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Probabilistic Approach to One-Class Support Vector Machine

Classification is one of the main problem addressed by machine learning algorithms. Among them the Support Vector Machine (SVM) has attracted a lot of interest and shown success in the past decades. SVM are originally tailored for binary classification. If we have only a few example of negative dataset we can turn to one-class SVM.

In this paper we propose a probabilistic interpretation of the one-class SVM approach and an extension especially adapted in the case of highly imbalanced dataset. Indeed, we consider a binary classification problem where we represent the negative dataset by its two first moments, while still modeling the positive class by individual examples. The optimization problem is shown to have an equivalent formulation to a one-class SVM applied to the positive dataset after some preprocessing. The usual one-class SVM corresponding to the case where the negative class has mean 0 and identity variance.

We show empirically, on a protein classification task and a text classification task, that our approach achieves similar statistical performance than the two mainstream approaches to imbalanced classification problems, while being more computationally efficient.

Introduction

Binary classification consists in considering a set of data points {x i } i∈I each associated with a label y i ∈ {-1, 1}, and trying to find a classifier function that as-Preliminary work. Under review by AISTATS 2017. Do not distribute.

sociate to any new data point x a corresponding label y.

Recently SVM has been an increasingly successful method to train such binary classifiers (see [START_REF] Vladimir | Estimation of dependences based on empirical data[END_REF][START_REF] Christopher | A tutorial on support vector machines for pattern recognition[END_REF][START_REF] Vapnik | The nature of statistical learning theory[END_REF]). However, in some cases the classes can be highly imbalanced. Either because the number of negative example can be very small (novelty detection, see [START_REF] Schölkopf | Support vector method for novelty detection[END_REF][START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF][START_REF] Markou | Novelty detection: a reviewpart 1: statistical approaches[END_REF]), or because negative class is very large (e.g. text classification, object recognition).

For highly imbalanced datasets, a naive strategy that classifies all the examples as negative will achieves a very low classification error, since the vast majority of examples are indeed negative. Most classifiers that minimize the classification error thus lead to decision boundaries that are skewed with an important false negative rate. For most imbalanced problems, this is not acceptable, since the interesting class is the positive class. Another challenge comes from the huge number of examples from the negative class which is the bottleneck of the optimization algorithm. In both novelty detection and highly imbalanced classification a one-class SVM approach, that consider only the positive datapoints (see e.g. [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF]) have shown very good results.

Related work

Many different approaches have been proposed to deal with imbalanced datasets, and the corresponding literature is too large to be summarized here. We invite the interested reader to look at the extensive review of the subject [START_REF] He | Learning from imbalanced data. Knowledge and Data Engineering[END_REF].

A first class of methods for imbalanced learning is based on sampling: the idea is to sample a balanced training set from the original unbalanced set of examples. Such methods are based on undersampling the negative class [START_REF] Kubat | Addressing the curse of imbalanced training sets: one-sided selection[END_REF][START_REF] Batista | A study of the behavior of several methods for balancing machine learning training data[END_REF], or on (synthetic) oversampling of positive examples [START_REF] Nitesh V Chawla | Smote: Synthetic minority over-sampling technique[END_REF][START_REF] Batista | A study of the behavior of several methods for balancing machine learning training data[END_REF].

A second class of methods, referred to as cost sensitive learning, is based on assigning different misclassification costs to the negative and the positive examples [START_REF] Fan | Adacost: misclassification costsensitive boosting[END_REF][START_REF] Drummond | Exploiting the cost (in) sensitivity of decision tree splitting criteria[END_REF][START_REF] Zadrozny | Cost-sensitive learning by cost-proportionate example weighting[END_REF].

Finally, closely related to our approach, one-class SVM were also considered by [START_REF] Raskutti | Extreme re-balancing for svms: a case study[END_REF] in the case of extremely imbalanced datasets and for task of text classification by [START_REF] Larry | One-class svms for document classification[END_REF].

