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Multisurface plasticity for Cosserat materials: plate element
implementation and validation

Michele Godio∗, Ioannis Stefanou, Karam Sab and Jean Sulem

Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, 6-8 avenue Blaise Pascal, 77455
Marne-la-Vallée cedex 2, France

SUMMARY

The macroscopic behaviour of materials is affected by their inner micro-structure. Elementary considerations
based on the arrangement, and the physical and mechanical features of the micro-structure may lead to
the formulation of elastoplastic constitutive laws, involving hardening/softening mechanisms and non-
associative properties. In order to model the non-linear behaviour of micro-structured materials, the
classical theory of time-independent multisurface plasticity is herein extended to Cosserat continua. The
account for plastic relative strains and curvatures is made by means of a robust quadratic-convergent
projection algorithm, specifically formulated for non-associative and hardening/softening plasticity. Some
important limitations of the classical implementation of the algorithm for multisurface plasticity prevent its
application for any plastic surfaces and loading conditions. These limitations are addressed in this paper,
and a robust solution strategy based on the Singular Value Decomposition technique is proposed. The
projection algorithm is then implemented into a finite element formulation for Cosserat continua. A specific
finite element is considered, developed for micropolar plates. The element is validated through illustrative
examples and applications, showing able performance. Copyright c© 0000 John Wiley & Sons, Ltd.

KEY WORDS: Multisurface plasticity; Cosserat continuum; finite elements; micropolar plates; strain
localisation

1. INTRODUCTION

Trabecular bones, wood, soils, metals and many other materials existing in nature are provided
with an internal micro-structure which is apparent at specific observation scales. The macroscopic
response of these materials is therefore affected by the geometrical (characteristic length) and
mechanical internal properties of their micro-structure. This holds true for man-made materials and
structures such as composites, grid-works, masonry, etc.

An efficient and elegant way to model the overall response of such materials without the need to
resort to non-local theories is represented by the Cosserat continuum. With respect to the classical
(Cauchy) continuum, the Cosserat (or micropolar) continuum has independent rotational degrees of
freedom attached to the material particle. This confers an internal length to the medium, and makes
it suitable for the description of micro-structured materials. The additional degrees of freedom also
provide a larger set of boundary conditions for the medium. It is well known how the presence of an
internal length and the use of additional boundary conditions may affect the material response,
especially in the non-linear range. Boundary layers and regions with concentrated irreversible
deformation such as shear bands are controlled by internal material lengths [22, 37, 36]. The use of
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2 M. GODIO ET AL.

the Cosserat continuum is hence crucial to model complex test configurations of micro-structured
materials.

The use of Cosserat continua for representing the macroscopic behaviour of micro-structured
materials is well assessed nowadays, at least for what concerns the elastic behaviour [3, 12, 32].
Most of the models proposed in the literature are devoted to the formulation of homogenization
schemes, i.e. mathematical or numerical procedures through which one can retrieve the micropolar
properties of the material by starting from those of its micro-structure. However, there is still
a lack of knowledge concerning the modeling of the inelastic behaviour of these materials.
In the non-linear range, irreversible, dissipative, time-dependent phenomena relative to the
evolution and damage of the material’s inner structure occur. In this context, the formulation of
models based on micropolar continua seems complicated, if not unfeasible. However, based on
elementary considerations and often motivated by micromechanical observations (such as friction
and interlocking phenomena in soils, or creep phenomena in cement materials), researchers may
be led to the formulation of extended constitutive models for inelasticity. It has been the case, for
instance, for the generalised J2-plasticity model for soils [22], which has made possible the study
and the understanding of complex phenomena such as the localisation of deformation in micro-
structured materials [35, 7].

In this paper, a numerical solution procedure for the modeling of the elastoplastic behaviour
of micro-structured materials is presented in the framework of the Cosserat continuum. Notice
that problems related to the non-linear material behaviour always require the use of numerical
tools. Concerning plasticity, some have gained recent attention. For instance, one may mention
the use of mathematical programming techniques for the solution of incremental elastoplastic
problems [18, 19]. Those techniques have been also employed for the solution of limit analysis
problems [21, 4]. The numerical procedure adopted in this paper is based on a projection algorithm,
originally formulated for classical hardening-plastic materials by [30]. The projection algorithm is
a robust quadratic-convergent algorithm which is widely used in finite elements for the solution of
elastoplastic boundary value problems. The algorithm is based on a return map, which solves the
incremental elastoplastic problem at every increment of the load-path (and point of the model), by
assuring the respect of the consistency requirement. The solution will be then found at the projection
point of the given increment, falling on the boundary of the elastic domain of the material [30].
Herein, we made use of the time-independent version of the projection algorithm. In other words,
viscoplastic effects are not considered. In this setting, the most general version of the algorithm for
the multisurface plasticity theory is adopted [29].

The theory of time-independent multisurface strain hardening plasticity is very general [28].
It allows to define multiple sets of plastic surfaces, non-associated plastic potentials, and
softening/hardening laws of every kind. When interested in computing not only the ultimate (or
limit) load, but the whole material response until failure, this theory gives great flexibility to the user
in: a) prescribing failure criteria and b) choosing appropriate plastic evolution laws for the material.
Nevertheless, the numerical implementation of the multisurface plasticity theory in finite elements
suffers from important limitations, which prevent its application for any plastic surfaces and loading
conditions. These limitations are explored in this paper, and a solution strategy based on the use
of the Singular Value Decomposition (SVD) technique is proposed. This represent an important
improvement in the numerical implementation of the algorithm for multisurface plasticity that can
be used not only in the framework of the Cosserat continuum theory, but also in more classical finite
element formulations.

In this paper, the theory of multisurface plasticity is adapted for Cosserat continua. The onset and
the evolution of irreversible deformations within the micro-structured material is here detected in
terms of plastic relative strains and curvatures. It is important to note that the use of projection
algorithms for plasticity has been already encountered in the frame of the Cosserat continuum
theory. Most of the existing works were devoted to the study of strain localisation. As known,
the Cosserat continuum provides a natural regularization effect versus the pathological mesh-size-
dependency intrinsic to classical numerical formulations. To this purpose, one can see the works
of de Borst and co-workers [7, 6, 5, 8], but also [24, 20, 23], among others. Always in the
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MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 3

frame of the Cosserat continuuum theory, [1] proposed a coupled damage-plastic model for micro-
structured materials showing brittle macroscopic behaviour. In that case, a projection algorithm was
used to integrate simultaneously the evolution of the plastic and damage variables, see also [34].
Another use of the projection algorithm is found in [17], where an elastoplastic Cosserat model was
incorporated into an extended finite element (X-FEM) formulation for the propagation of cracks.
Nevertheless, in the aforementioned works it has always been considered a single plastic surface. In
the present paper, the novelty is to consider a set of plastic surfaces which are multiple in number,
of general form and intersecting. One example of Cosserat multisurface plasticity has been given
by [13], where an application to masonry structures is proposed as an extension to more classical
approaches based on the Cauchy continuum [33].

The multisurface plasticity theory is here implemented into a Cosserat finite element and therefore
incorporated within an implicit time-integration scheme for the non-linear analysis of micro-
structured materials. A Newton-Raphson iterative method is employed for the solution of the
elastoplastic problem both at the local level, i.e. on the integration point of the element, and at
the global (element) level. At the local level, the Newton’s method is used in conjunction with the
SVD matrix inversion technique. This enables the projection algorithm to attain all the features
of the multisurface plasticity theory, i.e. the definition of an unlimited number of plastic surfaces
and potentials of general form. At the global level, the method requires the implementation of the
algorithmic version of the elastoplastic stiffness tangent matrix in order to assess the full rate of
convergence. The finite element that we use is a 8-node quadrilateral, that accommodates small
displacements and small rotations at every node [14]. The element is formulated for a Cosserat
(or micropolar) plate model [10, 15]. Such model enables the analysis of materials and structures
with an inner micro-structure mainly developed in two directions. Although this may certainly
represent a simplification with respect to the three-dimensional case, a plate model allows the
representation of complex spatial configurations in a quite refined way, with the advantage of
being much less computational demanding. To this purpose, notice that the plate element is stress
resultant, which means that no integration over the thickness is made. Moreover, small deflections
and small angle approximations are involved in the formulation. In this sense, we are not dealing
with a geometrically exact plate formulation.

