
Robust and Accurate Line- and/or Point-Based
Pose Estimation without Manhattan Assumptions

Yohann Salaün1,2, Renaud Marlet1, and Pascal Monasse1
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Abstract. Usual Structure from Motion techniques based on feature points have
a hard time on scenes with little texture or presenting a single plane, as in in-
door environments. Line segments are more robust features in this case. We pro-
pose a novel geometrical criterion for two-view pose estimation using lines, that
does not assume a Manhattan world. We also define a parameterless (a contrario)
RANSAC-like method to discard calibration outliers and provide more robust
pose estimations, possibly using points as well when available. Last, we provide
quantitative experimental data that illustrate failure cases of other methods and
that show how our approach outperforms them, both in robustness and accuracy.

1 Introduction

Structure from Motion (SfM) techniques are now able to reliably recover the relative
pose of cameras (external calibration) in many common settings, enabling 3D recon-
struction from images as well as robotic navigation (SLAM). However, they still have
a hard time in a number of practical situations, in particular in indoor environments,
where surfaces are mainly planar with little or no texture. The fact is SfM techniques
are mostly based on the detection of salient points, and such points are scarce in in-
door settings and may occur in degenerate configurations, on a single plane. As a result,
camera calibration can fail or yield inaccurate pose estimation.

Furthermore, a number of 3D reconstruction applications call for a reduced number
of images to lower the acquisition burden. For instance, when a whole building is to
be captured to generate a building information model (BIM), being able to only take a
few pictures per room is more cost effective. It may even be compulsory for renovation
companies, that have only a short and limited access to a building before submitting a
tender. In this commercial stage, they do not look for the most accurate 3D information
but for one that is easy to capture and reliable enough to construct a sound bid. Some
other companies also propose 3D tools and services to rethink the layout of rooms,
possibly placing furniture advertisement too. For private individuals not to be dissuaded
to run into this process, it must be easy for them to get a well approximated 3D view
of their accommodation using only a few pictures. But lowering the number of images
means that the baseline and view angle between two consecutive images are wider, and
the image overlap is reduced. As a result, there are fewer salient points that are visible
from at least two images, some matches are missed due to distorted feature descriptors,
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Fig. 1. To register two images, we use the relation between reprojected parallel 3D lines. It allows
a more robust and accurate calibration in indoor scenes when points fail to calibrate.

mismatch rate is higher due to matching threshold relaxation, and match location is less
accurate due to perspective distortion at detection.

To circumvent these shortcomings, line segments have been proposed as robust fea-
tures for camera calibration. In fact, line segments can be detected even in textureless
images. Besides, while at least 5 points are required for motion estimation (essential
matrix computation in the non-planar case), only 3 lines are enough under some condi-
tions. Last, many lines segments correspond to actual 3D edges or to lines drawn on a
planar surface, and are thus robust to strong viewpoint changes. Note however that only
the line direction is actually robust, neither the segment end points in 2D nor the line
position in 3D. Indeed, end points are not accurately detected in images and are often
significantly wrong, as over-segmentation is common due to weak gradients and noise.
Moreover, although the occluding edges of rounded objects such as round pillars and
trees (visible edges of a cylinder) have a different location under different views, the
3D direction of the corresponding line segments stays the same.

A straightforward approach to camera rotation estimation with lines is to estimate
vanishing points (VPs) in images based on detected line segments, to match these VPs,
and to define the rotation between the two images as the rotation that best sends each
3D VP direction in one image to its corresponding 3D VP direction in the other image.
However, such a calibration has a poor accuracy. The reason is that existing methods for
VP detection are not assessed on motion estimation; they are generally tuned regarding
line clustering capacities as well as zenith and horizon estimation [1,2], with arbitrary
ground truths. Moreover, VPs are theoretical constructs; they are not real. They abstract
the fact that actual object lines that are more or less parallel, more or less converge to
the same area. But lines on objects are never perfectly parallel and objects, including
buildings, are never perfectly parallel one to another. (The same goes for orthogonality.)
The fact is multiple VPs are often detected for a single “logical” vanishing direction.
This is in contrast with actual 3D points on objects, which exist per se, independently of
other points, although locating identical points on different images may be inaccurate.