Contributions

In this paper we consider a probabilistic approach to the imbalanced classification problem where the negative class is only represented by its two first moments. We show that the optimization problem boils down to a one-class SVM with significant preprocessing of data exploiting informations of the negative class. In particular the usual one-class SVM consist in assuming that the negative class have mean 0 and identity for covariance matrix.

We make the following contributions:

• we propose a new formulation for the problem of imbalanced binary classification, inspired by the model of [START_REF] Lanckriet | A robust minimax approach to classification[END_REF], where the negative class is represented by its mean and its variance, while the positive class is represented by individual examples (section 2.1);

• we show that our approach give a theoretical justification to one-class support vector machines, as introduced by [28] (section 2.2);

• we show how to incorporate moments informations on the negative class to linear one-class SVM, and propose an extension to kernel oneclass SVM;

• we show that our approach is competitive with the two mainstream approaches to imbalanced classification problems (undersampling and asymmetric cost function) on two classification problems (sections 4.1 and 4.2).

Paper structure

The paper is organized as follow. § 2 present a probabilistic formulation of imbalanced binary classification and how it extend the linear one-class SVM formulation. § 3 discuss other elements that might be taken into account when looking for a classifier. § 4 presents two numerical applications of our approach.

Notations

Throughout the paper we use bold font to denote random variable and capital letter for matrices. Letter x ∈ R p correspond to data, y to the label, w to a classifier. I + (resp. I -) is the set of indexes of positively (resp. negatively) labeled datapoints.

A probabilistic approach to imbalanced classification

In this section, we propose a new formulation for solving the problem of imbalanced binary classification.

In order to cope with the large number of negative examples we model the negative class by its distribution instead of a set of examples. We assume that each negative example is an independent realization of an unknown probability distribution with known expectation and covariance (this last assumption will be weakened in § 2.3). Note that we do not assume that the distribution is Gaussian, nonetheless we show that such an assumption leads to the same formulation. On the other hand, we still represent the positive class by all its examples.

A probabilistic formulation

Let (x i ) i∈I + be a set of n positive training examples and let x and Σ be the mean and the covariance of the probability distribution of the negative class. In the following, we will always assume that the covariance matrix Σ is positive definite. This is not a strong assumption, since we can always add a small regularization term λI d to the covariance matrix (which can be interpreted as an uncertainty on the covariance matrix, see §2.3).

Our goal is to find the affine classifier (w, b) such that all the positive examples are correctly classified while maximizing the probability of correctly classifying examples drawn from the negative distribution. As we know only the two first moments of the negative class, we take the worst possible probability among those with mean x and covariance Σ:

max w,b inf x∼(x,Σ) P(w x -b ≤ 0), (1a) 
s.t. w x i -b ≥ 0, i ∈ I + . ( 1b 
)
where x ∼ (x, Σ), refers to the class of probability distributions with mean x and covariance Σ. In other words, our goal is to maximize the specificity of the separating hyperplane, while correctly classifying all the positive examples. Remark 1. If the mean x and variance Σ of the negative class is obtained from the empirical mean and variance of the negative set of datapoints, then the value of Problem (1) is a lower bound of the fraction of negative points {x i , i ∈ I -} rightly classified by its solution.

Indeed, the uniform distribution over the set of negative points {x i , i ∈ I -} is among the set of probability where the infimum is taken.

According to the following lemma from [START_REF] Lanckriet | A robust minimax approach to classification[END_REF], which is a consequence of a theorem by [START_REF] Albert W Marshall | Multivariate chebyshev inequalities[END_REF], the minimum speci-ficity over all probabilities with given mean and covariance has a geometric characterization:

Lemma 1. Let x ∈ R p , Σ ∈ R p×p a positive definite matrix, w ∈ R p such that w = 0, b ∈ R and α ∈ [0, 1). Then, the condition inf x∼(x,Σ) P b -x w ≥ 0 ≥ α, holds if and only if b -x w ≥ κ(α) √ w Σw, where κ(α) = α 1-α .
Using this result, the optimal hyperplane we are looking for is thus the optimal solution of the following optimization problem

max α,w,b α (2a) s.t. b -x w ≥ κ(α) √ w Σw, ( 2b 
)
x i w -b ≥ 0, ∀i ∈ I + . (2c) Since the function κ : α → α 1-α is increasing on [0, 1[, this problem is equivalent to max κ>=0,w,b κ s.t. b -x w ≥ κ √ w Σw, x i w -b ≥ 0, ∀i ∈ I + .
Note that κ being positive, w = 0 is the worst admissible solution. From now on we assume that there is a non-zero admissible solution, or in other words that x is not in the convex hull of positive points. This assumption can be relaxed through penalized slack variables (see §3.1).

Exploiting the homogeneity in the variable w, and the suboptimality of w = 0, we now impose that κ √ w Σw = 1, and since the function

x → 1/ √ x is decreasing we obtain min w w Σw (3a) s.t. b -x w ≥ 1, (3b) 
x i w -b ≥ 0, ∀i ∈ I + . ( 3c 
)
This problem is a convex program(see [START_REF] Stephen | Convex optimization[END_REF]), which has an interesting geometric interpretation: the optimal w is orthogonal -for the scalar product defined by the inverse covariance matrix-to the projection of x to the convex hull of the positive points. This interpretation is detailed in Annex A, and illustrated in Figure 1. Remark 2. Let v be the optimal value of Problem (3) and w an optimal solution. Then assuming that the first and second order moment of the negative class are exact, the negative misclassification probability P x T w -b ≥ 0 is bounded by v 1+v . By Remark 1, this bound is also an upper bound on the number of misclassified negative points.

Remark 3. If we assume that the distribution of the negative points is Gaussian with the given mean and variance, then we have

P x T w-b ≤ 0 = P N 0, 1 ≤ b-x T w √ w T Σw
. Hence, we obtain Problem (2), with κ(α) = Φ -1 (α), where Φ is the cumulative distribution function of the standard normal Gaussian distribution. In particular, an assumption of normality of the negative class also leads to Problem (3).

The only improvement a normality assumption bring is an improved negative error estimation, as we obtain

P X T w -b ≥ 0 = 1 -Φ 1 √ v ≤ v 1 + v .
In the next section we show how this formulation extend the one-class SVM formulation introduced by [START_REF] Schölkopf | Estimating the support of a high-dimensional distribution[END_REF].

Relation to support vector machines

If we assume that the covariance matrix Σ is equal to the identity matrix, then Program (3) is equivalent to hard margin SVM where the only negative point considered is the mean of the negative class. Furthermore, eliminating b from Problem (3), yields max w w Σw (4a)

(x i -x) w ≥ 1, ∀i ∈ I + . ( 4b 
)
If the mean x = 0, then we have a one-class SVM formulation. In other words, an hard-margin linear one-class SVM classifier is the classifier that truly classify every example while maximizing the probability of truly classifying a negative example assuming that the negative points are Gaussian centered in 0 with variance identity.

Formulation 4 allow to integrate first and second order information over the negative class. It is a one-class support vector machine formulation, where we minimize the Mahalanobis norm (corresponding to the covariance matrix of the negative class distribution) instead of the 2 norm, and separate the positive points from the mean of the negative class instead of the origin.

In other words, our formulation consist in applying one-class SVM to the set of points xi = Σ -1/2 (x i -x).

If this point of view is useful for interpretation, it is not numerically efficient. Indeed, computing Σ -1/2 can be challenging, and even the translation of the positive data might destroy some existing sparsity that could be numerically exploited.

Mahalanobis norm SVM has been used previously, especially in the case of one-class approach (see [32, 16, Figure 1: Geometric interpretation of our proposed formulation for imbalanced binary classification.

24, 13, 18] and references therein). However, to our knowledge, it has not been proposed to use the Mahalanobis norm relative to the negative class for binary classification.

