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Abstract The parameter estimation problem is a widespread and challenging problem in engineering sciences
consisting in computing the parameters of a parametric model that fit observed data. The computer
vision community has proposed the RANSAC algorithm to deal with outliers in the observed data.
This randomized algorithm is efficient but non-deterministic and therefore incomplete. Jaulin et
al. propose a branch-and-contract algorithm that returns all the model instances fitting at least
q observations. Assuming that at least q observed data are inliers, this algorithm achieves on
the observations a relaxed intersection operator called q-intersection. First, this paper presents
several improvements to Jaulin et al.’s algorithm. Second, an interval branch and bound algorithm
is designed to produce a model that can explain the maximum number of observations within a
given tolerance. Experiments are carried out on computer vision and image processing problems.
They highlight a significant speedup w.r.t. Jaulin et al.’s interval method in 2D and 3D shape
recognition problems. We have also investigated how the approach scales up in dimensions up to
7 for stereovision (estimation of essential and fundamental matrices).
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1. Parameter Estimation

Parameter estimation is a difficult problem widely studied by engineering sciences. It consists
in determining the n numerical parameters of a model based on m observations. Calibration
or geolocation can be viewed as specific parameter estimation problems. A parameterized
model is defined by an implicit equation f(x,p) = 0, p = (p1, . . . , pn) being the vector of
parameters to be determined. Given a finite set of observations {o1, . . . ,oi, . . . ,om}, we search
for all the parameters vectors that are compatible with at least q of these observations. We
generally have n ≤ q ≤ m. An observation oi is a d-dimensional vector of observed data. It is
said compatible with the parameters vector p, using a tolerance value τ , when it satisfies an
observation constraint −τ ≤ f(oi,p) ≤ +τ . The consensus set C(p) is the set of observations
compatible with p.

C(p) = {oi| − τ ≤ f(oi,p) ≤ τ} (1)

This parameter estimation problem becomes challenging when the function f used to define
the parametric model is not linear and/or in presence of outliers. Outliers can have numerous
origins, including extreme values of the noise, erroneous measurements and data reporting
errors. In order to cope with outliers we search for model instances whose consensus set
contains at least q elements.

This problem can be formulated as a numerical constraint satisfaction problem with n vari-
ables p = (p1, . . . , pn) having a real interval domain, and a single constraint stating that at
least q observations are compatible with the model:

card(C(p)) ≥ q (2)
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The optimization version of this problem simply consists in maximizing the cardinality of
the consensus set, i.e. q.

RANSAC: parameter estimation heuristic coping with outliers

The random sample consensus algorithm (RANSAC) [1] has become a state-of-the-art tool
in the computer vision and image processing communities to achieve parameter estimation
robust to outliers. This stochastic algorithm proceeds by randomly sampling observations
for determining a model (n observations for determining n parameters), before checking the
number of other observations compatible with this model. A version of RANSAC presented in
[2] is dedicated to the detection of several solutions (models), but it does not detect all of them.
Indeed, when a solution is found, this non deterministic algorithm removes the observations
involved in the consensus set before searching for a next solution.

Deterministic interval constraint programming approach

A deterministic parameter estimation method based on interval constraint programming and
robust to outliers was described in [3, 4].

We denote by [xi] = [xi, xi] the interval/domain of a real-valued variable xi, where xi, xi
are floating-point numbers. A Cartesian product of intervals [x] = [x1] × ... × [xn] is called
a (parallel-to-axes) box. The width of a box is given by the width xk − xk of its largest
dimension xk. Interval methods also provide contracting operators (called contractors), i.e.
methods that can reduce the variable domains involved in a constraint or a set of constraints
without loss of solutions. In particular, a simple forward-backward (also called HC4-revise)
algorithm traverses twice the expression tree corresponding to a given constraint to contract
the domains of its variables [5, 6].

The deterministic parameter estimation algorithm performs a tree search to exhaustively
explore the parameter space.

[p] is recursively subdivided: one variable pi in p is selected, its domain [pi] is bisected
into two sub-intervals and the two corresponding sub-boxes are explored recursively. The
combinatorial process stops when a precision is reached, i.e. when the width of the current
box is inferior to εsol.

At each node of the tree, a box [x] is handled:

1. A contraction is achieved using each of the m observation constraints by the forward-
backward procedure, which produces an m-set S of sub-boxes of [x].

