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Vincent Leclère Edouard Graves Laurent El Ghaoui

École des Ponts Paristech UC Berkeley UC Berkeley

Abstract

Classification is one of the main problem
addressed by machine learning algorithms.
Among them the Support Vector Machine
(SVM) has attracted a lot of interest and
shown success in the past decades. SVM
are originally tailored for binary classifica-
tion. If we have only a few example of nega-
tive dataset we can turn to one-class SVM.

In this paper we propose a probabilistic inter-
pretation of the one-class SVM approach and
an extension especially adapted in the case of
highly imbalanced dataset. Indeed, we con-
sider a binary classification problem where
we represent the negative dataset by its two
first moments, while still modeling the posi-
tive class by individual examples. The opti-
mization problem is shown to have an equiv-
alent formulation to a one-class SVM applied
to the positive dataset after some preprocess-
ing. The usual one-class SVM corresponding
to the case where the negative class has mean
0 and identity variance.

We show empirically, on a protein classifi-
cation task and a text classification task,
that our approach achieves similar statisti-
cal performance than the two mainstream ap-
proaches to imbalanced classification prob-
lems, while being more computationally ef-
ficient.

1 Introduction

Binary classification consists in considering a set of
data points {xi}i∈I each associated with a label yi ∈
{−1, 1}, and trying to find a classifier function that as-
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sociate to any new data point x a corresponding label
y.

Recently SVM has been an increasingly successful
method to train such binary classifiers (see [34, 6, 33]).
However, in some cases the classes can be highly imbal-
anced. Either because the number of negative example
can be very small (novelty detection, see [29, 28, 21]),
or because negative class is very large (e.g. text clas-
sification, object recognition).

For highly imbalanced datasets, a naive strategy that
classifies all the examples as negative will achieves a
very low classification error, since the vast majority
of examples are indeed negative. Most classifiers that
minimize the classification error thus lead to decision
boundaries that are skewed with an important false
negative rate. For most imbalanced problems, this is
not acceptable, since the interesting class is the pos-
itive class. Another challenge comes from the huge
number of examples from the negative class which is
the bottleneck of the optimization algorithm. In both
novelty detection and highly imbalanced classification
a one-class SVM approach, that consider only the pos-
itive datapoints (see e.g. [28]) have shown very good
results.

1.1 Related work

Many different approaches have been proposed to deal
with imbalanced datasets, and the corresponding lit-
erature is too large to be summarized here. We invite
the interested reader to look at the extensive review of
the subject [14].

A first class of methods for imbalanced learning is
based on sampling : the idea is to sample a balanced
training set from the original unbalanced set of exam-
ples. Such methods are based on undersampling the
negative class [17, 2], or on (synthetic) oversampling
of positive examples [7, 2].

A second class of methods, referred to as cost sensi-
tive learning, is based on assigning different misclassi-
fication costs to the negative and the positive exam-
ples [12, 8, 37].
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Finally, closely related to our approach, one-class SVM
were also considered by [26] in the case of extremely
imbalanced datasets and for task of text classification
by [20].

1.2 Contributions

In this paper we consider a probabilistic approach to
the imbalanced classification problem where the nega-
tive class is only represented by its two first moments.
We show that the optimization problem boils down to
a one-class SVM with significant preprocessing of data
exploiting informations of the negative class. In par-
ticular the usual one-class SVM consist in assuming
that the negative class have mean 0 and identity for
covariance matrix.

We make the following contributions:

• we propose a new formulation for the problem of
imbalanced binary classification, inspired by the
model of [18], where the negative class is repre-
sented by its mean and its variance, while the
positive class is represented by individual exam-
ples (section 2.1);

• we show that our approach give a theoretical jus-
tification to one-class support vector machines, as
introduced by [28] (section 2.2);

• we show how to incorporate moments informa-
tions on the negative class to linear one-class
SVM, and propose an extension to kernel one-
class SVM;

• we show that our approach is competitive with the
two mainstream approaches to imbalanced classi-
fication problems (undersampling and asymmet-
ric cost function) on two classification problems
(sections 4.1 and 4.2).

