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Abstract Smear-based variable selection strategies are well-known and commonly used by branch-and-prune
interval-based solvers. They estimates the impact of the variables on each constraint of the system
by using the partial derivatives and the sizes of the variable domains. Then they aggregate these
values, in some way, to estimate the impact of each variable on the whole system. The variable with
the greatest impact is then selected. A problem of these strategies is that they, generally, consider all
constraints equally important.

In this work, we propose a new variable selection strategy which first weights the constraints
by using the optimal Lagrangian multipliers of a linearization of the original problem. Then, the
impact of the variables is computed with a typical smear-based function but taking into account the
weights of the constraints. The strategy is tested on classical benchmark instances outperforming
significantly the classical ones.
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1. Introduction

This paper deals with continuous global optimization (nonlinear programming) deterministi-
cally handled by interval branch and bound (B&B). The problem is defined by:
minx∈x f(x) s.t. g(x) ≤ 0, where f : Rn → R is the real-valued objective (non convex)
function and g : Rn → Rm is a vector-valued (non convex) function.1 x = (x1, ..., xi, ...xn)
is a vector of variables varying in a domain (i.e., a box) x2. For performance and simplicity
considerations, a variable xo, with initial domain xo = [−∞,+∞] is included in the set of vari-
ables x and an additional constraint f(x) = xo is included in the set of constraints (actually,
functions f(x)− xo and xo − f(x) are included in g). Finally, we solve an equivalent problem:

min
x∈x

xo s.t. g(x) ≤ 0 (1)

Several works have been proposed for finding good branching strategies ([2, 4, 7, 5, 3]).
Smear-based methods [4, 3] use information on the system to obtain the variable with the
greatest impact. The impact of a variable xi on a function gj is computed by means of the
smear value. Consider that the current node is associated with box x; the smear value is given
by: smear(xi, gj) = |J ji| ∗ wid(xi), where J ji is an interval overestimate of the range of the
partial derivative ∂gj

∂xi
in x. |J ji| is the magnitude of the interval J ji, i.e., |J ji| = max(|Jji|, |Jji|).

1The branching strategies proposed in this paper can also apply to problems having equality constraints.
2An interval xi = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi. A box x is a Cartesian product of intervals x1 × ...× xi ×
...× xn.
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Selection methods based on the smear value select the variable that maximizes an aggrega-
tion of this value in the whole system.

Tawarmalani and Sahinidis [6] present an algorithm called ViolationTransfer, to estimate the
impact of a variable on the problem. ViolationTransfer works with the Lagrangian function of
a relaxation of the problem and an optimal solution of the relaxation x?. For each variable, an
interval xv

i ⊂ xi is defined. xv is the smallest box such that it contains x? and each univariate
constraint gj(x?1, ..., x

?
i−1, xi, x

?
i+1, x

?
n) ≤ 0 (j = 1..m) is feasible for at least one value in xv

i .
Then, for each variable xi, the difference between the bounds of the image of the Lagrangian

function over the interval xv
i is estimated. In each estimation all the variables are fixed except

xi. The assumption is that branching on the variable maximizing the image width is likely to
improve the lower bound of the objective function in the subproblems.

In this article we propose lsmear, a new variable selection strategy for interval B&B solvers.
In a few words, the method selects the variable maximizing the smear value of the Lagrangian
function of the problem. In the Lagrangian function, the Lagrange multipliers are replaced by
the dual optimal of a linear approximation of the problem. Related to the ViolationTransfer
strategy our approach has some important differences:

1. lsmear uses a simple linear approximation of the original problem instead of sophisticated
convex relaxation techniques.

2. lsmear estimates the impact of each variable in the Lagrangian function of the original
problem. The estimated impact is computed by using the smear value.

3. The computation of xv requires the solver uses a reformulated problem in which multi-
dimensional functions are replaced with either univariate or bilinear functions [6]. For
the moment, and in order to maintain the simplicity and generality of the approach,
lsmear uses directly x instead of xv.

2. lsmear, a Smear-based strategy using optimal Lagrange
multipliers

A main issue related to the smear-based strategies is that these strategies consider all the
constraints equally important. To overcome this issue we propose to estimate the impact of the
constraints in the system by using the optimal Lagrange multipliers of a linear approximation
of the original problem.