Elqursh and Elgammal [3] proposed a 3-line approach for camera pose estimation.
They consider a triplet of 3D lines L0, L1, L2 such that L0 ‖ L1, having a 3D direc-
tion d1, and L2 ⊥ L0, L1, having a 3D direction d2. Given a reprojection of these 3D



Line- and/or Point-Based Pose Estimation without Manhattan Assumptions 3

lines on a image as (l0, l1, l2), d1 can be recovered as the vanishing point correspond-
ing to (l0, l1), given by the intersection of l0 and l1, and d2 as the direction orthogonal
to d1 that belongs to l2 when seen as a 2D point. Considering similar reprojections on a
second image, a camera motion can be computed as the rotation that best sends (d1, d2)
estimated from image 1 to (d′1, d

′
2) estimated from image 2. We show in this paper that

it leads to more accurate rotations than using the average VPs. Our interpretation is
that VPs prematurely aggregate vanishing lines. On the contrary, the 3-line approach
considers the contribution of each vanishing line independently (actually by pairs of
orthogonal directions), which is less sensitive to coarse parallelism. Besides, filtering
triplets with a RANSAC-like procedure to only keep inliers within an angular threshold
of the rotation considered as model leads to an even more accurate rotation.

Yet, this method has a number of drawbacks. First, it assumes that some vanishing
directions are orthogonal and that there are enough triplet samples of line segments of
this kind for a significant group of inliers to emerge. Second, to estimate the translation,
which requires points contrary to rotation estimation, this method only considers line
intersection information (assuming lines are coplanar), which are poor cues; it does
not exploit detected points when some are available, although they could improve the
calibration. Third, the final refinement stage, a Levenberg-Marquardt optimization with
free rotation and translation, only involves error measures of points, which can lead to
degenerate cases and degrade the rotation estimation when points are mostly planar.

In this paper, we propose a novel approach for two-view pose estimation using
lines, without Manhattan-world assumptions (Fig. 1). The key idea is to consider pairs
of supposedly parallel lines. Each pair identifies a vanishing direction, and two such
pairs are thus enough to define a rotation, without any orthogonality constraint. This
formulation generalizes well to robust estimation. Our contributions are the following:

– We present a line-based orthogonality-free geometric criterion for pose estimation.
– We turn it into a robust method, possibly combining with point detections if any.
– We construct a parameterless (a contrario) version of this robust method.
– We provide quantitative experimental data that illustrate failure cases of calibrating

with points only or with the 3-line method, and show that our approach consistently
outperforms other methods, providing the best of both the line and point worlds.

2 Related Work

Lines alone do not provide enough information about the relative pose between two
images [4,5]. That is why the usual scheme for line-based calibration uses the trifocal
tensor [6], relying on triplets of pictures to estimate relative poses. In this setting, 3D
lines can then be reconstructed and refined with the motion [7], possibly under some
Manhattan-world assumption [8]. In [9], the authors developed a whole framework to
calibrate a scene from lines only. However, this approach needs 13 triplets of matched
lines between pictures. This requires in practice a large overlap between pictures, and
the presence of many inliers. In contrast, our method can calibrate a pair of images for
either small baselines (e.g., for SLAM) or wide baselines (e.g., for 3D reconstruction).

Using a device to shoot two stereo pictures at a time, calibrating image pairs using
lines becomes simpler than with the trifocal tensor [10]. In this setting, points too have
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been used in addition to lines, but with a small baseline (SLAM) and again with trifocal
constraints [11]. This category of methods does not apply to an arbitrary set of pictures.

To get rid of the requirements imposed by the trifocal tensor, other approaches as-
sume additional constraints on lines. The main such constraint is a Manhattan-world
assumption [12]. However, it reduces the applicability to specific (although common)
scenes as it requires that at least 3 dominant directions are found and that all these
directions are orthogonal. Elqursh and Elgammal [3] only use local parallelism and
orthogonality hypotheses to estimate motion from lines, but it remains a theoretical
and practical limitation. Besides their method disregards points that could be detected,
which misses an opportunity for greater accuracy. Their refinement stage may also de-
grade the solution as it gives little importance to pure line constraints.

Assuming that matched line segments in two images overlap in 3D (as opposed
to just defining a common direction) and supposing that this overlap is maximal, it is
possible to recover both the motion and the 3D line structure [5]. However, as mentioned
in the introduction, over-segmentation is frequent and the overlap constraint is thus too
strong for practical cases. A related approach, based on segment midpoints constrained
to move only along the line direction has been proposed [13], not requiring overlap but
still sensitive to over-segmentation. Besides, both approaches require non planar scenes.

Another family of approaches use junctions at line intersections, reducing to a point
problem [14,15]. However, as shown below, these points are not accurately located. And
again, it does not address the degenerate case of points lying on a single plane.

Non-Manhattan scenes have been addressed too, but in a setting with a very small
baseline (e.g., for SLAM) where the motion can be predicted from one frame to an-
other [16]. Besides, the estimated motion is based on estimated VPs, which has a lower
accuracy than directly using lines, as argued above and shown below. Still, a common
approach to estimate the camera motion is to map vanishing points in one image to
vanishing points in the other image, possibly assuming there exist three mutually or-
thogonal vanishing points [17,8], possibly in conjunction with points [18,19].