1.3 Paper structure

The paper is organized as follow. § 2 present a proba-
bilistic formulation of imbalanced binary classification
and how it extend the linear one-class SVM formula-
tion. § 3 discuss other elements that might be taken
into account when looking for a classifier. § 4 presents
two numerical applications of our approach.

1.4 Notations

Throughout the paper we use bold font to denote ran-
dom variable and capital letter for matrices. Letter
x ∈ Rp correspond to data, y to the label, w to a clas-
sifier. I+ (resp. I−) is the set of indexes of positively
(resp. negatively) labeled datapoints.

2 A probabilistic approach to
imbalanced classification

In this section, we propose a new formulation for solv-
ing the problem of imbalanced binary classification.
In order to cope with the large number of negative
examples we model the negative class by its distribu-
tion instead of a set of examples. We assume that
each negative example is an independent realization of
an unknown probability distribution with known ex-
pectation and covariance (this last assumption will be
weakened in § 2.3). Note that we do not assume that
the distribution is Gaussian, nonetheless we show that
such an assumption leads to the same formulation. On
the other hand, we still represent the positive class by
all its examples.

2.1 A probabilistic formulation

Let (xi)i∈I+ be a set of n positive training examples
and let x̄ and Σ be the mean and the covariance of
the probability distribution of the negative class. In
the following, we will always assume that the covari-
ance matrix Σ is positive definite. This is not a strong
assumption, since we can always add a small regular-
ization term λId to the covariance matrix (which can
be interpreted as an uncertainty on the covariance ma-
trix, see §2.3).

Our goal is to find the affine classifier (w, b) such that
all the positive examples are correctly classified while
maximizing the probability of correctly classifying ex-
amples drawn from the negative distribution. As we
know only the two first moments of the negative class,
we take the worst possible probability among those
with mean x̄ and covariance Σ:

max
w,b

inf
x∼(x̄,Σ)

P(w>x− b ≤ 0), (1a)

s.t. w>xi − b ≥ 0, i ∈ I+. (1b)

where x ∼ (x̄,Σ), refers to the class of probability
distributions with mean x̄ and covariance Σ. In other
words, our goal is to maximize the specificity of the
separating hyperplane, while correctly classifying all
the positive examples.

Remark 1. If the mean x̄ and variance Σ of the nega-
tive class is obtained from the empirical mean and vari-
ance of the negative set of datapoints, then the value of
Problem (1) is a lower bound of the fraction of negative
points {xi, i ∈ I−} rightly classified by its solution.

Indeed, the uniform distribution over the set of nega-
tive points {xi, i ∈ I−} is among the set of probability
where the infimum is taken.

According to the following lemma from [18], which is a
consequence of a theorem by [22], the minimum speci-
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ficity over all probabilities with given mean and co-
variance has a geometric characterization:

Lemma 1. Let x̄ ∈ Rp, Σ ∈ Rp×p a positive definite
matrix, w ∈ Rp such that w 6= 0, b ∈ R and α ∈ [0, 1).
Then, the condition infx∼(x̄,Σ) P

(
b− x>w ≥ 0

)
≥ α,

holds if and only if b − x̄>w ≥ κ(α)
√
w>Σw, where

κ(α) =
√

α
1−α .

Using this result, the optimal hyperplane we are look-
ing for is thus the optimal solution of the following
optimization problem

max
α,w,b

α (2a)

s.t. b− x̄>w ≥ κ(α)
√
w>Σw, (2b)

x>i w − b ≥ 0, ∀i ∈ I+. (2c)

Since the function κ : α 7→
√

α
1−α is increasing on

[0, 1[, this problem is equivalent to

max
κ>=0,w,b

κ

s.t. b− x̄>w ≥ κ
√
w>Σw,

x>i w − b ≥ 0, ∀i ∈ I+.

Note that κ being positive, w = 0 is the worst admis-
sible solution. From now on we assume that there is
a non-zero admissible solution, or in other words that
x̄ is not in the convex hull of positive points. This as-
sumption can be relaxed through penalized slack vari-
ables (see §3.1).

