

Constitutive relation error for FFT-based methods

Sébastien Brisard, L Chamoin

▶ To cite this version:

Sébastien Brisard, L Chamoin. Constitutive relation error for FFT-based methods. VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016), Jun 2016, Crete Island, Greece. hal-01330790v2

HAL Id: hal-01330790 https://enpc.hal.science/hal-01330790v2

Submitted on 6 Jul 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ECCOMAS 2016

Constitutive relation error for FFT-based methods

<u>S. Brisard¹</u>, L. Chamoin^{2,3}

¹Université Paris-Est, Laboratoire Navier, ENPC, IFSTTAR, CNRS, UMR 8205 ²LMT, ENS Cachan, CNRS, Université Paris-Saclay ³INRIA Rocquencourt, MATHERIALS research team

June 9th 2016

Navier

CRE & Uniform Grid, Periodic Lippmann – Schwinger solvers

A local reconstruction of the displacement

The nitty-gritty details

Example 1

Example 2

Navior

CRE & Uniform Grid, Periodic Lippmann – Schwinger solvers

A local reconstruction of the displacement

The nitty-gritty details

Example 1

Example 2

CRE: the setting

Elastic equilibrium of a structure

div σ +b=0	$(\mathbf{\Omega})$	σ statically admissible with ${\bf b}$ and $\overline{{\bf T}}$
$\sigma \cdot n = \overline{T}$	$(\partial \Omega_{ au})$	
	$(\partial \Omega)$	u kinomotically admissible with T
u–u	$(\mathbf{OS2}_u)$	u kinematically aumissible with u
$\sigma = \mathbf{C}: \epsilon$	$(\mathbf{\Omega})$	(local) constitutive relation

Strain energy and complementary strain energy as norms

$$U(\epsilon) = \frac{1}{2} \int_{\Omega} \epsilon : \mathbf{C} : \epsilon \, \mathrm{d} V \qquad \qquad U^{*}(\sigma) = \frac{1}{2} \int_{\Omega} \sigma : \mathbf{S} : \sigma \, \mathrm{d} V$$

June 9th 2016

Application to FEM

Construction of kinematically admissible displacement Trivial with **displacement-based** FEM!

Construction of statically admissible stress: the EET method

- Equilibrating Element Tractions
- **Post-processing** of the FEM nodal displacements
- Succession of local linear problems
 - Step 1. construction of tractions: node-wise
 - **Step 2.** construction of stresses: element-wise

Ladevèze & Pelle (2005), Mastering Calculations in Linear and Nonlinear Mechanics, Springer

Evaluation of constitutive relation error

Simple integration of standard FE fields, upper bound on "true" error

Navior

CRE & Uniform Grid, Periodic Lippmann – Schwinger solvers

A local reconstruction of the displacement

The nitty-gritty details

Example 1

Example 2

Application to UGPLS solvers

$$(\mathbf{C} - \mathbf{C}_0)^{-1}$$
: $\mathbf{\tau} + \mathbf{\Gamma}_0[\mathbf{\tau}] = \mathbf{E}$

The unknown is the stress polarization (or the strain)

- Strain is **not necessarily** compatible
- Kinematically admissible displacement?
- Statically admissible stress?

Construction of kinematically admissible displacement

The main topic of this talk

Construction of statically admissible stress

- Arguably the most difficult part
- Don't want to reinvent the wheel: use the EET method!

Reconstruction of displacements: literature review

Most UGPLS solvers produce compatible strain fields!

- But approximation is **non-local** in space (trig. polynomials)
- Susceptible to Gibbs phenomenon

Moulinec & Suquet (1998), Comp. Meth. Appl. Mech. Eng. 157(1-2), 69–94 Willot & Pellegrini (2008), Continuum Models & Discrete Systems XI, 443–450 Zeman et al. (2010), J. Comp. Phys. 229(21), 8065–8071 Monchiet & Bonnet (2012), Int. J. Num. Meth. Eng. 89(11), 1419–1436 Kabel et al. (2014), Comp. Mech. 54(6), 1497–1514 Vondřejc et al. (2014), Comp. & Math. Appl. 68(3), 156–173 Willot (2015), Comptes Rendus Mécanique 343(3), 232–245