The paper is structured as follows. Section 2 provides basic background in Cosserat (or
micropolar) plate models. In Section 3 we present the multisurface plasticity theory for micro-
structured materials within the frame of the Cosserat continuum. In this case, we will make
use of general notations. In Section 4 the projection algorithm is described, and details on the
implementation of the plasticity theory in finite elements are provided in Section 5. Finally in
Section 6 we focus more specifically on the micropolar plate element. We present numerical tests
for the assessment of the projection algorithm accuracy and benchmarks for the validation and the
actual use of the element. These benchmarks concern both the in-plane (or membrane) and the out-
of-plane (or flexural) behaviour of the element. It is worth noticing that numerical benchmarks for
Cosserat (multisurface) plasticity are nearly absent in literature. Those proposed in Section 6 prove
then useful for the validation of all kind of algorithms and finite elements formulated for micropolar
plasticity. The benchmarks for the in-plane behaviour, in particular, apply for 2D Cosserat continua.

Matrix notation is adopted throughout the paper. We use symbol d[ ] to indicate an increment
between two successive load steps, and ˙[ ] to denote time derivative. Symbol ∂V [ ] is used for
vector derivative.

2. THE COSSERAT (OR MICROPOLAR) PLATE MODEL

The Cosserat continuum (or micropolar) theory differs from the classical theory of the Cauchy
continuum in two aspects [11]. First, the couple-stress is completely absent in the Cauchy
continuum. Second, in the Cosserat continuum the stress tensor is not symmetric, as consequence of
the couple-stresses. Figure 1 shows the stresses and couple-stresses featuring in a micropolar plate
model [14, 10]. The former are assembled in the vector τ and the latter are contained into the polar
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4 M. GODIO ET AL.

vector µ:

τ =
[
τ11 τ22 τ12 τ21 τ13 τ31 τ23 τ32

]t
µ =

[
µ11 µ22 µ12 µ21 µ31 µ32

]t
. (1)

As far as it concerns the membrane (or in-plane) behaviour (Figure 1-left), one recognizes: the in-
plane tractions (τ11, τ22), the membrane shears (τ12, τ21) and the in-plane couple-stresses (µ31, µ32).
These stress measures are those of 2D Cosserat continuum. In addition one has the components
controlling the flexural (or out-of-plane) behaviour of the plate (Figure 1-right), namely: the torsions
(µ11, µ22), the out-of-plane flexions (µ12, µ21), the transverse shears (τ31, τ32), and the longitudinal
shears (τ13, τ23). Due to the presence of transverse shears, the micropolar plate model can be
regarded as a thick plate theory. Its convergence towards the thin plate solution has been numerically
assessed by [14].
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Figure 1. Stresses and couple-stresses of a Cosserat plate.

The associated deformation measures of the plate are denoted with γ and κ and are:

γ =
[
γ11 γ22 γ12 γ21 γ13 γ31 γ23 γ32

]t
κ =

[
κ11 κ22 κ12 κ21 κ31 κ32

]t
(2)

In particular one has: the in-plane extensions/compressions (γ11, γ22), the membrane shear strains
(γ12, γ21) and the in-plane curvatures (κ31, κ32). Moreover, one has to take into account the out-of-
plane curvatures, as the torsion deformations (κ11, κ22) and the bending deformations (κ12, κ21),
together with the transverse and longitudinal shear strains, respectively (γ31, γ32) and (γ13, γ23).

The deformation measures are derived from the kinematics of the plate, which consists of 3
displacements, indicated with u, and 3 rotations about the orthogonal axis, called Cosserat rotations
ωc:

u =
[
u1 u2 u3

]t
ωc =

[
ωc1 ωc2 ωc3

]t
. (3)

For plates under small deflections and rotations, one defines the relative strain vector γ as [35]:

γ = ∇u+ e · ωc, γij = ui,j + eijkω
c
k (4)

and the curvature vector as:

κ = ∇ωc, κij = ωci,j . (5)

In these expressions, ∇ is the gradient operator and e (or eijk) is the permutation symbol.
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MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 5

Dealing with finite elements, it is useful to express the balance equations in weak form. Herein,
we make use of the virtual work principle on a region of the plate A and its boundary ∂A. Following
the vector form introduced above and indicating a virtual variation by δ[ ], the principle reads:

R− P −Q = 0, (6)

where:

R =

∫
A

(
τ tδγ + µtδκ

)
dA (7)

is the work of the stresses and couple-stresses,

P =

∫
A

(
btδu+ ltδωc

)
dA+

∫
∂A

(
T tδu+M tδωc

)
dA (8)

is the work done respectively by the body forces b and couples l and the traction T and momentM
on the boundary, and

Q =

∫
A

(
ρütδu+ ρω̈ctIδωc

)
dA (9)

is the work due to the inertial mass ρ and second order moment I .

3. MULTISURFACE PLASTICITY THEORY FOR COSSERAT MATERIALS

The time-independent theory of non-smooth multisurface hardening plasticity is presented in this
section. This theory, which was formerly formulated for simple (or Cauchy) materials in its original
version [38] and then extended for the computation of multiple yield surfaces [29, 28], is here used
in the framework of the Cosserat continuum theory.

Proceeding in general fashion and adopting incremental notation, relative strains (4) and
curvatures (5) can be assembled into a general total strain vector dε, defined as follows:

dε =
[
dγ dκ

]t
. (10)

Similarly, the stresses and the couple-stresses can be assembled into a general stress vector dσ:

dσ =
[
dτ dµ

]t
. (11)

The formulation (and the implementation) of the plasticity theory for Cosserat materials is obtained
in a way similar to that followed for Cauchy materials [5]. By means of the additive decomposition,
the vector of the total (small) strains is divided into the elastic [ ]e and plastic [ ]p parts:

dε = dεe + dεp. (12)

The elastic response of the material is governed by the general linear constitutive law, relating
stresses and couple-stresses to the elastic strain increment:

dσ = C [dε− dεp] , (13)

where C is the matrix of the elastic moduli. Dealing with an incremental problem, it is also useful
to express the stresses as a function of the total strains:

dσ = Cepdε (14)

where Cep is now the matrix of the elastoplastic tangent moduli.
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6 M. GODIO ET AL.

The hardening/softening variables are introduced in similar way. These are defined by α, and its
dual q. The former may be considered as a deformation measure, while the latter as a stress measure.
Their relation is based on the definition of D, the matrix of the hardening moduli:

dq = −Ddα. (15)

It follows the definition of generalised strains and stresses, useful for the sequel, respectively given
by the couples (ε;α) and (σ; q).

The salient feature of the multisurface plasticity theory lies on the definition of the elastic domain.
Denoted with Eσ, the elastic domain is defined as the convex region of the generalised stress space
bounded by multiple NF plastic surfaces F β (σ; q) [29]:

Eσ =
{

(σ; q) |F β (σ; q) ≤ 0, ∀β ∈ [1, . . . , NF ]
}

(16)

These surfaces represent the prescribed material yield loci (or yield criteria). They are smooth, but
intersect in non-smooth manner (Figure 2). The boundary of Eσ is:

∂Eσ =
{

(σ; q) |F β (σ; q) = 0, ∀β ∈ [1, . . . , NF ]
}
. (17)

τ

μ

Fβ

 
(τ,μ;q) ≤ 0

Figure 2. Schematic representation of the elastic domain of a Cosserat continuum. According to the
multisurface plasticity theory, it is a convex region in the generalised stress space (τ ,µ; q) defined by

multiple yield criteria.