2. The q-intersection box ∩qS of these contracted boxes is returned.

The q-intersection operator relaxes the (generally empty) intersection of m boxes by the
union of all the intersections obtained with q boxes. More formally:

Definition 1. Let S be a set of boxes. The q-intersection of S, denoted by ∩qS, is the box of
smallest perimeter that encloses the set of points of Rn belonging to at least q boxes.

For instance, the box in dotted lines in Fig. 1–(b) is the 4-intersection of the m = 10 two-
dimensional boxes (in plain lines).

The q-intersection of boxes is a difficult problem that has been proven DP-complete in [7]
and we have resorted to a non optimal projection heuristic that reasons on each dimension
independently [8]. This algorithm is time O(nm log(m)).

2. Improvements

We have proposed several generic improvements to the deterministic parameter estimation
code, and several improvements specific to shape recognition problems.



An Interval Branch and Bound Algorithmfor Parameter Estimation 3

(a) A set S of 2-dimensional
boxes

(b) The dashed box is ∩4S.
Zones that belong to at least
4 boxes are darkened.

(c) Approximation of the observation con-
straints Vi by parallelograms Ai, and projec-
tion on the normal vector ~u.

Figure 1. (b) Illustration of q-intersection for q = 4, m = 2. (c) Q-intersection in an additional direction

2.1 Generic improvements

Possible and valid observations. In the search tree, two data structures are maintained.
First, the set of possible observations: if an observation constraint leads to an empty box using
a (forward-backward or q-intersection) contraction at a given node, this observation will be
removed from the possible observations in the subtree.

Second, the number of valid observations is maintained by testing every possible observation
(using Eq. 1) at given punctual parameters vectors inside the studied box. The valid observa-
tions form a subset of the possible observations. A stopping condition in the current branch of
the search is reached when the two sets are the same.

Q-intersection in an additional direction. The q-intersection algorithm achieves a pro-
jection on each dimension (called q-projection) of the boxes obtained by contraction using every
observation constraint.

We also perform a q-projection on an additional direction where we hope to obtain small
intervals, thus favoring a failure of the q-intersection. To this end, we linearize and relax every
observation constraint, and project the parallelograms obtained on the direction correspond-
ing to the mean normal vector of the “parallelogram” gradients. See Figure 1–(c) for a 2D
illustration.

In an improved version, the q-projection is achieved only in the additional direction, except
in the lowest part of the search tree where all the dimensions are handled.

2.2 Improvements specific to applications

Dedicated contraction. Instead of running a general forward-backward contraction algo-
rithm using a library for interval arithmetic computations and backward projections (e.g.,
implemented in Ibex), we can rewrite interval computations dedicated to the analytical form
of observation constraints.

Bisection strategy. For 3D plane recognition, we bisect first the intervals of the variables
corresponding to the plane normal vector and bisect the variable intervals modeling distances
to the origin only when the plane normal vector intervals have reached a good precision. For
2D circle recognition, we first handle the circle center coordinates and terminate with the circle
radius.
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3. Parameter Estimation Fitting a Maximum Number of Inliers

We have also designed an interval branch and bound algorithm for parameter estimation that
computes a model maximizing the consensus, i.e. maximizing the number of valid observations
(inliers) of a parameterized model. Several strategies have been designed: depth-first search
(and a variant) and best-first search.

Contraction using forward-backward procedures and q-intersection is performed at each it-
eration (node). The lower bound qmin of this maximization problem is given by the number of
observations that have been validated in past iterations. An upper bound qmax of the number
of inliers in a node is given by the maximum number of intersected intervals found by the
(qmin + 1)-projection procedure in a dimension. If qmax ≤ qmin, then the branch is pruned.
qmax may be inferior to the number of possible observations in the box, in particular if the box
contains several valid models.

4. Experiments

The algorithms are implemented in the Interval Based EXplorer (Ibex) [9], a free C++ library
devoted to interval computing. The combination of the improvements described in Section 2
brings a significant speedup of two orders of magnitude on each tested instance of 3D plane
and 2D circle detection problems and appears to be an interesting alternative to RANSAC in
low dimension. These experiments suggest that our interval branch and bound algorithm can
guarantee a model maximizing the number of inliers while ensuring a good performance.

5. Discussion

A question is whether the approach scales up in higher dimension. First experiments seem to
show that the current interval branch and bound algorithm cannot cope with the fundamental
matrix estimation problem (dimension 7) useful in stereovision. We will investigate whether
the approach can handle parameter estimation problems of dimension 4 or 5 (essential matrix
estimation [10]).
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