3 Pose Estimation from Lines

We consider a set of 3D lines viewed by two cameras and, when available, a set of 3D
points also viewed by the cameras. We write l̂ and p̂ the projections on the first camera
of a 3D line L and a 3D point P . We note m̂ and q̂ their projection on the second
camera. We use homogeneous coordinates to represent the lines and points.

Without loss of generality, we suppose the first and second camera projection ma-
trices are respectively K[I|0] and K ′[R|t], where R and t are the rotation and the trans-
lation direction we want to estimate. We assume the internal parameters K,K ′ of the
cameras are known and we note C,C ′ the camera centers. Given a 3D line L, we con-
sider the normal l = K−T l̂ to the plane passing through C and L; and given a 3D
point P , we consider the 3D point direction p = K−1p̂.

3.1 Vanishing Point of Two Parallel Lines

Let Li, Lj be two parallel 3D lines. Their 2D projection li, lj intersect at a vanishing
point li × lj , that can be seen both as a 2D point in the image and as the common
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3D direction of lines Li, Lj . The normalized direction of this vanishing point is uij =
li×lj
||li×lj || . Similarly, the projectionsmi andmj on the second image intersect at vanishing

point vij =
mi×mj

||mi×mj || , which also represents the common direction of lines Li, Lj . The
orientation of cameras being related by rotation R, we thus have:

Ruij = sij vij , (1)

where sij = ±1, as the direction is not oriented.

3.2 Rotation Estimation from Two Pairs of Parallel Lines

We consider two such pairs of parallel lines, with corresponding VP directions u1, u2
for the first camera and v1, v2 for the second camera. The rotation R satisfies

Ru1 = s1v1 + ε1 Ru2 = s2v2 + ε2 with s1, s2 = ±1, (2)

and ε1 = ε2 = 0. Due to noise, no rotation may achieve these conditions. Still, the
rotation R̂ that satisfies at best (2), in the sense that it minimizes ‖ε1‖2 + ‖ε2‖2, can be
computed as R̂ = ABT where AΣBT is the singular value decomposition (SVD) of
3×3 matrixM = s1v1u

T
1 +s2v2u

T
2 [20]. Getting only an approximate rotation matters

little here because it is just to be used in a RANSAC framework to select inliers, from
which a refined rotation is then computed.

As signs s1, s2 are unknown, 4 rotation matrices are possible solutions. The rotation
matrix to retain can be chosen either with a geometric criterion (e.g., the rotation that
has the largest number of features in front of both cameras) or an angular criterion (e.g.,
the rotation whose angle is less than 90◦). As degenerate cases can occur if the parallel
lines used to compute R̂ belong to the same or to close vanishing points, a practical
heuristics is to check that vanishing directions u1 and u2 differ by at least a given angle
(5◦ in our experiments), and likewise for v1 and v2.

3.3 Translation Estimation

The translation t can only be computed up to a scale factor, and its direction cannot be
estimated just from lines without extra constraints. Still, once the rotation R is com-
puted, the translation direction can be estimated from two point correspondences.

Two non-parallel coplanar 3D lines intersect at a 3D point, and their 2D projec-
tions intersect at corresponding 2D points. Given two such 2D points p1, p2, with
correspondence q1, q2 in the second image, we should have (Rpi × qi)

T t = 0. A
translation direction can thus be defined as arg min‖t‖2=1

∑2
i=1((Rpi × qi)T t)2 and

computed as the vector associated to the lowest singular value of the 3 × 3 matrix∑2
i=1(Rpi × qi)(Rpi × qi)T .
Instead of relying only on points corresponding to line intersections hypotheses as in

[3], we also consider using detected feature points when available. The fact is that even
in low-textured scenes, a few good points can often been detected and matched. Besides,
point correspondences originating from detections are often more accurate than line
intersections, and there are less mismatches than when considering the intersection of
any two lines, as they are not necessarily coplanar. Experiments show that detected
points, if any, contribute to a better accuracy (see Sect. 7.3).
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4 Robust Pose Estimation

4.1 Robust Rotation Estimation

For a robust rotation estimation, we use a RANSAC method where we sample line pairs.
At each iteration, we randomly pick 2 different VPs, and then 2 lines for each VP, which
are thus likely to be 3D-parallel. These two line pairs define a rotation R, as described
in Sect. 3. Any other line pair (li, lj), with matches (mi,mj), is then considered as an
inlier for model R iff the following angle

dlines(li, lj ,mi,mj) = ∠(R(li × lj),mi ×mj) (3)

is less than a given threshold (2◦ in our experiments). This angle measures the discrep-
ancy between the two vanishing directions defined by (li, lj) and (mi, mj).