Exploiting the homogeneity in the variable w, and
the suboptimality of w = 0, we now impose that
κ
√
w>Σw = 1, and since the function x 7→ 1/

√
x is

decreasing we obtain

min
w

w>Σw (3a)

s.t. b− x̄>w ≥ 1, (3b)

x>i w − b ≥ 0, ∀i ∈ I+. (3c)

This problem is a convex program(see [5]), which has
an interesting geometric interpretation: the optimal w
is orthogonal – for the scalar product defined by the
inverse covariance matrix– to the projection of x̄ to the
convex hull of the positive points. This interpretation
is detailed in Annex A, and illustrated in Figure 1.

Remark 2. Let v] be the optimal value of Prob-
lem (3) and w] an optimal solution. Then assuming
that the first and second order moment of the negative
class are exact, the negative misclassification probabil-

ity P
(
xTw] − b ≥ 0

)
is bounded by v]

1+v]
.

By Remark 1, this bound is also an upper bound on the
number of misclassified negative points.

Remark 3. If we assume that the distribution of the
negative points is Gaussian with the given mean and
variance, then we have P

(
xTw−b ≤ 0

)
= P

(
N
(
0, 1
)
≤

b−x̄Tw√
wT Σw

)
. Hence, we obtain Problem (2), with κ(α) =

Φ−1(α), where Φ is the cumulative distribution func-
tion of the standard normal Gaussian distribution. In
particular, an assumption of normality of the negative
class also leads to Problem (3).

The only improvement a normality assumption bring
is an improved negative error estimation, as we obtain

P
(
XTw] − b ≥ 0

)
= 1− Φ

( 1√
v]

)
≤ v]

1 + v]
.

In the next section we show how this formulation ex-
tend the one-class SVM formulation introduced by
[28].

2.2 Relation to support vector machines

If we assume that the covariance matrix Σ is equal to
the identity matrix, then Program (3) is equivalent to
hard margin SVM where the only negative point con-
sidered is the mean of the negative class. Furthermore,
eliminating b from Problem (3), yields

max
w

w>Σw (4a)

(xi − x̄)>w ≥ 1, ∀i ∈ I+. (4b)

If the mean x̄ = 0, then we have a one-class SVM
formulation. In other words, an hard-margin linear
one-class SVM classifier is the classifier that truly clas-
sify every example while maximizing the probability of
truly classifying a negative example assuming that the
negative points are Gaussian centered in 0 with vari-
ance identity.

Formulation 4 allow to integrate first and second order
information over the negative class. It is a one-class
support vector machine formulation, where we mini-
mize the Mahalanobis norm (corresponding to the co-
variance matrix of the negative class distribution) in-
stead of the `2 norm, and separate the positive points
from the mean of the negative class instead of the ori-
gin.

In other words, our formulation consist in applying
one-class SVM to the set of points x̂i = Σ−1/2(xi− x̄).
If this point of view is useful for interpretation, it is not
numerically efficient. Indeed, computing Σ−1/2 can be
challenging, and even the translation of the positive
data might destroy some existing sparsity that could
be numerically exploited.

Mahalanobis norm SVM has been used previously, es-
pecially in the case of one-class approach (see [32, 16,



Manuscript under review by AISTATS 2017

Figure 1: Geometric interpretation of our proposed formulation for imbalanced binary classification.

24, 13, 18] and references therein). However, to our
knowledge, it has not been proposed to use the Maha-
lanobis norm relative to the negative class for binary
classification.

2.3 Error in the estimation of the mean and
covariance matrix

Until now we assumed that we have a perfect estima-
tion of the mean x̄0 and covariance Σ0 of the nega-
tive class, which might be unavailable. Estimating the
covariance matrix is usually done either through the
empirical covariance or with some sparsity inducing
process. In both case there exists some bound on the
error either in the Frobenius or spectral norm.