Error in the estimation of the mean and covariance matrix

Until now we assumed that we have a perfect estimation of the mean x0 and covariance Σ 0 of the negative class, which might be unavailable. Estimating the covariance matrix is usually done either through the empirical covariance or with some sparsity inducing process. In both case there exists some bound on the error either in the Frobenius or spectral norm.

If we estimate the Σ 0 , by Σ = 1/|I -| i∈I -(x ix)(x i -x) T , then various assumptions (finite moment of order strictly greater than 2 and sub-exponential orthogonal projection [START_REF] Vershynin | How close is the sample covariance matrix to the actual covariance matrix[END_REF][START_REF] Srivastava | Covariance estimation for distributions with {2 + ε} moments[END_REF]; log-concavity and data bounded in O( |I -|) [START_REF] Law Adamczak | Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles[END_REF]) guarantee that for any fixed accuracy ε > 0, with high probability,

|I -| ≥ C ε p imply that Σ -Σ 0 ≤ ε Σ , where C ε is roughly pro- portional to 1/ε 2 .
With other regularity assumptions we require O(p log k (p)) negative datapoints (e.g. see [START_REF] Tikhomirov | Sample covariance matrices of heavy-tailed distributions[END_REF][START_REF] Vershynin | Introduction to the nonasymptotic analysis of random matrices[END_REF][START_REF] Shahar Mendelson | On the singular values of random matrices[END_REF]).

If we consider large dimensional dataset with unknown structure, sparse estimation is more relevant. A lot of recent work have given good guarantee in the spectral or Frobenius norm, from various approaches e.g. factor model [START_REF] Fan | High dimensional covariance matrix estimation using a factor model[END_REF] tresholding [START_REF] Peter | Covariance regularization by thresholding[END_REF][START_REF] Adam J Rothman | Generalized thresholding of large covariance matrices[END_REF][START_REF] El | Operator norm consistent estimation of large-dimensional sparse covariance matrices[END_REF] or banding [START_REF] Peter | Regularized estimation of large covariance matrices[END_REF].

Moreover, the central limit theorem show that, asymptotically, we have with high probability (x -

x0 ) T Σ -1 (x -x0 ) ≤ ν 2 .
To sum up, asymptotically, with high probability, the empirical estimates lies in

Q = {(x, Σ) | (x-x 0 ) T Σ -1 (x-x 0 ) ≤ ν 2 , Σ-Σ 0 ≤ ρ}.
We can take a robust approach over this set in the sense that we consider the worst mean and covariance in the set. More precisely we want to solve max

w,b inf (x,Σ)∈Q inf x∼(x,Σ) P(w x -b ≤ 0), (5a) s.t. w x i -b ≥ 0, ∀i ∈ I + . (5b) 
This amount to replacing constraint (2b) by inf

(x,Σ)∈Q b -x w -κ(α) √ w Σw ≥ 0. ( 6 
)
For a given Σ and w, we know that [18, Appendix B] max

x:(x-x0) T Σ -1 (x-x0)≤ν 2 x w = x 0 + ν √ w Σw.
Hence, constraint ( 6) is equivalent to min

Σ: Σ-Σ0 ≤ρ b -x w -(κ(α) + ν) √ w Σw ≥ 0.
Furthermore we know that (see [18, Appendix C], replacing the Frobenius norm by the spectral norm if necessary)

max {w Σw | Σ -Σ 0 ≤ ρ} = w (Σ 0 + ρI)w.
Finally, constraint (6) can be written b -x w ≥ (κ(α) + ν) w (Σ 0 + ρI)w.

Hence solving the robust formulation ( 5) is equivalent to solving

min w w (Σ 0 + ρI)w (7a) s.t. b -x w ≥ 1, (7b) 
x i w -b ≥ 0, ∀i ∈ I + . ( 7c 
)
Remark 4. It is remarkable that the uncertainty in the mean does not affect the solution of the problem whereas the uncertainty in the variance yield an 2 regularization of the optimization problem.