Non-associative plasticity requires the definition of plastic potentials Gβ (σ; q), and
hardening/softening functions Hβ (σ; q). Through these, one formulates the equations of evolution.
On one hand, the flow rule defines the plastic strain increment:

dεp =

NF∑
β=1

λ̇β∂σG
β (σ; q) . (18)

On the other hand, the hardening law controls the increment of the hardening variables:

dα =

NF∑
β=1

λ̇β∂qH
β (σ; q) . (19)

The plastic multipliers λ̇β give the magnitude of the plastic strain increment and, by extension,
that of the hardening variables. They must respect the following restrictions, namely a) the
complementary conditions:

F β (σ; q) ≤ 0, λ̇β ≥ 0, λ̇βF β (σ; q) = 0, (20)

and b) the consistency requirement:

λ̇βdF β (σ; q) = 0. (21)
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MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 7

The above restrictions are written for the Nact activated surfaces, with Nact ≤ NF . They allow
one to determine whether the material response to loading will be elastic or elastoplastic. In the
presence of multiple surfaces, this is a central task in the formulation of the algorithm for plasticity.
The unloading response is considered elastic, and not affected by damage (cf. [1]).

3.1. Further notations

The multisurface plasticity theory requires, especially in its algorithmic version, a large number
of variables and indices. When used in conjunction with the Cosserat continuum theory, notation
may become quite complicated. Vector notation has already been introduced. From now on, it is
convenient to introduce the following additional notations.

The set of plastic surfaces, plastic potential and hardening/softening functions will be indicated
in the following vector form:

F =

 F 1

...
FNF

 , G =

 G1

...
GNF

 , H =

 H1

...
HNF

 . (22)

In turn, functions F ,G and H will have gradients given by:

∇σF =
[
∂σF

1 . . . ∂σF
NF
]

=

∂τ11F
1 . . . ∂τ11F

NF

...
...

∂µ32
F 1 . . . ∂µ32

FNF

 (23)

∇σG =
[
∂σG

1 . . . ∂σG
NF
]

=

∂τ11G
1 . . . ∂τ11G

NF

...
...

∂µ32
G1 . . . ∂µ32

GNF

 , (24)

and:

∇qF =
[
∂qF

1 . . . ∂qF
NF
]

=

 ∂q1F
1 . . . ∂q1F

NF

...
...

∂qNq
F 1 . . . ∂qNq

FNF

 (25)

∇qH =
[
∂qH

1 . . . ∂qH
NF
]

=

 ∂q1H
1 . . . ∂q1H

NF

...
...

∂qNq
H1 . . . ∂qNq

HNF

 . (26)

Second derivatives of G and H will be the third-order tensors:

∇2
σσG =

[
∇2
σσG

1 . . . ∇2
σσG

NF
]

∇2
qqH =

[
∇2
qqH

1 . . . ∇2
qqH

NF
]
. (27)

Similarly, the plastic multipliers will be assembled into the following vector:

Λ̇ =

 λ̇1

...
λ̇NF

 . (28)

With a notation of this type, expressions for multisurfaces plasticity can be recast in a simplified
form. For example, the flow rule (Eq.(18)) reads:

dεp = ∇σG · Λ̇.
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4. SOLUTION ALGORITHM

4.1. Solution algorithm for multisurface plasticity

The elastoplastic problem is incremental, since the elastoplastic solution is in general stress-
path dependent. Therefore an iterative solution scheme must be introduced. Herein, an implicit
(backward-Euler) Closest-Point-Projection (CPP) solution algorithm is adopted.

The CPP algorithm [30] is probably the most employed method in elastoplasticity. Its use
for the multisurface plasticity [29] is based on a return map, which solves the incremental
elastoplastic problem (given by Eqs.(12),(13),(15),(18),(19)) and fulfills the restrictions (20)-(21). In
this algorithm, the plastic multipliers play an essential role, since they control the loading/unloading
conditions and allow to determine the set of activated plastic surfaces by means of a backward
procedure. According to [29], two procedures may be used for the determination of the set of active
surfaces (see also [28], Ch.V, p.212). Procedure 1 consists in solving the incremental elastoplastic
problem by holding fixed the set of active surfaces during the iterative process and checking Eq.(20)
then. In Procedure 2, the set of active surfaces is updated during the iterative process, by enforcing
Eq.(20) at every iteration. Herein we make use of the Procedure 1. It is in fact more robust than the
Procedure 2, even though it is slightly more demanding from a computational point of view [31, 9].

The algorithm consists of the following steps (Figure 3):

(1) Increments of the displacement dun+1 and Cosserat rotation fields dωcn+1 are given for the
generic load step (n + 1). These fields are contained in a single vector dsn+1.

(2) Total strain increments dεn+1 (relative strains and curvatures) are computed through Eq.(4)-
(5).

(3) An elastic solution is predicted as trial [ ]T solution:

εe Tn+1 = εen + dεn+1

εp Tn+1 = εpn

αTn+1 = αn

σTn+1 = Cεe Tn+1

qTn+1 = −DαTn+1

F Tn+1 = F
(
σTn+1; qTn+1

)
.

(29)

In this phase all the NF plastic surfaces F β can be potentially activated (Nact = NF ).
(4) Plastic surfaces are checked (yield criteria).
(5) If the trial state

(
σTn+1; qTn+1

)
falls inside the elastic domain Eσ, i.e.:

F β ≤ 0,∀β ∈ [1, . . . , NF ] , (30)

then the trial solution is retained as the solution for the step (elastic increment).
(6) If at least one of the surfaces is activated, i.e.:

F β > 0,∀β ∈ [1, . . . , Nact] , (31)

then an elastoplastic increment occurs, and the trial state needs to be corrected. A notable
feature of the multisurface plasticity theory is that, when several surfaces are activated,
condition (31) does not necessarily imply that λ̇β > 0 for all the activated surfaces (Eq.(20)-
2). Procedure 1 consists then in a) solving the incremental elastoplastic problem, here reported
as: 

σn+1 = C
[
εn+1 − εpn+1

]
qn+1 = −Dαn+1

εpn+1 = εpn + ∇σGn+1 · Λ̇n+1

αn+1 = αn + ∇qHn+1 · Λ̇n+1

F n+1 = 0,

(32)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 9

by holding fixed the set of the activated surfaces, and b) checking the solution by testing
condition (20)-2.

(7) Surfaces for which condition (20)-2 is not satisfied (non-positive plastic multiplier) are
dropped from the set of the activated plastic surfaces and a new trial solution is demanded:
(3)← (7), with Nact ≤ NF .

(8) If condition (20)-2 is satisfied for all the surfaces, the algorithm has converged to the
elastoplastic solution.

Total strain and 

curvature increment

dγ, dκ

Trial solution

dτT, dμT; dqT

Displacement and 

rotation increment

du, dωc

Definition of the 

activated surfaces

Fβ
 
(τ,μ;q)

Check 

plastic

surfaces

Fβ (τ,μ;q) ≤ 0

for all activated 

surfaces

Fβ
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for at least one 

surface

Elastic increment

(solution)

Elastoplastic

problem

Elastoplastic 

increment

(solution)

Check 

consistency

λβ  > 0

λβ  ≤ 0

for at least one 

surface

λβ  > 0
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(1)

(2)

(3)

(4)
(5)(6)

(7) (8)

P
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ce
d
u
re
 1
 o
f 
S
im

o

Update for the 

next increment

Figure 3. Illustration of the Closest-Point-Projection (CPP) algorithm adopted within the multisurface
plasticity theory for Cosserat materials.

