q z q q F (V ) 12: end if 13: Find A minimizing the submodular function F -κ 14: if A = V then 6), for p ∈ [1, ∞), the computation of the norm Ω F p (z) can be formulated as well as the maximization of a separable concave function over the canonical polytope: max κ∈P F i ψ i (κ i ) with ψ i (κ i ) = κ 1 q i |z i |. We can therefore apply the same decomposition algorithm of Bach (2013, Sec. 9.1). This yields Algorithm 5. return F (V ) 1/q x p 9: else 10:

return Ω F A p (z A ) + Ω F A p (z A c ) 11: end if
The derivation of this algorithm is essentially identical to the derivation of Algorithm 2: in the first step of the divide-and-conquer algorithm described, solving max κ(V )≤F (V ) i ψ i (κ i ) leads to κ i = |zi| p z p p F (V ). Finally, then either κ is optimal and the objective equals F (V )

1 q i |zi| p q +1
z p p = F (V ) 1 q z p , or solving the two subproblems of steps (4) and (5) corresponds to computing the norms Ω F A p and Ω F A p on the two subvectors z A and z A c and summing them.

F.3 Proof of Algorithm 3

Proof. The algorithm is a recursive algorithm, whose principle is to remove a leaf of the tree, to then compute the set A minimizing a new objective G defined on the resulting reduced tree and to construct the minimizer of G(B) = λF (B) -s(B) from A by possibly adding the removed leaf. To define G , assume that the nodes are indexed in topological order, that the algorithm first removes the node n, and let s ∈ R n-1 be defined as s πn = s πn + (s n -λ) + , s j = s j , ∀j ∈ V \{π n , n}.

Then let G : 2 V \{n} → R be defined by G (A) = λF (A) -s (A). For any A ⊂ V we have

G (A) = min G(A), G(A ∪ {n}) if π n ∈ A, G(A) else, because if π n ∈ A, then G(A ∪ {n}) = G(A) -(s n -λ).
It is therefore clear that A is a minimizer of G (A) if and only if either A π n and A is a minimizer of G(A), or s n ≤ λ and A is a minimizer of G(A), or s n ≥ λ and A ∪ {n} is a minimizer of G. If V = ∅, the algorithm returns A = ∅, which is indeed the unique minimizer, so that the algorithm is correct for a tree with n = 0 nodes. Then by the argument above, if the algorithm is correct for a tree with n -1 nodes it is also correct for a tree with n nodes. By induction, this proves the correctness of the algorithm.

  w p F (Supp(w)) 1/q , by definition of Θ * ,
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 1 Figure 1: Penalties in 2D. Left: graph of the penalty pen. Middle: graph of penalty pen h with p = 2. Right: graph of the norm Ω F 2 in blue overlaid over graph of pen h . All of them are for the combinatorial function F : 2 V → R + , with F (∅) = 0, F ({1}) = F ({2}) = 0.65 and F ({1, 2}) = 1.

Figure 2 :

 2 Figure 2: Intersection of the canonical polyhedron with the positive orthant for three different functions F . Full lines materialize the inequalities s(A) ≤ F (A) that define the polyhedron. Dashed lines materialize the induced constraints s(A) ≤ F -(A) that results from all constraints s(B) ≤ F (B), B ∈ 2 V . From left to right: (i) submodular case, that is, D F = 2 V and F -= F = F + ; (ii) D F = {{2}, {1, 2}} and F -({1}) < F ({1}); (iii) D F = {{1}, {2}} corresponding to a weighted

Figure 3 :

 3 Figure 3: Illustration of the decomposition of w into w = A⊂V v A . As suggested by notations and as first proved for p = 2 by Jacob et al. (2009), we have: Lemma 7. Ω p and Ω * p are dual to each other.

Figure 4 :

 4 Figure4: Unit balls in R 2 for four combinatorial functions (actually all submodular) on two variables. Top left and middle row: p = ∞; top right and bottom row: p = 2. Changing values of F may make some of the extreme points disappear. All norms are hulls of a disk and points along the axes, whose size and position is determined by the values taken by F . On top row:F (A) = F -(A) = |A| 1/2 (all possible extreme points); and from left to right on the middle and bottom rows:F (A) = |A| (leading to • 1 ), F (A) = F -(A) = min{|A|, 1} (leading to • p ), F (A) = F -(A) = 1 2 1 {A∩{2} =∅} + 1 {A =∅} .