Given the rotation hypothesis R̃ maximizing the number n of inliers, a better ro-
tation R̄ can then be re-estimated from all inliers. For this, we rely on the same tool
used in [3]: considering that each inlier (li, lj ,mi,mj) defines two vanishing directions
uij , vij which should be equal up to R, cf. (1), the best rotation can be defined as

R̄ = arg min
RTR=I

‖RU − V ‖F (4)

where ‖.‖F is the Frobenius norm, U and V are the 3 × n concatenations of the col-
umn vectors uij and sijvij , and sij is the sign that best sends uij to sijvij , i.e., with
the lowest ∠(R̃uij , sij vij). The solution to this orthogonal Procrustes problem can be
obtained as the projection of the 3×3 matrixM = V UT onto the set of orthogonal ma-
trices, easily derived from the SVD M = AΣBT , as R̄ = ABT [21]. (This estimation
actually generalizes the estimation used in the two line pairs case, cf. Sect. 3.2.)

4.2 Robust Translation Estimation

For a robust translation estimation, given an estimated rotation, we use a RANSAC
method where we sample points. A point can be picked by sampling two lines belonging
to two different VP clusters (as their intersection is meaningless for translation if they
belong to the same VP), or by sampling a detected point, if any (see Sect. 3).

For a more homogeneous treatment of points w.r.t. lines, we do not use the standard
point reprojection error, measured in pixels. We rely on a new distance function that
provides an angular error measure, as defined below. The threshold to decide whether
a point is an inlier w.r.t. a translation hypothesis can thus be the same as for line pairs
with a rotation hypothesis (2◦ in our experiments).

For any point pi in the first image, with correspondence qi in the second image,
Rpi + t should be equal to qi up to a scale factor. As the magnitude of t cannot be
known, this relation is better exploited by considering the cross product with t, i.e.,
Rpi × t should be collinear to qi × t. This can be seen as the equality of the normals or
the epipolar planes CC ′pi and CC ′qi. This leads to the following angle error measure:

dpoints(pi, qi) = ∠(Rpi × t, qi × t) (5)

The robust translation direction t̃ maximizes the number of point inliers w.r.t. dpoints.



Line- and/or Point-Based Pose Estimation without Manhattan Assumptions 7

4.3 Non-Linear Refinement

As for the rotation, the best translation hypothesis t̃ can be re-estimated using all inliers.
We actually refine simultaneously bothR and tw.r.t. found inliers. For this, we define an
energy combining homogeneously line and point constraints, based on angular errors:

Clines(R) =
∑

ij inlier line pair

‖Ruij × sijvij‖2 (6)

Cpoints(R, t) =
∑

i inlier point

∥∥∥∥ (Rpi × t)T

||Rpi × t||
× qi × t
||qi × t||

∥∥∥∥2 (7)

We then use the Levenberg-Marquardt (LM) algorithm to minimize the sum of these two
functions, starting from the estimated motion R̄ and t̃, to obtain a refined calibration:

(R?, t?) = arg min
R,t

Clines(R) + Cpoints(R, t) (8)

In [3], the authors also use a refinement process, but it mainly takes points into account
and only soft constraints for lines. Experiments have shown that it tends to deteriorate
the solution in scenes where points cannot calibrate (see Sect. 7.4).

5 Robust Pose Estimation From Lines and Points

Feature points, when detected, are not only useful for translation estimation (cf. Sects. 3.3
and 4.2). They can also be used for the whole motion estimation, as in traditional SfM.
In fact, since points generally lead to very accurate calibrations and as lines are more
robust to degenerate cases, an appropriate use of both kinds of features should lead to
more robustness and higher accuracy.

To benefit from the best of both worlds, we consider a mixed method where models
are alternatively sampled as follows and we keep the pose that maximizes the total
number of inliers:

– We draw 2 line pairs to estimate a rotation (cf. Sect. 4.1), then 2 points to esti-
mate a translation (cf. Sect. 4.2). These points may indifferently correspond to line
intersections or to detected points as they are drawn from a single merged set.

– Or we draw 5 points to get an essential matrix, thus a rotation and translation [22].

6 Robust Parameterless a contrario Pose Estimation

To avoid the burden of having to explicitly choose a distance threshold in RANSAC,
which is data-specific, we use the a contrario theory (AC). In this setting, line and pos-
sibly point inliers are automatically selected without having to set specific thresholds.
Moreover, Moulon et al. [23] have shown that such a parameterless AC-RANSAC per-
forms better than standard RANSAC, not only because it relies on optimal thresholds
but also because it can adapt to data variation within a single dataset.
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6.1 Number of False Alarms (NFA)

In the framework of the a contrario theory, the accuracy of a set of inliers w.r.t. a model
is measured using the Number of False Alarms (NFA). This NFA is an upper-bound
approximation of the expected number of models of equivalent accuracy obtained with
all possible combinations drawn from n random features following a given background
model. In this setting, models with high expectations are considered less meaningful
than models with low expectations because they are more likely to be found with ran-
dom features that have no real meaning.