4.2. Implementation of the Newton-Raphson method in the CPP algorithm

The elastoplastic problem (32) is solved at every increment (n) by employing a classical (or full)
Newton-Raphson iterative method. Generally speaking, the method consists in, given a set of
equations of the type r (ζ)− p = 0, solving the equations iteratively, by replacing them at every
increment with the linear approximation:

r(k+1) − p ≈ r(k) + ∂ζr
(k)
(
ζ(k+1) − ζ(k)

)
− p = 0. (33)
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10 M. GODIO ET AL.

In the above, r(k) = r(ζ(k)) is the residual vector and ∂ζr(k) is the Jacobian matrix of r(k). Both
quantities are known at the increment (k) and, since p is constant, the solution for the increment
(k + 1) is simply given by:

ζ(k+1) = ζ(k) −
[
∂ζr

(k)
]−1 [

r(k) − p
]
. (34)

Solution of the starting equations is then found when the norm of the updated residual becomes
sufficiently small: ‖r(k+1) − p‖ < TOLNR. In general, the method converges after a number of
iterations which depends on the type of equations being considered.

Referring to the CPP algorithm presented in Section 4.1, the residual vector for the incremental
elastoplastic problem (32) writes:

r(k) =

C−1σ
(k)
n+1 + ∇σG

(k)
n+1 · Λ̇

(k)
n+1

F
(k)
n+1

D−1q
(k)
n+1 + ∇qH

(k)
n+1 · Λ̇

(k)
n+1

 , (35)

where G(k)
n+1 = G

(
σ

(k)
n+1; q

(k)
n+1

)
, while the constant vector p is given by:

p =

C−1σTn+1

0

D−1qTn+1

 . (36)

Notice that the equation r(k) − p = 0 corresponds exactly with Eqs.(32). In particular, the first
and the third term of Eq.(35)-(36) are obtained by replacing the set of generalised deformations
(εn+1;αn+1) in the Eqs.(32) with the trial state of the generalised stresses

(
σTn+1; qTn+1

)
(Eq.(29)).

The Jacobian matrix for the incremental elastoplastic problem then writes:

∂ζr
(k) =


C−1 + ∇2

σσG
(k)
n+1
· Λ̇

(k)
n+1 ∇σG

(k)
n+1 ∇2

σqG
(k)
n+1
· Λ̇

(k)
n+1

∇σF
(k)t
n+1 0 ∇qF

(k)t
n+1

∇2
qσH

(k)
n+1
· Λ̇

(k)
n+1 ∇qH

(k)
n+1 D−1 + ∇2

qqH
(k)
n+1
· Λ̇

(k)
n+1

 . (37)

It is important to note that in case of perfect plasticity one can to consider the submatrix formed
by taking the block of the first two entries of the matrix (37). Similarly, the vectors r(k) and p are
reduced to their first two terms. The solution for the (k)-th iteration is given by:

ζ(k+1) =

σ
(k+1)
n+1

Λ̇
(k+1)

n+1

q
(k+1)
n+1

 . (38)

The Newton-Raphson method is the core of the CPP algorithm: it assures the existence and the
accuracy of the elastoplastic solution at each increment (n). The Newton’s scheme is initialized at
k = 0 by injecting the trial state (29) into the linearized system (33), namely:

ζ(0) =

σTn+1

0
qTn+1

 , (39)

and:

[
r(0) − p

]
=

 0

F
(0)
n+1

0

 , (40)
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MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 11

with F (0)
n+1 > 0 the vector of the activated surfaces. After this first iteration, the iterative process

starts. At each iteration (k), the solution vector for the (k + 1)-th iteration is computed according to
Eq.(34). The residual vector (35) is next updated, and its norm is finally checked. Usual conditions
for assessing method’s convergence towards the elastoplastic solution are [29]:

‖F (k+1)
n+1 ‖ < TOL1

‖r(k+1) − p‖ < TOL2. (41)

At that point, the solution of the elastoplastic problem (32) at the increment (n) is presumably found.
According to the Procedure 1 (Figure 3), the CPP algorithm requires the plastic multipliers to be
all positive. If this condition is respected, the elastoplastic solution given by the Newton’s method
is retained and the iterative scheme is updated for the (n + 1)-th successive increment. If not, the
procedure is reinitialized within the same increment, but with a new, updated trial state (Figure 3).

It is to note that, generally, the convergence of this method to the solution is not always assured
but if the first-iteration (or trial) vector ζ(0)n+1 does not differ in norm from the expected solution.
This could suggests the user to subdivide the analysis in a number of sufficiently small steps.

4.2.1. Limitations of the Newton-Raphson method in the CPP algorithm. When used within the
CPP algorithm, the Newton-Rapshon method has some limitations. The limitations derive from the
definition of the elastic domain (Eq.(16)). According to [28], this domain has finite dimension:

dim {Eσ} = Nσ +Nq <∞. (42)

It follows that each point of the generalised stress space (σ; q) belonging to the boundary of
the elastic domain ∂Eσ can be intercepted by at most (Nσ +Nq) independent plastic surfaces,
i.e. surfaces leading to non-redundant constraints [28]. In fact, if one of these surfaces was not
independent with the others, the normal vectors ∂σF β and ∂qF β would become linearly dependent.
The consequence thereof is that matrices ∇σF and ∇qF and the Jacobian matrix (37) would
become singular. In this case, the use of standard matrix inversion techniques in Eq.(34) would be
ineffective and convergence of the Newton’s iterative process would not be achieved.

Figure 4 shows two distinct configurations leading to singular Jacobian matrix. For illustration
purposes, perfect plasticity is chosen and only two components of the stress tensor are kept, i.e.
(σ11, σ22). In this case, Nσ = 2, Nq = 0. In the first example (Figure 4-left), 3 surfaces enclose the
elastic domain. Therefore NF > (Nσ +Nq). Consequently, the projection of the trial stress dσT

at the point of intersection would cause Jacobian matrix singularity at the first Newton’s iteration.
In the second example (Figure 4-right), only 2 surfaces are defined (NF = 2), but the normals to
the surfaces are pointwise coincident. In this case the criteria are clearly redundant. The Jacobian
matrix would be then rank deficient, and the Newton’s process would newly stop.

σ
11

σ
22 F1

F2

F3

dσT

Redundant plastic surfaces

F1

 
= F2

 

dσT

σ
11

σ
22

Coincident plastic surfaces

Figure 4. Two possible configurations for which Jacobian matrix is singular for perfect plasticity.

Both examples are admissible from a physical point of view, and the CPP algorithm should not fail
in cases like these. In order to overcome this numerical inefficiency intrinsic to the Newton-Raphson
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12 M. GODIO ET AL.

method, and to enable the projection algorithm to fully attain all the features of the multisurface
plasticity theory, the Singular Value Decomposition (SVD) technique is adopted in the present
formulation for the inversion of the Jacobian matrix in Eq.(34). This technique is general and robust.
In this context, it allows the definition of a theoretically unmlimited number of yield criteria, plastic
potentials and hardening/softening laws of every form. The next Section briefly outlines the SVD
technique.

4.2.2. Implementation of the Singular Value Decomposition technique in the Netwton-Raphson
method for the CCP algorithm. The Singular Value Decomposition (or SVD) is a technique
allowing to compute the pseudo-inverse of a rectangular matrix. Here we use the algorithm based
on this technique, presented in [25].