Figure 5 :

 5 Figure 5: Unit balls for structured sparsity-inducing norms, with the corresponding submodular functions and the associated norm, for 2 -relaxations. For each example, we plot on top the sets D A and on the bottom the convex hull of their union.

  where (•) * denotes the Fenchel-Legendre transform.

  and F ∩ is the value of the set cover associated with G = {{1}, {3}, {1, 2, 3}} with weights (1, 1, 2). The corresponding unit balls are represented on Figure6together with the unit ball

Figure 7 :

 7 Figure 7: (top center) Descendant and ascendant sets defining respectively F ∩ and F ∪ , (top left and right) tables defining weights associated with sets, (bottom) table of values assigned by F ∩ and F ∪ to all subsets of {1, 2, 3}.

Figure 8 :Figure 9 :

 89 Figure 8: Set G of overlapping groups defining the norm proposed by Jenatton et al. (2011a) (set in blue or green and their complements) and an example of corresponding induced sparsity patterns (in red), respectively for interval patterns in 1D (left) and for rectangular patterns in 2D (right).

  (e) There exists η ∈ H(w) such that min i∈K |wi|M 1/p min j∈J η j max j∈J η j w p m 1/p .Proof. (a) Since f is non-decreasing with respect to each of its argument, for any η ∈ H(w), we have η ∈ H(w) for η defined through η K = η K and η K c = 0. The set of values of η K for η ∈ H(w) is therefore the set of solutions problem (8) restricted to K. The latter problem has a unique solution as a consequence of the strict convexity on R * + of η j → |wj | p η p-1 j .

  (d) With our particular choice for η, we have i∈V

  is the norm associated with the contraction on A of F restricted to B.E Proof of Proposition 6 (Decomposability)Concretely, let c = m M with M = max k∈V F ({k}) and m = minA,k F (A ∪ {k}) -F (A) s.t. F (A ∪ {k}) > F (A)Proposition (6. Weak and local Decomposability). (a) For any set J and any w ∈ R d , we have Ω(w) ≥ Ω J (w J ) + Ω J (w J c ).

  (a): If s A∩J p p ≤ F (A∩J) and s A∩J c p p ≤ F (A∪J)-F (J) then by submodularity we have sA p p ≤ F (A ∩ J) + F (A ∪ J) -F (J) ≤ F (A).The canonical polyhedra associated with F J and F J are respectively defined byP(F J ) = {s ∈ R d + , Supp(s) ⊂ J, s(A) ≤ F (A), A ⊂ J} and P(F J ) = {s ∈ R d + , Supp(s) ⊂ J c , s(A) ≤ F (A ∪ J) -F (J)}Denoting s •p := (s p 1 , . . . , s p d ), we therefore have Ω(w) = max {s •p ∈P F } s |w| ≥ max {s •p J ∈ P(F J ), s •p J c ∈ P(F J )}

Algorithm 4

 4 Computation x = Prox λΩ F p (z) Require: z ∈ R d , λ > 0 1: Let A = {j | z j = 0} 2: if A = V then return x by concatenating x A and x A c 6: end if 7: Let x = argmin y 1 2 y -z 2 2 + λF (V ) 1 q y p 8: if x = 0 then 9: Let κ ∈ R d with κ i = |xi| p x p p F (V ) if p < ∞ and κ i = 1 {|xi|= x ∞} F (V ) for p = ∞ 10: else 11:

  Let x A = Prox λΩ F A p (z A ) 18: Let x A c = Prox λΩ F A p (z A c)19: return x by concatenating x A and x A c

F. 2

 2 Decomposition algorithm to compute the norm By Equation (

Algorithm 5

 5 Computation of Ω F p (z) Require: z ∈ R d . 1: Let A = {j | z j = 0}. 2: if A = V then 3: return Ω F A p (z A ) 4: end if 5: Let κ ∈ R d with κ i = |zi| p z p p F (V ) 6: Find A minimizing the submodular function F -κ 7: if A = V then 8:

  and only if F is submodular (see Bach, 2013, Section 9.1). As illustrated by Example 4, LCEs depending only on the cardinality are not necessarily submodular.

/ p -group norms and with the latent group Lasso in Section 4.1. The exclusive Lasso is presented in Section 4.3. After introducing key variational forms of the norm in Section 5, we discuss the case of submodular functions in Section 6 and propose in particular general algorithms to compute each norm, its dual and its associated proximal operator. Based on this theory, we study more sophisticated examples of the norms in Section 7. In particular, we discuss the case of overlap count Lasso norms in Section 7.1, the case of norms for hierarchical sparsity in Section 7.2 and the case of symmetric norms associated to functions of the cardinality of the support in section 7.3. In Section 8, we extend two statistical results that are classical for the Lasso to all norms associated with submodular functions, namely a result of support recovery based on an irrepresentability condition

The assumptions on the domain D 0 of F and on the positivity of F indeed guarantee that Ω * p is a norm.