If we estimate the Σ0, by Σ = 1/|I−|
∑
i∈I−(xi −

x̄)(xi − x)T , then various assumptions (finite moment
of order strictly greater than 2 and sub-exponential
orthogonal projection [36, 30]; log-concavity and data
bounded in O(

√
|I−|) [1]) guarantee that for any fixed

accuracy ε > 0, with high probability, |I−| ≥ Cεp
imply that ‖Σ−Σ0‖ ≤ ε‖Σ‖, where Cε is roughly pro-
portional to 1/ε2. With other regularity assumptions
we require O(p logk(p)) negative datapoints (e.g. see
[31, 35, 23]).

If we consider large dimensional dataset with unknown
structure, sparse estimation is more relevant. A lot of
recent work have given good guarantee in the spectral
or Frobenius norm, from various approaches e.g. factor
model [9] tresholding [3, 27, 15] or banding [4].

Moreover, the central limit theorem show that,
asymptotically, we have with high probability (x̄ −
x̄0)TΣ−1(x̄− x̄0) ≤ ν2.

To sum up, asymptotically, with high probability, the
empirical estimates lies in

Q = {(x,Σ) | (x̄−x̄0)TΣ−1(x̄−x̄0) ≤ ν2, ‖Σ−Σ0‖ ≤ ρ}.

We can take a robust approach over this set in the
sense that we consider the worst mean and covariance
in the set. More precisely we want to solve

max
w,b

inf
(x̄,Σ)∈Q

inf
x∼(x̄,Σ)

P(w>x− b ≤ 0), (5a)

s.t. w>xi − b ≥ 0, ∀i ∈ I+. (5b)

This amount to replacing constraint (2b) by

inf
(x̄,Σ)∈Q

b− x̄>w − κ(α)
√
w>Σw ≥ 0. (6)

For a given Σ and w, we know that [18, Appendix B]

max
x̄:(x̄−x̄0)T Σ−1(x̄−x̄0)≤ν2

x̄>w = x̄>0 + ν
√
w>Σw.

Hence, constraint (6) is equivalent to

min
Σ:‖Σ−Σ0‖≤ρ

b− x̄>w − (κ(α) + ν)
√
w>Σw ≥ 0.

Furthermore we know that (see [18, Appendix C], re-
placing the Frobenius norm by the spectral norm if
necessary)

max {w>Σw | ‖Σ− Σ0‖ ≤ ρ} = w>(Σ0 + ρI)w.

Finally, constraint (6) can be written

b− x̄>w ≥ (κ(α) + ν)
√
w>(Σ0 + ρI)w.

Hence solving the robust formulation (5) is equivalent
to solving

min
w

w>(Σ0 + ρI)w (7a)

s.t. b− x̄>w ≥ 1, (7b)

x>i w − b ≥ 0, ∀i ∈ I+. (7c)
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Remark 4. It is remarkable that the uncertainty in
the mean does not affect the solution of the problem
whereas the uncertainty in the variance yield an `2 reg-
ularization of the optimization problem.

However, the uncertainty in the mean will affect the
probability of negative error estimate

P
(
xTw] − b ≥ 0

)
≤ κ−1

( 1√
v]
− ν
)
, (8)

where w] (resp. v]) is the optimal solution (resp.
value) of Problem (7).

3 Other objectives

Our approach consists in maximizing the specificity of
the separating hyperplane, while correctly classifying
all the positive examples. Other elements might be
taken into account when looking for a classifier. In this
section we address some of these elements: soft margin
in §3.1, factor model representation of the covariance
matrix in §3.2 and non-linear kernel in §3.3.

3.1 Soft-margin

Similarly to SVM, the constraint that all positive ex-
amples should be correctly classified might be unreal-
istic in practice. We thus propose to relax these con-
straints by penalizing slack variables.

More precisely two formulation are readily available,
one can be derived from Problem (3) giving

min
w,ξ,η

w>Σw +
1

ν+|I+|
∑
i∈I+

ξi +
η

ν−
(9a)

s.t. b− x̄>w ≥ 1− η, (9b)

x>i w − b ≥ ξi, ∀i ∈ I+, (9c)

ξ ≥ 0, η ≥ 0. (9d)

This formulation is very close to differential cost SVM,
ν+ and ν− being parameters in (0, 1].