Approximation that is **local** in space is sometimes preferable

- EET method to reconstruct statically admissible stress
- Limit analysis: plastic admissibility checked at the nodes only

Makrodimopoulos & Martin (2007), Int. J. Num. Anal. Meth. Geomechanics 31(6), 835–865

Navior

CRE & Uniform Grid, Periodic Lippmann – Schwinger solvers

A local reconstruction of the displacement

The nitty-gritty details

Example 1

Example 2

Approximation that is local in space

- Q1 approximation
- Post-processing of estimate of stress-polarization (or strain)

True displacement from true stress polarization

$$(\mathbf{C}-\mathbf{C}_{0})^{-1}$$
: $\mathbf{\tau}+\mathbf{\Gamma}_{0}[\mathbf{\tau}]=\mathbf{E}$ $\nabla\cdot(\mathbf{C}_{0}:\nabla^{s}\mathbf{u}+\mathbf{\tau})=\mathbf{0}$

Approx. displacement from approx. stress polarization

$$(\mathbf{C}^{N}-\mathbf{C}_{0})^{-1}$$
: $\mathbf{\tau}^{N}+\mathbf{\Gamma}_{0}^{N}[\mathbf{\tau}^{N}]=\mathbf{E}$ $\nabla \cdot (\mathbf{C}_{0}: \nabla^{s}\mathbf{u}^{N}+\mathbf{\tau}^{N})=\mathbf{0}$

 $\mathbf{N} = (N_1, \dots, N_d)$: grid-size

June 9th 2016

Navier

Wait a minute...

Our two-step approach

1.
$$(\mathbf{C}^{N}-\mathbf{C}_{0})^{-1}$$
: $\mathbf{\tau}^{N}+\mathbf{\Gamma}_{0}^{N}[\mathbf{\tau}^{N}]=\mathbf{E}$ (UGPLS solver)
2. $\nabla \cdot (\mathbf{C}_{0}: \nabla^{s}\mathbf{u}^{N}+\mathbf{\tau}^{N})=\mathbf{0}$ (FEM solver)

An alternative one-step approach: why not use FEM only?

$$\nabla \cdot [\mathbf{C}:(\mathbf{E} + \nabla^{s}\mathbf{u})] = \mathbf{0}$$

The two-step approach is more efficient

- Homogeneous reference material
- Periodic boundary conditions

FFT for both steps!

Navior

CRE & Uniform Grid, Periodic Lippmann – Schwinger solvers

A local reconstruction of the displacement

The nitty-gritty details

Example 1

Example 2

Q1 approximation of displacement

Displacement is periodic! Can be expanded in Fourier series

$$\mathbf{u}(\mathbf{x}) = \frac{1}{N_1 \cdots N_d} \sum_{\mathbf{k} \in \mathbb{Z}^d} \left[\prod_{j=1}^d \operatorname{sinc}^2 \left(\frac{\pi k_j}{N_j} \right) \exp \left(\frac{2i \pi k_j x_j}{L_j} \right) \right] \hat{\mathbf{u}}_{\mathbf{k}}^{\mathsf{N}}$$

Discrete Fourier transform of nodal displacements

$$\hat{\mathbf{u}}_{\mathbf{k}}^{\mathbf{N}} = \sum_{n_{1}=0}^{N_{1}-1} \cdots \sum_{n_{d}=0}^{N_{d}-1} \exp\left[-2i\pi\left(\frac{k_{1}n_{1}}{N_{1}} + \cdots + \frac{k_{d}n_{d}}{N_{d}}\right)\right] \mathbf{u}_{\mathbf{n}}^{\mathbf{N}}$$

Infinite sum defined by a finite (periodic) series of unknowns (in Fourier space).