However, the uncertainty in the mean will affect the probability of negative error estimate

P x T w -b ≥ 0 ≤ κ -1 1 √ v -ν , (8) 
where w (resp. v ) is the optimal solution (resp. value) of Problem (7).

Other objectives

Our approach consists in maximizing the specificity of the separating hyperplane, while correctly classifying all the positive examples. Other elements might be taken into account when looking for a classifier. In this section we address some of these elements: soft margin in §3.1, factor model representation of the covariance matrix in §3.2 and non-linear kernel in §3.3.

Soft-margin

Similarly to SVM, the constraint that all positive examples should be correctly classified might be unrealistic in practice. We thus propose to relax these constraints by penalizing slack variables.

More precisely two formulation are readily available, one can be derived from Problem (3) giving min w,ξ,η

w Σw + 1 ν + |I + | i∈I + ξ i + η ν - (9a) s.t. b -x w ≥ 1 -η, (9b) 
x i w -b ≥ ξ i , ∀i ∈ I + , (9c) ξ ≥ 0, η ≥ 0. ( 9d 
)
This formulation is very close to differential cost SVM, ν + and ν -being parameters in (0, 1].

The second formulation is derived from Problem (4) and gives max κ,w

w Σw + 1 ν|I + | i∈I + ξ i (10a) (x i -x) w ≥ 1 -ξ i , ∀i ∈ I + . ( 10b 
)
This formulation is equivalent to soft-margin one-class linear SVM applied to the preprocessed positive data (see § 2.2 for more details). We call it Moment-based imbalanced binary classifier of MIBC, and this is the formulation used in the numerical experiments of § 4.

Factor model of the variance matrix

A factor model of the covariance matrix Σ is a couple of matrices (D, F ) where D is diagonal and F ∈ R n×k is tall, such that Σ ≈ D + F F . Finding the best factor model is a well studied problem, with numerous possible approaches (see [START_REF] Fan | High dimensional covariance matrix estimation using a factor model[END_REF][START_REF] Fan | High dimensional covariance matrix estimation in approximate factor models[END_REF] and references therein).

We sketch a way of finding a good factor model from a set of negative datapoints. Let X = [x 1 , . . . , x |I -| ] be the data matrix where each column is a negative data point; x be the empirical mean of the negative points, and X = [x 1 -x, . . . , x |I -| -x] the centered version of X. Without loss of generality1 we assume that each feature (row of X) has variance equal to 1.

Consider the singular vector decomposition (svd) of X, X = U SV , where U and V are unitary matrices, and S is diagonal with decreasing positive values. Then

we have Σ = 1/|I -| X X = 1/|I -|U S 2 U .
From this equality it is easy to see that

1/|I -|U k S 2 k U k Σ 1/|I -|(U k S 2 k U k + s 2 k+1 Id),
where U k is composed of the k first left singular vectors of X (column of U ), S k is the diagonal matrix of the k first singular values (values of S), and s k+1 is the k + 1th singular value. The inequalities being understood with respect to the cone of positive semidefinite matrices.

From this analysis we suggest the following factor model

D = s 2 k+1 |I -| Id, F = 1 |I -| U k S k (11) 
and we have, for any vector w

w T F F w ≤ wΣw ≤ w T (D + F F )w.
Hence, the optimal value of min w,z

w T Dw + z T z s.t. w T (x i -x) ≥ 1, ∀i ∈ I + F T w = z
is an upper bound to the optimal value of Problem (4), leading to an upper bound on the best negative error probability we could achieve see Remark 2.

Remark 5. The k first singular vectors and values of X can be obtained in a number of way. In particular if X is sparse (as, for example, in text analysis) it is important to keep this feature in mind when computing the svd of X. For example power iteration method can be adapted by remarking that

X X v = X(X w) -|I -|x(x w).
Remark 6. Note that the simplest version of the proposed process, with 0 singular vector considered, consists in centering and normalizing the data by dividing each features by its standard-deviation.