The method consists in factorizing a generic rectangular [M ×N ] matrix A as the inner product
between three matrices, namely U ,V and Λ, as follows:

A = UΛV t. (43)

U and V are two orthogonal [M ×M ] and [N ×N ] square matrices, respectively. The columns
of U are computed as the eigenvectors of the inner product AAt, whereas the columns of V are
computed as the eigenvectors of the productAtA. Λ is a [M ×N ] diagonal, positive definite matrix
containing ai, the non-negative singular values of A (the singular values are the square root of the
eigenvalues). Under this form, the computation of the inverse of A reduces to:

A−1 = V Λ−1U t. (44)

WhenA is non singular, i.e. its singular values are all positive, the SVD technique allows to compute
the inverse matrix A−1 as other methods do (notice however that A is rectangular). When A is
singular (or badly conditioned), some of its singular values a0i are null (or very close to zero). This
would make the inversion of Λ (and A) impossible. In that case, the SVD technique consists in
constructing the inverse matrix Λ̂

−1
, by imposing the following condition:

if a0i < TOLSV D, then
(
1/a0i

)
= 0. (45)

The resultant matrix A+, indicated as the pseudo-inverse of A, represents the the closest matrix
approximation of A−1:

A+ = V Λ̂
−1
U t. (46)

The SVD technique has been implemented within the Newton’s iterative process for the inversion
of the Jacobian matrix (Eq.(34)). Cases as those depicted in Figure 4 can be properly treated through
this method. When the Jacobian matrix is singular, the SVD gives its pseudo-inverse. When no
singularity occurs, the SVD technique always provides an accurate alternative to other classical
inversion methods. The effect of the application of the SVD technique on elastoplastic problems is
shown in Section 6, by means of specific benchmarks.

5. FINITE ELEMENT FORMULATION

5.1. Element implementation

The theory of multisurface plasticity for Cosserat materials is herein incorporated into a
displacement and rotation-based finite element formulation. For further details on the formulation
of Cosserat finite elements of this type, the reader is referred to [26, 39, 14]. The account for plastic
strains is made through the adoption of the implicit (backward-Euler) Closest-Point-Projection
algorithm and the related solution strategies presented in Section 4.

Dealing with irreducible finite elements, approximations of the kinematic fields are first needed.
In the case of Cosserat element, displacement and rotational fields are interpolated with respect to
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MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 13

nodal translations U and Cosserat nodal rotations Ωc. This can be made, for instance, by means of
specific shape functions N and Φ, associated respectively to the displacements and the rotations
[14]. However, in order to keep the formulation simple and general, and being in analogy to other
more conventional theories, here we express the element interpolation as:

ds = NdS, (47)

where s contains both the displacement u and the rotational fields ωc, and S is the vector of the
nodal degrees-of-freedom. Its increment writes:

dS =
[
dU dΩc

]t
. (48)

Similarly, the increment of the total strain vector ε (Eq.(11)) of the element is:

dε = BdS, (49)

with B the element compliant matrix. With this notation, the principle of virtual work (Eq.(6)) on
the element of area Ae holds at the increment (n + 1):

[R (Sn+1)− P n+1]
t
δS = 0, (50)

where:

R (Sn+1) =

∫
Ae

Btσ (Sn+1) dA, P n+1 =

∫
Ae

N tf n+1dA (51)

are respectively the resultant vectors of the internal and the external forces f =
[
b l

]t
acting on

the element. The dynamic part of Eq.(6) and the work done by the tractions and moments on the
boundary are omitted.

Solution to Eq.(50) can be obtained for every δS and at every increment (n) through an iterative
solution procedure. This procedure is controlled at the global level, i.e. for the whole element
discretisation, and encloses that adopted for the material (Section 4.2), which is now solved at
the local level, i.e. at the quadrature points of the element. The majority of the commercial codes
implementing the finite element method employ for this purpose a classical Newton-Rapshon
scheme. Therefore, from the knowledge of the iteration (h), by using Eq.(34) one obtains the
solution vector S(h+1)

n+1 at the iteration (h + 1):

S
(h+1)
n+1 = S

(h)
n+1 −

[
∂SR

(h)
n+1

]−1 [
R

(h)
n+1 − P n+1

]
. (52)

Once the solution vector S(h+1)
n+1 is known, the residual vector R(h)

n+1 is also updated to (h + 1)-th
iteration, and (after the assembly operation) convergence is checked at the global level. In order to
avoid confusion, in Eq.(52) the index (h) is used to distinguish the global Newton’s iteration from
the local one, denoted with (k) (Section 4.2), made at the quadrature point.

By using the chain rule along with Eqs.(14),(49) and (51), the Jacobian matrix in Eq.(52) takes
the following form:

∂SR
(h)
n+1 =

[
∂σn+1R

(h)
n+1

]
·
[
∂εn+1σ

(h)
n+1

]
·
[
∂Sn+1ε

(h)
n+1

]
=

∫
Ae

(
BtC

(h)
n+1B

)
dA = K

(h)
n+1, (53)

where C(h)
n+1 is the matrix of the elastoplastic tangent moduli (Eq.(14)), computed at the time

step (n + 1) and updated at the h-th global iteration. K(h)
n+1 is the corresponding element’s

elastoplastic tangent stiffness matrix . Its expression proves crucial in preserving the rate of quadratic
convergence that distinguishes the full Newton-Raphson method from its modified version [16, 28].
The explicit expression of the elastoplastic element stiffness matrix is derived in the next Section,
in the framework of the Cosserat multisurface plasticity theory.
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14 M. GODIO ET AL.

5.2. Derivation of the elastoplastic tangent stiffness matrix for multisurface plasticity

The peculiar aspect of finite elements based on Cosserat continuum is that both the terms associated
with the nodal translations and the nodal rotations confer rigidity to the element. However, in order
to avoid further complexity in notation, here the derivation of the stiffness matrixK(h)

n+1 is carried out
in general form. This can make the derivation similar to that made in other elastoplastic theories,
as in the classical continuum theory [28] or in the generalised theories of beams and plates [40].
However, one must have in mind the complex structure of the Cosserat continuum in the context
of the multisurface plasticity theory. For instance, due to plasticity, coupling between the terms
related to the stresses and the couple-stresses may occur, even when dealing with centro-symmetric
materials.

For completeness, we derive below two versions of the tangent moduliC(h)
n+1 entering Eq.(53): the

continuum and the algorithmic. The continuum version refers directly to the theory of multisurface
plasticity developped in Section 3. The algorithmic version refers specifically to the iterative
solution scheme presented in Section 4. It is important to note that only the use of the algorithmic
moduli in the expression of the element stiffness matrix (53) preserves, whatever the increment size,
the quadratic convergence of the Newton’s method. The continuum moduli reaches this rate only in
the limit of very small step increments [16, 28].

5.2.1. Continuum tangent modulus. Eqs.(12),(13),(15),(18),(19) and (21) are recast in the
following system of matrix equations:

dσ = C [dε− dεp]

dq = −Ddα
dεp = ∇σG · Λ̇
dα = ∇qH · Λ̇
∇σF

t · dσ + ∇qF
t · dq = 0.