The second formulation is derived from Problem (4)
and gives

max
κ,w

w>Σw +
1

ν|I+|
∑
i∈I+

ξi (10a)

(xi − x̄)>w ≥ 1− ξi, ∀i ∈ I+. (10b)

This formulation is equivalent to soft-margin one-class
linear SVM applied to the preprocessed positive data
(see § 2.2 for more details). We call it Moment-based
imbalanced binary classifier of MIBC, and this is the
formulation used in the numerical experiments of § 4.

3.2 Factor model of the variance matrix

A factor model of the covariance matrix Σ is a couple
of matrices (D,F ) where D is diagonal and F ∈ Rn×k
is tall, such that Σ ≈ D + FF>. Finding the best
factor model is a well studied problem, with numerous
possible approaches (see [9, 10] and references therein).

We sketch a way of finding a good factor model from
a set of negative datapoints. Let X = [x1, . . . , x|I−|]
be the data matrix where each column is a negative
data point; x̄ be the empirical mean of the negative
points, and X̃ = [x1 − x̄, . . . , x|I−| − x̄] the centered
version of X. Without loss of generality1 we assume
that each feature (row of X) has variance equal to 1.
Consider the singular vector decomposition (svd) of X̃,
X̃ = USV >, where U and V are unitary matrices, and
S is diagonal with decreasing positive values. Then
we have Σ = 1/|I−|X̃X̃> = 1/|I−|US2U . From this
equality it is easy to see that

1/|I−|UkS2
kUk � Σ � 1/|I−|(UkS2

kUk + s2
k+1Id),

where Uk is composed of the k first left singular vec-
tors of X̃ (column of U), Sk is the diagonal matrix of
the k first singular values (values of S), and sk+1 is the
k + 1th singular value. The inequalities being under-
stood with respect to the cone of positive semidefinite
matrices.

From this analysis we suggest the following factor
model

D =
s2
k+1

|I−|
Id, F =

1

|I−|
UkSk (11)

and we have, for any vector w

wTFF>w ≤ wΣw> ≤ wT (D + FF>)w.

Hence, the optimal value of

min
w,z

wTDw + zT z

s.t. wT (xi − x̄) ≥ 1, ∀i ∈ I+

FTw = z

is an upper bound to the optimal value of Problem (4),
leading to an upper bound on the best negative error
probability we could achieve see Remark 2.

Remark 5. The k first singular vectors and values of
X̃ can be obtained in a number of way. In particular
if X is sparse (as, for example, in text analysis) it is
important to keep this feature in mind when computing

1In the general case scale each row of X by its standard
deviation, apply the described procedure, and multiply the
value of D by the corresponding variance, and the row of
F by the corresponding semideviation.
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the svd of X̃. For example power iteration method can
be adapted by remarking that

X̃X̃>v = X(X>w)− |I−|x̄(x̄>w).

Remark 6. Note that the simplest version of the pro-
posed process, with 0 singular vector considered, con-
sists in centering and normalizing the data by dividing
each features by its standard-deviation.

3.3 Kernelization

Our original problem (1) considered a linear classifier
wTx− b. However, it is sensible to look for non-linear
classifiers. The standard method in the SVM commu-
nity is known as the kernel trick.

The kernel trick consist in extending the feature space
and look for a linear classifier in the extended space.
More precisely we consider a feature function ϕ : Rn 7→
Φ, and we apply the linear methodology to the points
{ϕ(xi)}i∈I . The second part of the trick consist in
remarking that the optimal solution w is a linear com-
bination of the data points w =

∑
i∈I αiϕ(xi). Hence,

in the optimization problem we have to solve ϕ(xi)
only appear as a scalar product ϕ(xi)

>ϕ(xj). So if
we choose a feature function ϕ such that K(x, y) =
ϕ(x)>ϕ(y) is easy to compute the linear SVM opti-
mization problem in the extended space is as easy to
solve as the linear SVM optimization problem in the
original input space.