The reader familiar with submodular functions will recognize that for these functions the canonical polyhedron is the intersection of the submodular polyhedron with the positive orthant.

The proof in[START_REF] Obozinski | Group Lasso with overlaps: the Latent Group Lasso approach[END_REF] addresses the p = 2 case but generalizes immediately to other values of p.

The Exclusive Lasso norm which is p/ 1 should not be confused with the group Lasso norm which is 1 / p.

Note that H-norms are in these references defined for p = 2 and that the variational formulation proposed here generalizes this to other values of p ∈ (1, ∞).

The vector Ky-Fan k-norm is the vector counterpart of the matrix Ky-Fan norm, the latter being computed as the k-norm of the singular values of the matrix.

We refer the reader to the paper for the details.

Note that we do not need to compare with an i nf ty counterpart of the unweighted norm considered byJenatton et al. (2011a) since for p = ∞ the unweighted 1 / ∞ norm defined with the same collection G is exactly the norm Ω Fr ∞ : this follows from the form of Fr as defined in Example 6 and the preceding discussion.

-error, except that when w is constant on the support, the ∞ -relaxations Ω Fr ∞ and Ω F2 ∞ perform significantly better, and this is the case most likely because the additional "corners" of these norms induce some pooling of the estimates of the value of the w i , which improves their estimation. By contrast it can be noted that when w is far from constant the ∞ -relaxations tend to have slightly larger least-square errors, while, on contrary, the 1 -regularisation tends to be among the better performing methods.

Or gauge function to be more precise.

There are different variants of the decomposition algorithm using different constraint sets: the canonical polyhedron or the base polyhedron defined asB F = P F ∩ {s ∈ R d | s(V ) = F (V )} (seeBach, 2013, Sec. 8.4 for details.) 
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Weak decomposability. For any set J and any w ∈ R d , we have Ω(w) ≥ Ω J (w J ) + Ω J (w J c ).

Local decomposability. Let K = Supp(w) and J the smallest stable set containing K, if w J c p ≤ c 1/p min i∈K |w i |, then Ω(w) = Ω J (w J ) + Ω J (w J c ).

Note that when p = ∞, if J = K, the condition becomes min i∈J |w i | max i∈J c |w i |, and we recover exactly the corresponding result from [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF].

This proposition shows that a sort of reverse triangular inequality involving the norms Ω, Ω J and Ω J always holds and that if there is a sufficiently large positive gap between the values of w on J and on its complement then Ω can be written as a separable function on J and J c .

Theoretical analysis for submodular functions

In this section, we consider a fixed design matrix X ∈ R n×p and y ∈ R n a vector of random responses. Given λ > 0, we define ŵ as a minimizer of the regularized least-squares cost: min w∈R d 1 2n y -Xw 2 2 + λΩ(w).

(

We study the sparsity-inducing properties of solutions of (19), i.e., we determine which patterns are allowed and which sufficient conditions lead to correct estimation.

We assume that the linear model is well-specified and extend results from [START_REF] Zhao | On model selection consistency of Lasso[END_REF] for sufficient support recovery conditions and from [START_REF] Negahban | A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers[END_REF] for estimation consistency, which were already derived by [START_REF] Bach | Structured sparsity-inducing norms through submodular functions[END_REF] for p = ∞. The following propositions allow us to retrieve and extend well-known results for the 1 -norm.

Denote by ρ the following constant:

The following proposition extends results based on support recovery conditions [START_REF] Zhao | On model selection consistency of Lasso[END_REF]):

Proposition 7 (Support recovery). Assume that y = Xw * + σε, where ε is a standard multivariate normal vector. Let Q = 1 n X X ∈ R d×d . Denote by J the smallest stable set containing the support Supp(w * ) of w * . Define ν = min j,w * j =0 |w * j | > 0 and assume κ = λ min (Q JJ ) > 0. If the following generalized Irrepresentability Condition holds:

, the minimizer ŵ is unique and has support equal to J, with probability larger than 1

, where z is a multivariate normal with covariance matrix Q. Figure 10: Best Hamming distance (left column) and best least square error (right column) to the true parameter vector w * , among all vectors along the regularization path of a least square regression regularized with a given norm, for different patterns of values of w * . The different regularizers compared include the Lasso (L1), Ridge (L2), the elastic net (EN), the unweighted (GL) and weighted (GL+w) 1 / 2 regularizations proposed by Jenatton et al. (2011a), the norms Ω F 2 (Sub p = 2) and Ω F ∞ (Sub p = ∞) for a specified function F . (first row) Constant signal supported on an interval, with an a priori encoded by the combinatorial function F : A → d -1 + range(A). (second row) Same setting with a signal w * supported by an interval consisting of coefficients w * i drawn from a standard Gaussian distribution. In each case, the dimension is d = 256, the size of the true support is k = 160 , the noise level is σ = 0.5 and signal amplitude w ∞ = 1. 