The AC theory has been applied to robust Fundamental matrix estimation from point
features [24,25], and generalized to any geometric model [26]. The general formula is:

NFA(n, k, ε) = Noutcomes(n−Nsample)

(
n

k

)(
k

Nsample

)
p(ε)k−Nsample (9)

where Nsample is the number of samples needed to estimate one model, Noutcomes is
the maximum number of models estimated from a given sampling, k is the number of
hypothesized inlier correspondences, and p(ε) is the probability for a random feature
following the background model to be at a distance lower than ε of the estimated model.

6.2 NFA for Rotation Estimation From Lines

As in [24], we suppose that our background model consists of uniform and independent
random lines distributed in the image. The estimated model is a rotation matrix, and
because of sign ambiguity, Noutcomes = 4 different rotations can be obtained from a
sample of Nsample = 4 lines, treated as two line pairs (cf. Sect. 3.2). Thus:

NFAlines(nlines, klines, ε) = 4(nlines − 4)

(
nlines
klines

)(
klines

4

)
pline(ε)

klines−4. (10)

Given a single random line, there is not enough information to compute its actual dis-
tance to the model. Yet, we can approximate such a distance from the distance, to the
model, of 3D-parallel line pairs (Eq. (3)) that contain this line. We actually define the
error of a single line li and its match mi w.r.t. a rotation model R as:

dline(li,mi, R) = min
Lj‖Li

dlines(li, lj ,mi,mj). (11)

Here, pline(ε) is the probability for a random 3D line to have the correct direction up
to an angular error of ε. This probability can be expressed as the relative area of two
spherical caps of the unit sphere:

pline(ε) = P(dline(li,mi, R) ≤ ε) =
2 Acap(ε)

Asphere
=

4π(1− cos ε)

4π
= 1− cos ε. (12)

At each RANSAC iteration, we evaluate the distance of every line to the estimated
rotation and sort them by increasing distance. The NFA of this rotation is given by:

NFA(R) = min
k∈[4,nlines]

NFAlines(nlines, k, dline(lk,mk, R)), (13)

where (lk,mk) is the k-th line after distance sorting. The final rotation is the rotation
with the lowest NFA after all RANSAC iterations.



Line- and/or Point-Based Pose Estimation without Manhattan Assumptions 9

6.3 NFA for Motion Estimation From Lines and Points

We now combine lines and point features into a unified AC framework for pose estima-
tion. More precisely, we provide a parameterless AC variant of the method in Sect. 5,
where we alternatively draw 2× 2 lines plus 2 points, or just 5 points.

As mixing heterogeneous samplings is complex, we make a number of approxi-
mations. We merge all line and point features into a single set, and consider the event
“randomly pick a motion that has k ε-accurate inliers (lines and/or points) among a
total of n = nlines + npoints features”. We are interested in samples of Nsample = 6
features, considering additionally that the only samples from which we can build a
valid model consist either of 2 × 2 lines plus 2 points, or at least 5 points. All other
kinds of samples (with another proportion of lines and points among 6 features) are
disregarded and treated as if no model could be constructed from them. In this set-
ting, the maximum number of possible motions that are compatible with the sample is
Noutcomes = max(4, 10) and we define the following approximate NFA:

NFA(n, k, ε) = 10(n− 6)

(
n

k

)(
k

6

)
p(ε)k−6. (14)

Here, we consider that we still have p(ε) = 1−cos ε since we compare the 3D directions
of either 3D lines or epipolar plane normals.

At each RANSAC iteration, we evaluate the angular distances of every line and
point to the estimated pose (R, t) and sort them by increasing value. The NFA is here:

NFA(R, t) = min
k∈[6,n]

NFA(n, k, d(fk, gk, R, t)), (15)

where fk is the k-th feature after distance sorting, and gk its match. The final pose is
the one that has the lowest NFA after all RANSAC iterations.

7 Experiments

To compare and assess the different methods, we experiment on real and synthetic data.
(More details on the experiments are provided in the supplementary material.)

Datasets. Synthetic datasets are described below. Our real datasets (Fig. 2) consist of:

– Office: office room with more or less Manhattan directions and little texture,
– Strecha et al.’s dataset [27]: several outdoor scenes (e.g., castle courtyard), which

is a de facto standard for evaluating camera calibration methods,
– Building: a V-shaped building featuring some non-orthogonal lines,
– Car: the close view of a car in the street, with no particular line alignments.