(54)

Combining Eqs.(54)-1 and (54)-3 one obtains:

dσ = C
[
dε−∇σG · Λ̇

]
. (55)

The above equation, substituted into Eq.(54)-5 together with Eq.(54)-2,4, yields:

Λ̇ = M−1 ·∇σF
t ·C · dε (56)

with:

M = ∇σF
t ·C ·∇σG+ ∇qF

t ·D ·∇qH (57)

The substitution of Eq.(56) into Eq.(55) leads to the expression for the matrix of the elastoplastic
tangent moduli Cep:

dσ = Cepdε
Cep =

[
C −C ·∇σG ·M−1 ·∇σF

t ·C
]
. (58)

It is important to note that theM matrix and the matrix of the elastoplastic tangent modulusCep are
not necessarily symmetric. Both matrices would become symmetric only in the case of associative
plasticity, namely:

∇σG ≡∇σF , ∇qH ≡∇qF . (59)

5.2.2. Algorithmic tangent modulus. The algorithmic, or consistent [28, 40], version of the
elastoplastic tangent matrix, namely C(h)

n+1, is retrieved in similar way with its continuum version
Cep (Eq.(58)). For clarity we omit the index (h). One can rewrite system (32) in the following
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MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 15

algorithmic form:

dσn+1 = C [dεn+1 − dεpn+1]

dqn+1 = −Ddαn+1

dεpn+1 = ∇2
σσGn+1

· Λ̇n+1 · dσn+1 + ∇σGn+1 · dΛ̇n+1

dαn+1 = ∇2
qqHn+1

· Λ̇n+1 · dqn+1 + ∇qHn+1 · dΛ̇n+1

∇σF
t
n+1 · dσn+1 + ∇qF

t
n+1 · dqn+1 = 0

, (60)

where the increment dΛ̇n+1 is introduced. Eqs.(60)-1,3 are then combined, in order to give:

dσn+1 = Θn+1

[
dεn+1 −∇σGn+1 · dΛ̇n+1

]
, (61)

where Θn+1 is the matrix of the elastic algorithmic moduli [28]. Its definition is (cf. Eq.(37)):

Θn+1 =
[
C−1 + ∇2

σσGn+1
· Λ̇n+1

]−1

. (62)

In addition, Eqs.(60)-2,4 give:

dqn+1 = Ψn+1

[
−∇qHn+1 · dΛ̇n+1

]
, (63)

where Ψn+1 writes:

Ψn+1 =
[
D−1 + ∇2

qqHn+1
· Λ̇n+1

]−1

. (64)

Due to the similarity with Θn+1, matrix Ψn+1 could be defined as the matrix of the hardening
algorithmic moduli. Substituted into Eq.(60)-5, Eqs.(61) and (63) hold:

dΛ̇n+1 = M̃
−1

n+1 ·∇σF
t
n+1 ·Θn+1 · dεn+1, (65)

and consequently Eq.(61) becomes:

dσn+1 = Cn+1dεn+1

Cn+1 =
[
Θn+1 −Θn+1 ·∇σGn+1 · M̃

−1

n+1 ·∇σF
t
n+1 ·Θn+1

]
. (66)

In Eq.(58), matrix M̃ n+1 is defined as in Eq.(57), with the exception that matricesC andD must be
replaced here with their algorithmic versions Θn+1 and Ψn+1. Notice, in conclusion, how the matrix
of the algorithmic moduli (66) reduces to that of the continuum moduli (58), as the step increment
is small. This shows that problem (60) is consistent with problem (54).

6. ELEMENT VALIDATION

In Section 4 and 5, the theory, the solution algorithm and the element implementation of multisurface
plasticity for Cosserat materials have been presented in general manner. In this Section attention is
focused on a specific finite element, formulated for micropolar plate models. The element is briefly
introduced and its validation in the framework of multisurface plasticity is then carried out in two
steps. Firstly, the accuracy of the CPP algorithm is tested locally, i.e. at the integration point level,
through simple element tests. Secondly, the efficiency of the algorithm is assessed at the global (or
element) level, based on more complex discretisations related to structural problems.

6.1. The micropolar plate element COSS8R

The element called COSS8R [14] is a quadratic micropolar plate element (Figure 5). It possesses
8 nodes, all situated on the element sides. Each node is equipped with 6 degrees-of-freedom,
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16 M. GODIO ET AL.

i.e. 3 translations and 3 Cosserat rotations. In this element, the shape functions N and Φ, used
respectively for the interpolation of the displacement and the rotational fields, are the same. The
integration of the element stiffness matrix is made on 4 quadrature points (reduced integration),
whereas the integration of the element mass matrix requires 9 quadrature points (full integration).
This avoids the shear locking phenomenon (in statics) and the occurrence of massless degrees-of-
freedom (in dynamics). For further details, the reader is referred to [13]. It is important to note that,
in the extension to plasticity, the presence of multiple quadrature points requires the independent
solution of the elastoplastic problem at each of these points.

Ω
2

Ω
1

Ω
3

U
1

U
2

U
3

Figure 5. The quadratic micropolar plate element COSS8R [14].

membrane behaviour flexural behaviour

um =
[
u1 u2

]t
uf = [u3]

ωcm = [ω3] ωcf =
[
ω1 ω2

]t

γm =
[
γ11 γ22 γ12 γ21

]t
γf =

[
γ13 γ31 γ23 γ32

]t
κm =

[
κ31 κ32

]t
κf =

[
κ11 κ22 κ12 κ21

]t
bm =

[
b1 b2

]t
bf =

[
b3
]

lm =
[
l3
]

lf =
[
l1 l2

]t
τm =

[
τ11 τ22 τ12 τ21

]t
τf =

[
τ13 τ31 τ23 τ32

]t
µm =

[
µ31 µ32

]t
µf =

[
µ11 µ22 µ12 µ21

]t
Table I. Membrane and flexural static and kinematics of a Cosserat plate element.

For the sequel of this Section, it is useful to distinguish the variables describing the membrane
response from the variables describing the flexural response of the plate element (Table I).
Accordingly, the membrane elastic response is controlled by matrices A and Dm, expressed as
[24, 14]:

τm = Aγm, µm = Dmκm

A =

K +G K −G 0 0
K −G K +G 0 0

0 0 G+Gc G−Gc
0 0 G−Gc G+Gc

 , Dm =

[
2Glc 0

0 2Glc

]
(67)

with K the compression modulus, G the shear modulus, Gc the Cosserat shear modulus and lc the
characteristic length of the micro-structured material. The flexural elastic response is controlled by
matrices Q and Df , reading [2, 14]:

τf = Qγf , µf = Dfκf

Q =

0 0 0 0
0 α4 0 0
0 0 0 0
0 0 0 α4

 , Df =

β1 + β2 + β3 β1 0 0
β1 β1 + β2 + β3 0 0
0 0 β3 β2
0 0 β2 β3

 (68)

with α4 the material parameter related to the transverse shears, and β1, β2, β3 those related to the
torsions and the out-of-plane flexions of the plate.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 17

6.2. Single element tests for multisurface plane plasticity

The scope of single element tests is twofold. On one hand, the algorithm accuracy is assessed not
only pointwise, but also at the element level, i.e. after integration of the element’s stiffness matrix.
This guarantees the good response of the element and the convergence of the iterative scheme at the
global level. On the other hand, with tests of this kind the performance of the element can be shown
in special configurations, as for states of non-homogeneous deformation or in presence of multiple
plastic surfaces. In this setting, the use of the SVD technique within the Newton-Raphson process
is investigated.

Herein we carry out two series of tests based on two basic configurations (Figure 6): one involving
uni-axial loading/unloading cycles, and one involving the use of multiple plastic surfaces for bi-axial
stress states. All tests are displacement-controlled.

u
1

Uni-axial test

u
1

u
2

Bi-axial test

Figure 6. Configurations used for the single element tests in multisurface plasticity.

6.2.1. Uni-axial loading/unloanding cycles. The application of the displacement increment ∆u1
leads to a homogeneous state of tension/compression/tension on the element (Figure 6-left). The
uni-axial constitutive law is given by:

τ11 = Eγ11, (69)

with E the elastic modulus. The plastic surface with linear isotropic hardening is given in the form:

|τ11| − τy + q1 ≤ 0

q1 = hα1 (70)

with τy the uni-axial limit stress. Figure 7 illustrates the stress path followed during the test and
the stress-strain relation curves. The evolution of the elastic domain during the elastoplastic loading
phases (a-b) and (c-d) is apparent.