A Form of primal norm

We provide here a proof of lemma 7 which we first recall: Lemma (7). Ω p and Ω * p are dual to each other.

Proof. Let ω A p be the function 11 defined by ω A p (w) = F (A) 1/q w A p ι {v|Supp(v)⊂A} (w) with ι B the indicator function taking the value 0 on B and ∞ on B c . Let K A p be the set [START_REF] Rockafellar | Convex Analysis[END_REF] 

or in words Ω p is the Fenchel-Legendre dual to the sum of the indicator functions ι K A p . But since the Fenchel-Legendre dual of a sum of functions is the infimal convolution of the duals of these functions (see Rockafellar, 1970, Thm. 16.4 and Corr. 16.4.1, pp. 145-146), and since by definition of a support function ι K A p * = ω A p , then Ω p is the infimal convolution of the functions ω A p , i.e.

Ω p (w) = inf

which is equivalent to formulation (3). See [START_REF] Obozinski | Group Lasso with overlaps: the Latent Group Lasso approach[END_REF] for a more elementary proof of this result.

F.4 Proof of lemma 11

We first state a full version of the lemma that covers explicitly the case where I c = ∅.

Lemma. For c ∈ R d + , z ∈ R d + with z 1 > 0 and ψ a nonnegative differentiable, decreasing and strictly convex function, consider the optimization problem:

(GIRC(c, z, b ))

is the unique solution to GIRC(c, z, b ).

• If I ∼ = ∅, then the solution is unique and obtained as follows: Write I = {i 1 , . . . , i K } with i 1 < . . . < i K , define for all k the set J i k := {j | i k-1 < j ≤ i k } with i 0 := 0 and define

Then at the optimum η * , (a) ∀i ∈ I, ∀j ∈ J i , η * j = η * i , (b) ∀j ∈ J + , η * j = b and (c) if, for any i ∈ I, we let zi = j∈Ji z j , then (η * i ) i∈I is the unique solution of the problem GIRC (c i ) i∈I , (z i ) i∈I , b , for which the previous case applies. 

Proof. First, note that the limit lim η→b ψ (η) exists in R since ψ is strictly convex which entails that ψ is an increasing function.

• When I c = ∅, a similar result was shown by [START_REF] Barlow | The isotonic regression problem and its dual[END_REF] but under essentially more restrictive conditions. With the assumptions of the stated lemma, we have min(η 1 , . . . , η d ) ≥ b > -∞, and the value of the objective is lower bounded by z 1 η 1 , so that at the optimum η * i ≤ η * 1 ≤ ψ(0) z1 i c i . This shows that the infimum is attained on a compact set. Given that c i > 0 for all i, the objective is strictly convex, which shows that the minimum exists and is unique. It is characterized by the KKT conditions. The KKT conditions for problem GIRC(c, z, b ) are that any primal-dual optimal pair (η, λ) must satisfy the primal feasibility condition b ≤ η d ≤ . . . ≤ η 1 as well as Lagrangian stationarity, dual feasibility and complementary slackness as follows:

with λ 0 := 0 and η d+1 := b . Similarly, the KKT conditions for problem IRC(ω, y, b) are that any primal-dual optimal pair (x, µ) must satisfy The pairs are unique because both primal and dual problems are strongly convex (the objectives are differentiable and strictly convex). Now it is easily seen that, if one sets xi := -ψ (η * i ) and μi = λ i for all i, then the pair (x, μ) satisfies the KKT conditions for IRC(ω, y, b), which proves by uniqueness that (x, μ) = (x * , µ * ). So in particular, we have η * i = (ψ ) -1 (-x * i ).

• When I ∼ = ∅, then the partial minimization with respect to the variables η j indexed by j ∈ J i \{i} is obtained in closed form: since I ∼ = ∅, all coefficients (z j ) j∈Ji\{i} are strictly positive which shows that the η j are equal to their lower bound η i . The argument for J + is the same. Eliminating the variables indexed by I ∼ from the problem, yields a problem which satisfies the assumption that I c = ∅ and the result follows.

• When I ∼ = ∅, the variables x j for j ∈ I ∼ do not appear in the objective. At the optimum they must therefore simply satisfy the primal inequality constraints, and eliminating them from the objective yields a problem GIRC(c, z, b) satisfying the previous assumptions.