A ground-truth motion is available for all datasets.
For all experiments, line segments are detected with a variant of LSD [28] that de-

tects lines at different scales and reduces over-segmentation [29]. They are then matched
with LBD [30]. We also detect and match possible feature points with SIFT [31].
Matches are then filtered with K-VLD [32]. In this setting, the resulting line segments
and points contain few mismatches. We cluster lines using the vanishing point detector
of Almansa et al. [33]. Line clusters are then further merged with a greedy strategy if
their vanishing directions are similar up to a given threshold (5◦ in our experiments).
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Fig. 2. Sample of pictures from datasets (left to right) Building, Car and Office.

Compared methods. We consider the following methods for comparison:

– Best VP: a rotation estimation only, based on detected vanishing points. VPs in
different images are greedily matched based on line matches (largest number of
matches in common). As it is common that some VPs are inaccurate or under-
represented w.r.t. support lines, there are often only two reliable VPs. For this rea-
son, we consider rotations originating only from a pair of VPs. Besides, to provide
a strong baseline to compare with other methods, we actually consider all rotations
estimated from all VP pairs and keep the one that is the closest to the ground truth.

– 5-point: pose estimation via essential matrix computation from 5 points [22], using
AC-RANSAC as it performs better than standard (fixed-threshold) RANSAC [23].

– 4-point: pose estimation via homography matrix computed from 4 points in an a
contrario framework [26], supposed to deal better with planar scenes.

– 3-line: the method developed in [3], using arrangements of line triplets to estimate
the pose. The RANSAC error threshold for rotation estimation is 2◦ as in the paper.

– 3-line + SIFT: a variant of 3-line where SIFT detections are added to line intersec-
tions for translation estimation.

– 2× 2-line: our method based on pairs of parallel lines to estimate the rotation, with
possible SIFT points for translation (cf. Sect. 4). RANSAC threshold is 2◦ too.

– mixed: the combination of our 2 × 2-line method and the 5-point method in a
classical RANSAC framework (cf. Sect. 5).

– AC-mixed: our a contrario variant of the mixed method (cf. Sect. 6).

We use the angular refinement presented in Sect. 4.3 implemented with the Ceres li-
brary [34]. Note that for points methods, our experiments have shown that the angular
refinement is as accurate as the epipolar distance refinement.

7.1 Sensitivity to Noise

To study the impact of noise on pose estimation, we resort to synthetic data. We test
only line-based methods as it is not clear how to relate noise models for lines and for
points. We consider the following realistic common configurations (see Fig. 3):

– Planar: lines along 2 orthogonal directions on a single plane,
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Fig. 3. Configurations: Planar (left), Manhattan (middle), Quasi-Manhattan (right).
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Fig. 4. Left: impact of noise in Manhattan scenes. Right: impact of the rate of orthogonal lines.

– Manhattan: lines along 3 orthogonal directions on multiple planes.

For each scene, we generate 100 random 3D line segments on the planes with a uniform
distribution on the different directions, and we generate 2 camera positions on a circle
around the scene with an angle of 45◦ between them. Each line is projected on both
views and we add a Gaussian noise with standard deviation σ to shift all line end points.
Line matches and VP clusters are given as input to each method to avoid any bias. For
each configuration, we randomly generate 100 such scenes to get average results.

We study in Fig. 4 the rotation accuracy as a function of noise σ, varying between
0% and 0.5% of the image size. The 2× 2-line method is more accurate than the 3-line
method, even in the Manhattan configuration for which the 3-line method is designed.

7.2 Sensitivity to Manhattan-ness

Figure 3 studies the impact of Manhattan-ness, in another synthetic configuration:

– Quasi-Manhattan: lines along 3 directions d1, d2, d3 such that d1 ⊥ d2, d3 and
d̂2, d3 = 120◦, on multiple planes.

The noise σ is set here to a medium value (0.2% of image size), and we vary the rate
of lines in the vertical direction d1, between 0% and 30% of the 100 sampled lines, for
100 random scenes. As observed in Fig. 4, the 3-line method is not robust to a low rate
of orthogonal lines, whereas our 2× 2-line method is unaffected.
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Fig. 5. Left: rotation error on image pairs of datasets Building (index Bi,i+1) and Car (index
Cj,j+1), in a row. Right: translation error on image pairs of the Office dataset.

As for real data, we consider the Building dataset, which is analogous to the above
synthetic test configuration, due to the V shape of the building, as well as the Car
dataset, which is inherently non-Manhattan and which features only weak vanishing
points. Results are shown on the left of Fig. 5. The 3-line method fails on both datasets,
with rotation errors mostly above 5◦, sometimes higher than 20◦. In constrast, our 2×2-
line method is robust, even on the Car dataset, with errors mostly under 2◦.

7.3 Line Intersections vs Detected Feature Points

We now study the impact of points on translation accuracy. As argued in Sect. 3.3,
we propose to use points, if detected, together with line intersections to get a good
tradeoff: benefiting from accurate point detections when available, but always having
line intersections as backup in case no point is detected and matched.