Total Potential Energy

Can be computed in Fourier space

$$\Pi = \frac{L_1 \cdots L_d}{N_1^2 \cdots N_d^2} \sum_{k_1=0}^{N_1-1} \sum_{k_d=0}^{N_d-1} \left(\frac{1}{2} \overline{\mathbf{u}_k^{\mathsf{N}}} \cdot \mathbf{\hat{k}_k^{\mathsf{N}}} \cdot \mathbf{\hat{u}_k^{\mathsf{N}}} + \overline{\mathbf{u}_k^{\mathsf{N}}} \cdot \mathbf{\hat{\tau}_k^{\mathsf{N}}} \cdot \mathbf{\hat{B}_k^{\mathsf{N}}} \right)$$

 $\hat{\mathbf{K}}_{\mathbf{k}}^{\mathbf{N}}$: modal stiffness matrix $(d \times d)$

 $\hat{\mathbf{B}}_{\mathbf{k}}^{\mathbf{N}}$: modal strain-displacement vector ($d \times 1$)

Closed-form expressions!

Optimization of total potential energy

 $\hat{\mathbf{K}}_{k}^{\mathsf{N}} \cdot \hat{\mathbf{u}}_{k}^{\mathsf{N}} = -\hat{\boldsymbol{\tau}}_{k}^{\mathsf{N}} \cdot \overline{\hat{\mathbf{B}}_{k}^{\mathsf{N}}}$

 $N_1 \times \cdots \times N_d$ small $(d \times d)$ linear systems rather than

one single large linear system with $N_1 \times \cdots \times N_d \times d$ unknowns!

Summary of the method

- **1.** Compute DFT of cell-wise constant stress polarization
- 2. Compute DFT of nodal displacement: for each discrete freq.
 - a. Assemble modal stiffness matrix
 - b. Assemble modal strain-displacement vector
 - c. Solve resulting $d \times d$ linear system
- 3. Compute inverse DFT of nodal displacement

SB (2016), *Int. J. Num. Meth. Eng.*, early view (10.1002/nme.5263)

Navior

CRE & Uniform Grid, Periodic Lippmann – Schwinger solvers

A local reconstruction of the displacement

The nitty-gritty details

Example 1

Example 2

June 9th 2016

Hashin's coated sphere

Example borrowed from Schneider et al. (2015)

Schneider et al. (2015), Int. J. Num. Meth. Eng. 105(9), 1419–1436

Truncated discrete Green operator (Moulinec & Suquet, 1998)

Finite difference discrete Green operator (Willot, 2015)

Navior

CRE & Uniform Grid, Periodic Lippmann – Schwinger solvers

A local reconstruction of the displacement

The nitty-gritty details

Example 1

Example 2

June 9th 2016

Reconstruction of stress

Reconstructed displacement is a Galerkin solution

$$\int_{\Omega} \left[\left(\mathbf{C}_{0} : \nabla^{s} \mathbf{u}^{N} + \boldsymbol{\tau}^{N} \right) : \nabla^{s} \mathbf{v} \right] dV = 0 \text{ for all } \mathbf{v} \text{ Q1, periodic}$$

- "Strong extension condition" does not lead to overdetermination
- Equilibrated Element Traction method applies
- Reconstructing statically admissible stress fields becomes standard!
- Constitutive relation error can be evaluated

Ladevèze & Pelle (2005), Mastering Calculations in Linear and Nonlinear Mechanics, Springer

A simple, 2D example

 $\mu_i = 100 \mu_m$

$$v_m = 0.3$$

 $v_i = 0.2$

$$\mathbf{E} = E_{12} (\mathbf{e_1} \otimes \mathbf{e_2} + \mathbf{e_2} \otimes \mathbf{e_1})$$

Constitutive relation error

Work in progress (with L. Chamoin)

Conclusion and perspectives

An "agnostic" method to reconstruct displacements...

- Works with any UGPLS solver
- Very low cost (9 FFT in 3D)
- Reconstruction is local in space
- Accuracy comparable to other existing approaches

... Which paves the way to reconstruction of stresses

- Standard post-processing of the reconstructed displacement
- Rigorous bound on energy error

Perspectives

- Extension to local quantities of interest
- Systematic selection of reference material

Thank you for your attention !

http://sbrisard.github.io/

Financial support of AFM/CNFM is gratefully acknowledged by SB.

June 9th 2016