We have seen in Section 2.2 that Problem (1) (or its ro-
bust version) is equivalent to solving a one-class linear
SVM for the preprocessed positive class

x̂i = Σ−1/2(xi − x̄), i ∈ I+.

Hence, it is natural to try a Kernelized one-class
SVM to the preprocessed points {x̂i}i∈I+ . Prepro-
cessing the positive points could be time consuming
and lead to loss of any sparsity of original data. How-
ever, it is easy to see that for the most classical ker-
nels K (polynomial, Gaussian and sigmoidal) we have
K(x̂i, x̂j) = K̂(xi, xj) where K̂ is an easy to compute
function. In other word applying classical to the pre-
processed positive class is equivalent to apply a cus-
tomized kernel to the original points. You find in Ta-
ble 2 the definition of such customized kernel matrix.
As usual x̄ represent the mean of the negative class,
and Σ its covariance matrix (plus a scalar times the
identity matrix in a robust version taking into account
uncertainty on the covariance matrix).

Remark 7. One could think of replacing xi by ϕ(xi)
directly in Problem (1). However, following the same
steps as in the linear case yield an optimization prob-
lem with as many variable as positive and negative

points, negating one of the main interest of our ap-
proach: reducing the computational cost of the problem
by reducing the number of variables.

4 Numerical experiments

4.1 Small scale experiment: protein
classification

In this section, we present experiments performed on
small dimensional datasets. We compare our moment-
based imbalanced binary classifier (MIBC) with two
standard strategies for imbalanced classification prob-
lems, using SVMs: undersambling the negative class
and using different costs for the negative and positive
examples. We will use the liblinear [11] implementa-
tion of linear support vector machines, and an imple-
mentation of our approach using Mosek2. It is thus
important to note that our implementation is based
on a general purpose quadratic programming solver.
A custom implementation, for example based on the
SMO algorithm, should greatly improve the efficiency
of our moment-based imbalanced binary classifier.

Dataset # positive # negative ratio

PhosS 613 10,798 17
PhosT 140 9,051 64
PhosY 136 5,103 37
CaM 942 17,974 19

Table 1: Basic statistics about the different datasets.

4.1.1 Datasets

We evaluated the different methods on four datasets
introduced by [25], which are publicly available3.
These datasets correspond to protein classification
problems, such as predicting protein phosphorylation
sites (PhosT, PhosS, PhosY) or predicting binding
regions (CaM). Following the approach proposed by
[25], we keep the 150 features which are the most cor-
related to the class labels. The ratio of negative ex-
amples to positive ones varies from 17.6 to 64.6 on
the different datasets. Basic statistics about those are
given in Table 1.

4.1.2 Methodology

For each dataset, we use 50% of the examples as train-
ing set, 20% as validation set and 30% as test set.
For all methods, we chose C in the set {105, ..., 10−4}.
When undersampling the negative class, we keep as
many negative examples as positive examples. For

2www.mosek.com
3www.informatics.indiana.edu/predrag/publications.htm
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K(x̂i, x̂j) K̂(xi, xj)

Polynomial (x̂>i x̂j + c)p
(
x>i Σ−1xj − (Σ−1x̄)>(xi + xj) + c+ x̄>Σ−1x̄

)p
Gaussian e−γ‖x̂i−x̂j‖2 exp

(
− γ(xi − xj)>Σ−1(xi − xj)

)
Sigmoidal tanh

(
αx̂>i x̂j + c

)
tanh

(
αx>i Σ−1xj − (αΣ−1x̄)>(xi + xj) + c+ αx̄>Σ−1x̄

)
Figure 2: Standard kernel applied to preprocessed positive datapoints x̂i is equivalent to modified kernel K̂
applied to original positive datapoints.
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Figure 3: ROC curves, averaged over twenty experiments, on the PhosT and PhosY datasets.