We consider the 3-line method, that originally only uses line intersection points [3];
we just add detected points to intersections for translation estimation. We experiment
with Office, a low-textured dataset featuring only a few SIFT points (about 30 on av-
erage). Results are shown on the right of Fig. 5. The combination of detections with
line intersections yields a far more robust and accurate estimation than with intersec-
tions alone — even though these detected points alone are not enough to provide a good
calibration (cf. Table 1). Results are similar with the 2× 2-line method.

7.4 Sensitivity to Motion Refinement

To study the sensitivity of the final motion estimation refinement (LM), we compare
the 3-line method [3], whose refinement uses hard point constraints and (indirectly)
soft line constraints, with the refinement in our 2 × 2-line method, which balances
equally line and point constraints. For this, we compute estimation errors before and
after refinement. We also compare with the 5-point method to illustrate the deterioration
effect observed with the 3-line method refinement. We use Office, a dataset that points
alone fail to calibrate well because of the lack of texture, and Strecha’s Herz-Jesu-P8
scene [27], where calibration based on points succeeds very well.

Figure 6 shows the results. Refining using line intersections only, as in the original
3-line method [3], often provides a poor calibration. As the refinement in [3] uses only
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Fig. 6. Rotation error for image pairs in datasets Office (left) and Strecha’s Herz-Jesu-P8 (right).
Reported methods do not use their final refinement stage (Levenberg-Marquardt, LM) unless
otherwise mentioned. The curve for “2×2-lines + LM” is often hidden by the “2×2-line” curve.

points, the 3-line+SIFT method tends to behave as the 5-point method, which reduces
the interest of using lines: it improves or deteriorates the initial estimation, depending on
the ability of points to calibrate the image pair. In Herz-Jesu-P8, as the 5-point method
is extremely accurate, refinement is better for 3-line+SIFT than for 2 × 2-line. How-
ever, for scenes not calibrated by points such as Office, the refinement for 3-line+SIFT
degrades the original solution whereas our refinement always improves it.

7.5 Robustness and Accuracy of Rotation Estimation

As translation estimation is very sensitive to rotation errors, we study rotation estima-
tion. Table 1 confirms that (i) VPs alone do not provide reliable results, alternating ac-
curate and poor estimations. (ii) Point methods are very accurate but lack of robustness
in low-textured scenes. (iii) Line methods are robust to the lack of texture. However, the
3-line method is mostly limited to Manhattan scenes, contrary to our 2×2-line method,
which systematically outperforms the 3-line method, even on Manhattan scenes.

Table 1. Left: the angular error of rotation estimation, without refinement. Best results are shown
in bold. Unreliable results (average error over 5◦) are shown in red. Right: the percentage of line
hypothesis kept at the end of RANSAC for hybrid methods.

Dataset
Method VP-based Point-based Line-based

Best VP 5-point 4-point 3-line 2× 2-line
Strecha 1.29 0.05 1.86 0.35 0.28
Office 0.65 8.63 25.37 3.93 1.05

Building 0.54 0.35 1.00 8.04 0.56
Car 14.93 0.23 3.19 24.27 2.41

Dataset
Method

mixed AC-mixed

Strecha 54% 10%
Office 63% 43%

Building 70% 20%
Car 0% 0%
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7.6 Robustness and Accuracy of Pose Estimation

In Table 2, all methods are refined, using also SIFT matches (except the 3-line method).
Experiments show the benefit of combining line and point features: the mixed methods
are robust to the variety of scenes, and their accuracy is better than or about the same
as point-only methods. Moreover, although the RANSAC method already gives good
results, its a contrario variant is far more accurate and does not need any parameter.

Table 2. Average error of rotation and translation estimation, including non-linear refinement.
Best results are shown in bold. Unreliable ones, with an average error over 5◦, are shown in red.

Dataset
Method

5-point 3-line 3-line+ SIFT 2× 2-line mixed AC-mixed

Strecha
R 0.02 0.46 0.05 0.25 0.19 0.02
t 0.18 3.37 0.36 1.03 0.80 0.21

Office
R 6.88 6.45 3.67 1.03 1.01 0.57
t 27.19 20.38 16.26 3.26 3.13 1.44

Building
R 0.23 6.68 3.73 0.49 0.24 0.21
t 0.31 37.63 18.72 1.57 0.83 0.45

Car
R 0.19 24.25 13.81 2.37 0.75 0.24
t 0.20 69.47 30.46 18.03 0.89 0.28

8 Conclusion

We presented a new framework for line-based camera pose estimation. Unlike [3], the
approach does not require orthogonality. It is also less sensitive to noise. Besides being
compatible with wide baseline, not requiring overlaps in three views, it requires a low
number of features, i.e., 2 × 2 lines, which is good for RANSAC when the outlier rate
is high (higher than the 3-line method [3], but much less than 13-line methods [4,9]).