G Theoretical Results

In this section, we prove the propositions on consistency, support recovery and the concentration result of Section 8.2. As there, we consider a fixed design matrix X ∈ R n×p and y ∈ R n a vector of random responses. Given λ > 0, we define ŵ as a minimizer of the regularized least-squares cost:

G.1 Proof of Proposition 7 (Support recovery)

Proof. We follow the proof of the case p = ∞ from Bach (2010). Let r = 1 n X ε ∈ R d , which is normal with mean zero and covariance matrix σ 2 Q/n. We have for any w ∈ R p , Ω(w) Ω J (w J ) + Ω J (w J c ) Ω J (w J ) + ρ Ω J c (w J c ) ρ Ω(w). This implies that Ω * (r) ρ max{Ω * J (r J ), (Ω J ) * (r J c )}. Moreover, r J c -Q J c J Q -1 JJ r J is normal with covariance matrix

This implies that with probability larger than 1 -3P (Ω * (r) > λρη/2), we have

We denote by w the unique (because Q JJ is invertible) minimum of 1 2n y -Xw 2 2 + λΩ(w), subject to w J c = 0. wJ is defined through Q JJ ( wJ -w J * ) -r J = -λs J where s J ∈ ∂Ω J ( wJ ) (which implies that Ω * J (s J ) 1) , i.e., wJ -w * J = Q -1 JJ (r J -λs J ). We have:

4 , which implies Supp( w) ⊃ Supp(w * ).
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In the neighborhood of w, we have an exact decomposition of the norm, hence, to show that w is the unique global minimum, we simply need to show that since we have (Ω J ) * (r J c -Q J c J Q -1 JJ r J ) λη/2, w is the unique minimizer of Eq. ( 19). For that it suffices to show that (Ω J ) * (Q J c J ( wJ -w * J )-r J c ) < λ. We have:

which leads to the desired result.

G.2 Proof of proposition 8 (Consistency)

Proof. Like for the proof of Proposition 7, we have

Thus, if we assume Ω * (q) λρ/2, then Ω * J (q J ) λ/2 and (Ω J ) * (q J c ) λ/2. Let ∆ = ŵ -w * . We follow the proof from [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] by using the decomposition property of the norm Ω. We have, by optimality of ŵ:

Using the decomposition property, λΩ J ((w * + ∆) J ) + λΩ J ((w * + ∆) J c ) + q J ∆ J + q J c ∆ J c λΩ J (w * J ), λΩ J (∆ J c ) λΩ J (w * J ) -λΩ J (w * J + ∆ J ) + Ω * J (q J )Ω J (∆ J ) + (Ω J ) * (q J c )Ω J (∆ J c ), and (λ -(Ω J ) * (q J c ))Ω J (∆ J c ) (λ + Ω * J (q J ))Ω J (∆ J ). Thus Ω J (∆ J c ) 3Ω J (∆ J ), which implies ∆ Q∆ κ ∆ J 2 2 (by our assumption which generalizes the usual 1 -restricted eigenvalue condition). Moreover, we have: ∆ Q∆ = ∆ (Q∆) Ω(∆)Ω * (Q∆) Ω(∆)(Ω * (q) + λ) 3λ 2 Ω(∆) by optimality of ŵ

This implies that κΩ J (∆ J ) 2 ∆ Q∆ 6λ ρ Ω J (∆ J ), and thus Ω J (∆ J ) 6λ κρ , which leads to the desired result, given the previous inequalities.

G.3 Proof of proposition 9

Proof. We have Ω * (z) = max A∈D F z A q F (A) 1/q . Thus, from the union bound, we get P(Ω * (z) > t) A∈D F P( z A q q > t q F (A)).
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We can then derive concentration inequalities. We have E z A q (E z A q q ) 1/q = (|A|E|ε| q ) 1/q 2|A| 1/q q 1/2 , where ε is a standard normal random variable. Moreover, z A q z A 2 for q 2, and z A q |A| 1/q-1/2 z A 2 for q 2. We can thus use the concentration of Lipschitz-continuous functions of Gaussian variables, to get for p 2 and u 0, P z A q 2|A| 1/q √ q + u e -u 2 /2 . For p < 2 (i.e., q > 2), we obtain P z A q 2|A| 1/q √ q + u e -u 2 |A| 1-2/q /2 .

We can also bound the expected norm E[Ω * (z)], as

Together with Ω * (z) z 2 max A∈D F |A| (1/q-1/2) + F (A) 1/q , we get P Ω * (z) 4 q log(2|D F |) max A∈D F

|A| 1/q F (A) 1/q + u max

|A| (1/q-1/2)+ F (A) 1/q e -u 2 /2 .