6.2.2. Bi-axial load tests for multisurface plasticity. Five tests, indicated with B1 to B5, are carried
out. In these tests, displacement increments are applied in x1 and x2 directions (Figure 6-right),
leading the element to homogeneous bi-axial stress states. Different sets of plastic surfaces are
considered for each test. In particular, we consider five plastic surfaces together with a linear
isotropic hardening/softening function:

F 1 = τ22/τy − 1 + q1

F 2 = τ11/τy − 1 + q1

F 3 = (τ11 + τ22)/(2τy)− 1 + q1

F 4 = (τ11/τy)2 + (τ22/τy)2 − 1 + q1

F 5 = (τ11/(1.4 τy))2 + (τ22/(0.6 τy))2 − 1 + q1

q1 = hα1. (71)

Moreover, we consider a material with isotropic elastic constitutive law, given by Eq.(67). All tests
except Test B5 are carried out by using the same elastic properties (Figure 8), and the same number
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Figure 7. Element response to uni-axial cyclic loading. Elastic modulus E = 10MPa, hardening modulus
h = 10MPa, yield stress τy = 5MPa.

of equally spaced increments (30). This allows the convergence to be reached in Tests B1, B2 and
to provide high level of accuracy in Test B3, B4. For Test B5, the total number of increments is
doubled and the hardening modulus is 0.1h.

In Test B1 (Figure 8) surfaces F 1, F 2 are used. These two intersecting plastic surfaces are
activated during the monotonic bi-axial loading. For perfect plasticity (Figure 8-left), the stress path
is limited by the boundary of the elastic domain. In case of isotropic hardening (Figure 8-right),
both surfaces evolve towards the new stress state of the element. Notice that the symmetry of the
problem is reflected in the symmetry of the solution, which is the same in x1- and x2-directions.
Moreover, the same solution is reached at all integration points of the element. For brevity, only τ11
as function of the total γ11, elastic γe11 and plastic deformation γp11, and of the hardening parameter
α is presented.

In Test B2 (Figure 9) surface F 3 is added to F 1, F 2 and in Test B3 (Figure 10) surface F 4 and an
identical surface denoted F 6 are employed. These two tests follow the examples of Figure 4, since
they allow to consider redundant and coincident plastic surfaces respectively. If the SVD technique
was not employed for the solution of the incremental elastoplastic problem (Section 4.2.1), the
inversion of the Jacobian matrix would not be possible in these cases and the test would fail once
the surfaces reached. This would hold for Test B2 in the case of perfect plasticity (NF = Nσ) and
for Test B3 in both cases, since the same hardening variable is used for the two surfaces F 4, F 6.
Nevertheless, these tests are handled by the element, thanks to the proposed solution strategy that
involves the SVD technique. On one hand (Figure 9), the element is able to activate all the necessary
surfaces. Since surface F 3 is redundant with F 1 and F 2, the resulting deformations are actually the
same with those of Test B1. On the other hand (Figure 10), both surfaces evolve in identical manner.

Test B4 (Figure 11) makes use of F 4 and F 6. It consists of two successive monotonic load steps.
First ∆u1 > 0 and then ∆u2 > 0 are applied. As a result of the form of the elastic domain, the
second load step results in a loading step in direction x2 and an unloading step in direction x1. This
occurs both in case of hardening and of perfect plasticity, where the stress state is constrained to
move along the boundary of the elastic domain. Also in this test, the SVD technique enables the
element to follow exactly the stress path imposed, F 4 and F 6 being coincident.

In Test B5 (Figure 12) surfaces F 4 and F 5 are used. The test consists in five successive load steps,
namely: a) ∆u1 > 0,∆u2 = 0; b) ∆u1 = 0,∆u2 > 0; c) ∆u1 < 0,∆u2 = 0; d) ∆u1 = 0,∆u2 < 0;
e) ∆u1 > 0,∆u2 = 0. Following these steps, the element carries out a complete loading/unloading
cycle in x1 and x2 directions simultaneously. Accordingly, the stress path activates different plastic
surfaces at each load step. Notice how the activation of the surfaces occurs precisely at their points
of intersection. Moreover, in case of hardening plasticity the accumulated plastic strains induces the
general expansion of the elastic domain.
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Figure 8. Element response to bi-axial test B1. Top: stress path in the (τ11 − τ22)-plane. Bottom: stress-
strain curve. In-plane elastic properties: K = 5MPa, G = 5MPa, Gc = 0MPa, lc = 0. Hardening modulus

h = 10MPa, yield stress τy = 5MPa.

6.3. Structural benchmarks for micropolar plates

Structural benchmarks are made to test (and suggest) the use of the algorithm of multisurface
plasticity for Cosserat materials and the developed plate element in cases of practical interest. Herein
we carry out three benchmarks. In all the examples we consider 3D structural problems. The first
benchmark is concerned with the development of in-plane strain localisation in hollow cylinders
with micropolar properties. With the second benchmark we model the behaviour of micropolar
square plates undergoing out-of-plane macroscopic plastic curvatures. The third benchmark aims
at studying the load-bearing capacity of a shallow foundation resting upon a micropolar soil under
plane strain conditions.

6.3.1. Strain localisation in hollow cylinders. We consider a hollow cylinder of heightH = 60mm,
radiusR = 15mm and constant thickness t = 1mm. The cylinder is subjected to torsion (Figure 13).
In particular, the top and the bottom sides of the cylinder have all the degrees-of-freedom prevented
except the axial rotation, denoted with Ω3, which is controlled. The lateral surface of the cylinder is
free of stresses and couple-stresses.
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Figure 9. Element response to bi-axial test B2. Top: stress path in the (τ11 − τ22)-plane. Bottom: stress-strain
curve.

The cylinder is made of a micro-structured material. Its macroscopic behaviour is described by
a Cosserat continuum with homogeneous isotropic centro-symmetric elastic properties (Eq.(67)-
(68)). The in-plane response of the material follows here the tangential (θ) and longitudinal (z)
directions of the cylinder. The out-of-plane direction is on the radial (r) direction (Figure 13). The
elastic parameters of the material are: K = 4000MPa, G = 4000MPa, Gc = 2000MPa, and α4 =
1500MPa, β1 = 2000MPa×mm, β2 = 0MPa×mm, β3 = 4000MPa×mm. The characteristic
(or inner) length of the micro-structured material is lc = 2.5mm (Eq.(67)).

The elastoplastic response of the material is described by means of the J2 (or Von-Mises)
plasticity model formulated for Cosserat continua. The yield criterion for the generalised J2-
hardening-plasticity relies on the following single plastic surface [5]:

F =
√

3J2 − σ (γp2 ) (72)

where σ represents the equivalent yield stress, J2 is the second invariant of the deviatoric stress
tensor and γp2 is the second invariant of the deviatoric plastic strain tensor. For the Cosserat
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Figure 10. Element response to bi-axial test B3. Top: stress path in the (τ11 − τ22)-plane. Bottom: stress-
strain curve.

continuum, J2 and γp2 write respectively:

J2 =
1

2

[
τ tm µtm

]
P

[
τm
µm

]
, (73)

and:

γp2 =

√
2

3

[
γtm κtm

]
P̃

[
γm
κm

]
, (74)
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with matrices P and P̃ defined as:

P =


4
3 (a1 + a2) − 2

3 (a1 + a2) 0 0 0 0
− 2

3 (a1 + a2) 4
3 (a1 + a2) 0 0 0 0

0 0 2a1 2a2 0 0
0 0 2a2 2a1 0 0
0 0 0 0 2a3/l

2
c 0

0 0 0 0 0 2a3/l
2
c



P̃ =


4
3 (b1 + b2) − 2

3 (b1 + b2) 0 0 0 0
− 2

3 (b1 + b2) 4
3 (b1 + b2) 0 0 0 0

0 0 2b1 2b2 0 0
0 0 2b2 2b1 0 0
0 0 0 0 2l2cb3 0
0 0 0 0 0 2l2cb3

 . (75)

Scalars a1, a2, a3 and b1, b2, b3 are the plastic parameters of the material. Following [5], we use
a1 = 1/4, a2 = 1/4, a3 = 1/2 and b1 = 1/3, b2 = 1/3, b3 = 2/3. Herein, strain-softening plasticity
is simulated through a linear softening rule, with hardening modulus h = −400MPa and yield stress
σ = 100MPa.