Kernelization

Our original problem (1) considered a linear classifier w T x -b. However, it is sensible to look for non-linear classifiers. The standard method in the SVM community is known as the kernel trick.

The kernel trick consist in extending the feature space and look for a linear classifier in the extended space. More precisely we consider a feature function ϕ : R n → Φ, and we apply the linear methodology to the points {ϕ(x i )} i∈I . The second part of the trick consist in remarking that the optimal solution w is a linear combination of the data points w = i∈I α i ϕ(x i ). Hence, in the optimization problem we have to solve ϕ(x i ) only appear as a scalar product ϕ(x i ) ϕ(x j ). So if we choose a feature function ϕ such that K(x, y) = ϕ(x) ϕ(y) is easy to compute the linear SVM optimization problem in the extended space is as easy to solve as the linear SVM optimization problem in the original input space.

We have seen in Section 2.2 that Problem (1) (or its robust version) is equivalent to solving a one-class linear SVM for the preprocessed positive class

xi = Σ -1/2 (x i -x), i ∈ I + .
Hence, it is natural to try a Kernelized one-class SVM to the preprocessed points {x i } i∈I + . Preprocessing the positive points could be time consuming and lead to loss of any sparsity of original data. However, it is easy to see that for the most classical kernels K (polynomial, Gaussian and sigmoidal) we have K(x i , xj ) = K(x i , x j ) where K is an easy to compute function. In other word applying classical to the preprocessed positive class is equivalent to apply a customized kernel to the original points. You find in Table 2 the definition of such customized kernel matrix.

As usual x represent the mean of the negative class, and Σ its covariance matrix (plus a scalar times the identity matrix in a robust version taking into account uncertainty on the covariance matrix).

Remark 7. One could think of replacing x i by ϕ(x i ) directly in Problem (1). However, following the same steps as in the linear case yield an optimization problem with as many variable as positive and negative points, negating one of the main interest of our approach: reducing the computational cost of the problem by reducing the number of variables.

4 Numerical experiments

Small scale experiment: protein classification

In this section, we present experiments performed on small dimensional datasets. We compare our momentbased imbalanced binary classifier (MIBC) with two standard strategies for imbalanced classification problems, using SVMs: undersambling the negative class and using different costs for the negative and positive examples. We will use the liblinear [START_REF] Fan | Liblinear: A library for large linear classification[END_REF] implementation of linear support vector machines, and an implementation of our approach using Mosek 

Datasets

We evaluated the different methods on four datasets introduced by [START_REF] Radivojac | Classification and knowledge discovery in protein databases[END_REF], which are publicly available 3 . These datasets correspond to protein classification problems, such as predicting protein phosphorylation sites (PhosT, PhosS, PhosY) or predicting binding regions (CaM). Following the approach proposed by [START_REF] Radivojac | Classification and knowledge discovery in protein databases[END_REF], we keep the 150 features which are the most correlated to the class labels. The ratio of negative examples to positive ones varies from 17.6 to 64.6 on the different datasets. Basic statistics about those are given in Table 1.

Methodology

For each dataset, we use 50% of the examples as training set, 20% as validation set and 30% as test set. For all methods, we chose C in the set {10 5 , ..., 10 -4 }. When undersampling the negative class, we keep as many negative examples as positive examples. For the asymmetric cost function method, we consider the following ratios between the weights of the positive and negative examples: {1.0, r/4, r/2, r, 2r}, where r is the ratio of number of negative examples to the number positive ones. We replicated the experiments over twenty random splits of the data.

K(x i , xj ) K(x i , x j ) Polynomial (x i xj + c) p x i Σ -1 x j -(Σ -1 x) (x i + x j ) + c + x Σ -1 x p Gaussian e -γ xi-xj 2 exp -γ(x i -x j ) Σ -1 (x i -x j ) Sigmoidal tanh αx i xj + c tanh αx i Σ -1 x j -(αΣ -1 x) (x i + x j ) + c + αx Σ -1 x

Discussion

We report areas under the ROC curve for the four datasets in Table 2, computational times in that our method is particularly adapted to highly imbalanced datasets. Finally, our method is computationally more efficient, leading to speed-up between 1.4 and 4.8 over cost-sensitive SVM, while obtaining as good or even better statistical performances. We remind our reader that we implemented our method using Python and Mosek, and it is thus certainly possible to get much better performances.