The lsmear method works in two phases. First, a linearization of the global optimization
problem is generated. Each function gj(x) is approximated by using the first order term of its
Taylor expansion around the midpoint of the box, i.e.,

glj(x) = gj(mid(x)) +
n∑

i=1

mid(J ji).(xi −mid(xi))

where J ji is an interval overestimation of the image of ∂gj
∂xi

over x. Note that instead of using
the partial derivatives in the midpoint of the box we use the midpoint of the overestimation
of the partial derivatives (i.e., mid(J ji)).

The generated linear optimization problem includes the bound constraints, i.e., xi ≤ xi ≤
xi, and it is solved by using the simplex method3. If an optimum exists, then a second phase
is carried out. In this phase, the strategy computes the smear value of the following function:

L(x) = xo +
m∑
i=1

λ∗jgj(x)

3Actually we need to solve the dual problem, however we use a linear solver which solves both, the primal and the dual problems
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where λ∗ corresponds to the dual optimal solution of the linear problem. The function L is
equivalent to the Lagrangian of (1) but the Lagrange multipliers have been replaced by the
optimal Lagrange multipliers of the linear approximation. Thus, the problem of minimizing
L(x) can be seen as a rough approximation of the original optimization problem. The interest-
ing thing about L is that it aggregates the objective function and the constraints of the problem
in only one function, thus, computing the smear value of each variable in L offers an estima-
tion of the impact of the variable in the original problem. We believe that this estimation is
fairer than the one computed by the classical smear-based strategies because each constraint
is, in a certain way, being pondered according to its influence on the optimal value. Finally,
same as the other Smear-based strategies, the variable with the greater impact is selected for
bisection.

Algorithm 1 lsmear

procedure lsmear(x,J , g); out: var
/* Phase 1: linearization and solving the linear program*/
gl← g(mid(x)) + mid(J).(x−mid(x))
t← xo; xo ← [−∞,∞]
λ∗ ← optimize(minxo, subject to: xi ≤ xi ≤ xi, glj(x) ≤ 0)
xo ← t if λ∗ 6= ∅ then

/* Phase 2: computing the impact of L(x) */
for i ∈ {1..n} do

D ← λ∗i for j ∈ {1..m} do
D ←D + λ∗n+j .J ji

end
I ← |D.wid(xi)|
if I > max impact then

max impact← |I|
var← i

end
end
return var

else
return smearsum(x,J)

end
end.

Algorithm 1 shows our approach. J corresponds to the Jacobian matrix which contains the
interval overestimations of the partial derivatives over x. In the linear program (Phase 1), the
interval related to the objective variable is unbounded to enhance the chances for successful
finding an optimal solution. In Phase 2, for each variable xi we first compute D, which is an
interval overestimation of ∂L

∂xi
over x. The overestimation is obtained by adding the products

of the interval partial derivatives on each constraint (J ji) and the corresponding dual optimal
value (λ∗n+j). D is initialized with the dual optimal value related to the bounded constraint,
i.e., λ∗i (the partial derivative related to the i-th bound constraint over the variable xi is 1).
Then, the smear impact of the variable is computed as the magnitude of the product of the in-
terval partial derivative and the width of the related interval. The variable with the maximum
impact is saved and returned. If the linear program does not have solutions or if the optimal
value is unbounded, then the smearsum method is launched instead. This method uses the
same Jacobian matrix received by the lsmear one.
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3. Experiments

In order to validate our approach, we implemented lsmear in IbexOpt, a state-of-the-art op-
timizer of the Interval-Based EXplorer library (Ibex ([1])). All the experiments were run on a
server PowerEdge T420, with 2 quad-processors Intel Xeon, 2.20 GHz and 8 GB RAM.

The instances were selected from the series 1 and 2 of the COCONUT constrained global
optimization benchmarks.4 We selected all the problems solved by some strategy in a time
comprised between 2s and 3600s (66 instances). Each strategy was run 5 times on each instance
and the average CPU time was reported.

We compared the proposed strategy lsmear with some of the classical variable selection
strategies: round-robin (rr), largest-first (lf), smearsum (ssum), smearmax (smax) and smearsumrel

(ssr). Figure 1 summarizes the comparison among the six strategies.

Figure 1. Performance profile.

Each curve reports the percentage of instances solved by the corresponding strategy in less
than factor times the best reported CPU time. From the results we observe that lsmear clearly
outperforms all the classical variable selection strategies. Also note that more than 90% of
the instances are solved by lsmear in less than twice the best CPU time reported by all the
strategies.
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