This work Cost-sensitive Sampling

PhosS 77.2† ± 0.7 76.8± 0.8 74.3± 1.1
PhosT 77.4† ± 1.7 73.0± 2.0 72.0± 1.5
PhosY 76.2† ± 1.5 72.8± 1.7 70.1± 2.1
CaM 78.2± 0.5 78.1± 0.5 75.3± 0.4

Table 2: Areas under the ROC curve (with confidence
intervals), averaged over twenty experiments. † indi-
cates that our method is significantly better than the
two others, (with p-value p < 0.01).

the asymmetric cost function method, we consider the
following ratios between the weights of the positive
and negative examples: {1.0, r/4, r/2, r, 2r}, where r
is the ratio of number of negative examples to the num-
ber positive ones. We replicated the experiments over
twenty random splits of the data.

4.1.3 Discussion

We report areas under the ROC curve for the four
datasets in Table 2, computational times in Table 3

This work Cost-sensitive Speed-up

PhosS 146 325 2.2×
PhosT 23 112 4.8×
PhosY 19 41 2.1×
CaM 425 605 1.4×

Table 3: Computational times, in milliseconds, re-
quired to solve one problem, averaged over twenty ex-
periments.

and ROC curves for two datasets in Figure 3 (PhosT
and PhosY). We performed a paired samples t-test to
determine if our results are statistically significant.

First, we observe that our moment-based imbalanced
binary classifier always outperforms the undersam-
pling approach, while performing at least as well as
the cost sensitive method. Second, the two datasets
on which our method outperforms the asymmetric cost
function SVM (PhosT and PhosY) correspond to the
highest ratio of number of negative to positive exam-
ples (64 and 37 respectively). This seems to indicate
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Topic This work Cost-sensitive Sampling

2 89.7± 1.0 89.9± 1.4 87.7± 1.2
9 96.1± 0.7 96.3± 0.8 94.1± 1.3
25 95.1± 0.8 94.3± 1.6 93.7± 1.2
33 96.0± 0.4 95.7± 0.6 93.9± 0.7
59 96.1± 0.4 95.9± 1.4 95.0± 0.6
84 96.9± 0.8 96.4± 1.5 96.3± 0.9

Table 4: Areas under the ROC curve (with confidence
intervals), averaged over ten experiments. Differences
between our moment-based imbalanced binary classi-
fier and subsampling results are statistically significant
(with p-value p < 0.01).

that our method is particularly adapted to highly im-
balanced datasets. Finally, our method is computa-
tionally more efficient, leading to speed-up between
1.4 and 4.8 over cost-sensitive SVM, while obtaining
as good or even better statistical performances. We
remind our reader that we implemented our method
using Python and Mosek, and it is thus certainly pos-
sible to get much better performances.

4.2 Large scale experiment: text analysis

In this section, we report experiments performed on
the task of text classification. We will follow the same
methodology as described in the section 4.1.2. Since
bag-of-words representations of textual documents live
in high dimensional spaces, we propose to replace the
full covariance matrix of the negative class by its di-
agonal.

4.2.1 Dataset

We use the Reuters rcv1 dataset, introduced by
[19], which is a classical test bed for text classification
methods. Each document of the corpus is tagged with
respect to three different category sets: topics, indus-
tries and regions. We consider classification problems
that consist in classifying documents that are labeled
with a given topic label v.s. the rest of the documents.
There are 104 different topics, and we will thus con-
sider only a subset of the 104 possible classification
tasks. Since we want to focus on highly imbalanced
classification problems, we set the ratio of negative
examples to positive examples to 1, 000.

4.2.2 Discussion

We report areas under the ROC curve in Table 4, com-
putational times in Table 5. We performed a paired
samples t-test to determine if our results are statisti-
cally significant.

Topic This work Cost-sensitive Speed-up

2 33 1088 33×
9 49 1451 29×
25 56 1211 21×
33 74 1788 24×
59 62 1299 21×
84 56 2056 36×

Table 5: Computational times, in milliseconds, re-
quired to solve one problem, averaged over ten exper-
iments.

We observe that our moment-based imbalanced bi-
nary classifier achieves similar statistical performances
than the cost-sensitive method, while generally out-
performing the undersampling approach. Finally, our
approach to imbalanced classification is much more
computationally efficient than a SVM with asymmet-
ric costs, leading to speed-up between 21 and 36.
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