Large scale experiment: text analysis

In this section, we report experiments performed on the task of text classification. We will follow the same methodology as described in the section 4.1.2. Since bag-of-words representations of textual documents live in high dimensional spaces, we propose to replace the full covariance matrix of the negative class by its diagonal.

Dataset

We use the Reuters rcv1 dataset, introduced by [START_REF] David D Lewis | Rcv1: A new benchmark collection for text categorization research[END_REF], which is a classical test bed for text classification methods. Each document of the corpus is tagged with respect to three different category sets: topics, industries and regions. We consider classification problems that consist in classifying documents that are labeled with a given topic label v.s. the rest of the documents. There are 104 different topics, and we will thus consider only a subset of the 104 possible classification tasks. Since we want to focus on highly imbalanced classification problems, we set the ratio of negative examples to positive examples to 1, 000.

Discussion

We report areas under the ROC curve in We observe that our moment-based imbalanced binary classifier achieves similar statistical performances than the cost-sensitive method, while generally outperforming the undersampling approach. Finally, our approach to imbalanced classification is much more computationally efficient than a SVM with asymmetric costs, leading to speed-up between 21 and 36.
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 2 Figure 2: Standard kernel applied to preprocessed positive datapoints xi is equivalent to modified kernel K applied to original positive datapoints.

Figure 3 :

 3 Figure 3: ROC curves, averaged over twenty experiments, on the PhosT and PhosY datasets.

Table 1 :

 1 Basic statistics about the different datasets.

	2 . It is thus

Table 2 :

 2 Areas under the ROC curve (with confidence intervals), averaged over twenty experiments. † indicates that our method is significantly better than the two others, (with p-value p < 0.01).

		This work Cost-sensitive Sampling
	PhosS 77.2 † ± 0.7	76.8 ± 0.8	74.3 ± 1.1
	PhosT 77.4 † ± 1.7	73.0 ± 2.0	72.0 ± 1.5
	PhosY 76.2 † ± 1.5	72.8 ± 1.7	70.1 ± 2.1
	CaM	78.2 ± 0.5	78.1 ± 0.5	75.3 ± 0.4

Table 3

 3 This work Cost-sensitive Speed-up

	PhosS	146	325	2.2×
	PhosT	23	112	4.8×
	PhosY	19	41	2.1×
	CaM	425	605	1.4×

Table 3 :

 3 Computational times, in milliseconds, required to solve one problem, averaged over twenty experiments.

	and ROC curves for two datasets in Figure 3 (PhosT
	and PhosY). We performed a paired samples t-test to
	determine if our results are statistically significant.
	First, we observe that our moment-based imbalanced
	binary classifier always outperforms the undersam-
	pling approach, while performing at least as well as
	the cost sensitive method. Second, the two datasets
	on which our method outperforms the asymmetric cost
	function SVM (PhosT and PhosY) correspond to the
	highest ratio of number of negative to positive exam-
	ples (64 and 37 respectively). This seems to indicate

Table 4 ,

 4 computational times in Table5. We performed a paired samples t-test to determine if our results are statistically significant.

	Topic This work Cost-sensitive Speed-up
	2	33	1088	33×
	9	49	1451	29×
	25	56	1211	21×
	33	74	1788	24×
	59	62	1299	21×
	84	56	2056	36×

Table 5 :

 5 Computational times, in milliseconds, required to solve one problem, averaged over ten experiments.

In the general case scale each row of X by its standard deviation, apply the described procedure, and multiply the value of D by the corresponding variance, and the row of F by the corresponding semideviation.
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