We also define a proper way to combine line and point information into a robust and
accurate calibration method that leverages on both kinds of features. Our refinement
balances well lines and points, contrary to [3]. It is a significant improvement over
methods that only turn lines into points with an extra coplanarity assumption [14,15,3].

We thouroughly study the behavior of our approach in different settings, comparing
to other existing methods. Our experiments show that our AC-mixed method is at least
as robust and accurate as other methods in any context, most often outperforming them,
including point-based methods. As it is based on the a contrario theory, our method
does not need any parameter tuning and automatically adapts to data variation, including
within a single dataset, which is important for the robustness of an SfM pipeline.

Future work includes extending our approach to multiple views. Moreover, even if
low texture does not impede the calibration, dense reconstruction do not work well in
this case; we aim at leveraging on lines to enable reconstruction of such scenes.
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15. Draréni, J., Keriven, R., Marlet, R.: Indoor calibration using segments chains. In: 33rd An-
nual Symposium of the German Association for Pattern Recognition (GCPR/DAGM 2011).
(August 2011) 4, 14

16. Lee, J.K., Yoon, K.J.: Real-time joint estimation of camera orientation and vanishing points.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). (June
2015) 4

17. Cipolla, R., Drummond, T., Robertson, D.: Camera calibration from vanishing points in
images of architectural scenes. In: British Machine Vision Conference (BMVC 1999). (1999)
382–391 4



16 Yohann Salaün, Renaud Marlet, Pascal Monasse

18. Rother, C., Carlsson, S.: Linear multi view reconstruction and camera recovery using a
reference plane. International Journal of Computer Vision (IJCV 2002) 49(2-3) (2002) 117–
141 4

19. Sinha, S., Steedly, D., Szeliski, R.: A multi-stage linear approach to structure from motion.
In Kutulakos, K., ed.: Trends and Topics in Computer Vision. Volume 6554 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2012) 267–281 4

20. Markley, F.L.: Attitude determination using vector observations and the singular value de-
composition. The Journal of the Astronautical Sciences 36(3) (1988) 245–258 5

21. Schönemann, P.: A generalized solution of the orthogonal Procrustes problem. Psychome-
trika 31(1) (1966) 1–10 6

22. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI 2004) 26(6) (June 2004) 756–777 7,
10

23. Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a contrario model
estimation. In: Proceedings of the 11th Asian Conference on Computer Vision (ACCV
2012), Berlin, Heidelberg, Springer-Verlag (2013) 257–270 7, 10

24. Moisan, L., Stival, B.: A probabilistic criterion to detect rigid point matches between two
images and estimate the fundamental matrix. International Journal of Computer Vision (IJCV
2004) 57(3) (May 2004) 201–218 8

25. Moisan, L., Moulon, P., Monasse, P.: Fundamental matrix of a stereo pair, with a contrario
elimination of outliers. Image Process. On Line (IPOL) 6 (2016) 89–113 http://dx.
doi.org/10.5201/ipol.2016.147. 8

26. Moisan, L., Moulon, P., Monasse, P.: Automatic homographic registration of a pair of im-
ages, with a contrario elimination of outliers. Image Process. On Line (IPOL) 2 (2012) 56–73
http://dx.doi.org/10.5201/ipol.2012.mmm-oh. 8, 10

27. Strecha, C., von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking
camera calibration and multi-view stereo for high resolution imagery. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2008). (June 2008) 1–8 9, 12

28. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment
detector. Image Process. On Line (IPOL 2012) 2 (2012) 35–55 http://dx.doi.org/
10.5201/ipol.2012.gjmr-lsd. 9

29. Salaün, Y., Marlet, R., Monasse, P.: Multiscale line segment detector for robust and accurate
SfM. In: 23rd International Conference on Pattern Recognition (ICPR). (2016) 9

30. Zhang, L., Koch, R.: An efficient and robust line segment matching approach based on LBD
descriptor and pairwise geometric consistency. Journal of Visual Communication and Image
Representation 24(7) (October 2013) 794–805 9

31. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision (IJCV 2004) 60(2) (November 2004) 91–110 9

32. Liu, Z., Marlet, R.: Virtual line descriptor and semi-local matching method for reliable fea-
ture correspondence. In: British Machine Vision Conference (BMVC 2012), United King-
dom (September 2012) 16.1–16.11 9

33. Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori in-
formation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI 2003)
25(4) (2003) 502–507 9

34. Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org 10

http://dx.doi.org/10.5201/ipol.2016.147
http://dx.doi.org/10.5201/ipol.2016.147
http://dx.doi.org/10.5201/ipol.2012.mmm-oh
http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd
http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd
http://ceres-solver.org