Simulations are carried out with three different finite element discretisations. The COSS8R being
a flat element, it is suitable to choose a larger number along the tangential direction of the cylinder.
Therefore, assemblies of 16× 8, 24× 16 and 32× 24 elements are used. Analyses are run by
updating the reference system at every load step. In this way large axial rotations are avoided.
Moreover, an automatic step increment control technique is used throughout the analyses.

The resulting macroscopic behaviour of the cylinders is shown in Figure 14-left, in terms of
normalized reaction moment Mz and differential axial rotation ∆Ωz = Ωtz − Ωbz . The onset of
plastic deformations (on the first branch) rapidly culminates with a softening branch, which is
accompanied by strain localisation (Figure 14-right). The deformation pattern of the cylinders
beyond the moment peak value is shown in Figure 15 for the different discretisations adopted.
This result is expected since, due to the axial symmetry of the problem, the deformation is the
same with that of other 2D structural problems [5, 27]. Accordingly, the linear elastic branch is
well captured even by the coarsest discretisation, and the softening branch is reached by adopting
slightly finer discretisations. Strain localisation occurs exactly as in the shear layers studied by [5].
The strain localisation shows then an apparent mesh-independency (Figure 14-right), i.e. the width
of the localisation region does not depend on the number of elements falling inside this region. This
is a fundamental feature of finite elements based on the Cosserat continuum [8, 24, 23].

6.3.2. Torsion of square plates. As second example we consider a square plate, of span L = 10mm
and thickness t = 1mm (Figure 16). The plate has two opposite free edges and two opposite clamped
edges, with all the degrees-of-freedom prevented. A rotation Ω2 is imposed at one of the clamped
edges. The rotation produces a macroscopic deformation that involves the out-of-plane behaviour
of the plate. We are here interested in the assessment of the ultimate (or limit) resulting moment M2

supported by the plate, under multiple intersecting plastic surfaces.
The plate is made of a micro-structured material which has the same elastic micropolar properties

with that composing the hollow cylinders considered in Section 6.3.1. However, criteria for the out-
of-plane behaviour of a Cosserat plate are absent in the literature. One criterion which is often used
in practice is the Nielsen’s criterion, formulated for reinforced concrete plates [21, 18]. This criterion
is usually expressed for conventional (or engineering) plate theories. Herein, it is formulated in order
to take into account the out-of-plane statics of the micropolar plate model (Figure 1). It consists of
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six distinct and intersecting plastic surfaces:

F 1 = (µ11 − µ22)2/4− (M+
21 − µ21)(M+

12 − µ12)

F 2 = (µ11 − µ22)2/4− (M−
21 + µ21)(M−

12 + µ12)

F 3 = µ21 −M+
21

F 4 = µ12 −M+
12

F 5 = −µ21 −M−
21

F 6 = −µ12 −M−
12. (76)

Parameters M+
21,M

−
21,M

+
12,M

−
12 are the (non-negative) out-of-plane yield flexions µ12 and µ21 of

the reinforced concrete plate. M+ and M− represent the ultimate moment leading respectively
the upper and the lower side fiber of the plate to failure. For simplicity, these parameters are all
considered equal to m = 5MPa×mm. For illustration purposes, simulations are carried out in the
frame of perfect and associative plasticity. It is worth mentioning that the conventional torsional
moment of the engineering theory of plates, Mt, is here expressed in terms of the Cosserat torsions
µ11 and µ22 by imposing: Mt = (µ11 − µ22) /2. In this way the Nielsen’s criterion may be extended
to Cosserat plate models.

The plate is modeled by means of three different finite element discretisations. Figure 17 shows
that, even with the coarsest 2× 2 discretisation, the macroscopic response of the plate is captured
accurately by the COSS8R element. At the beginning the plate behaves elastically, but as far as some
of the plastic surfaces are activated (Eq.(76)), plastic curvatures are developed until the formation of
a macroscopic failure mechanism. This corresponds to the ultimate resulting momentM2. Figure 18
displays the number of activated surfaces once the limit moment is reached. It is found that, for
the problem considered, only the first two plastic surfaces F 1, F 2 are activated throughout the
analyses. It is apparent how the algorithm of multisurface plasticity is able to select different sets
of plastic surfaces at each integration point of the finite element. This confers high flexibility to the
element and may increase the accuracy in problems characterised by states of non-homogeneous
deformations.

6.3.3. Shallow foundation on micropolar soil. In the third benchmark we consider a shallow
foundation supported by a homogeneous layer of soil (Figure 19). The foundation has a width
B = 33.34m and is subjected to a distributed pressure T2. The layer of soil has dimensions
L×H = 200m× 50m. Classical smooth conditions are applied to the boundaries of the layer. The
geometry of the problem allows then to consider only half of the model. This is made by preventing
the horizontal translations U2 and the in-plane rotations Ω3 along the symmetry plane. It is worth
noting that plane strain conditions, for which the out-of-plane component τ33 is non-null [8], are
formulated for this benchmark.

The foundation is considered as rigid and the interface with the soil perfectly cohesive. The soil
is an isotropic material with micropolar elastic properties given by K = 34000kPa, G = 18000kPa
and Gc = 0.7G (Eq.(67)). The elastoplastic response of the soil is described by means of the
following set of plastic surfaces (Figure 20):

F 1 =
√

3J2 +Ap− σ
F 2 =

√
3J2 − Cp− Cpc. (77)

The first surface is the generalisation of the Drucker-Prager plasticity model for Cosserat continua
[8, 24, 20], for which p is the mean pressure and A = 0.39. The second surface introduces a
generalised compression cap to the model, with pc = 2496kPa = 3σ the yield stress in compression
and C = 0.81. No hardening is considered.

The aim of the benchmark is twofold. On one hand, the variation of the load-bearing capacity
of the foundation is assessed for soils with different internal lengths lc (scale effect). The effect of
different yield criteria is also studied (Eq.(77)). On the other hand, the ultimate load is computed in
the limit of small lengths in order to obtain the solution for the Cauchy continuum.
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Figure 21 shows the macroscopic response of the foundation in terms of normalized pressure T2
and vertical displacement δ2. The scale effect is apparent on Figure 21-left: a larger internal length
yields to a stiffer elastoplastic response and a higher load-bearing capacity. On the contrary, the
activation of a compression cap leads to a consistent reduction of the ultimate load. The macroscopic
response for the Cauchy continuum (Figure 21-right) is obtained by imposing an internal length
which is very small as compared to the size of the foundation. Moreover, the conditions Gc = 0
and a3 = 0 allow respectively to retrieve the symmetry of the elastic response (Eq.(67)) and the
classical J2-plasticity model (Eq.(72)). For validation purposes, the macroscopic response given by
the COSS8R element is compared with that obtained by a finite element formulated for classical
continua. To this end, a 6-noded Gauss-type mixed triangular element [18, 19] contained in the
commercial code OptumG2 is used. The solution algorithm used in OptumG2 differs from that
presented herein, since based on optimization methods [19]. The comparison shows how the
COSS8R element is able to cover the solution for the Cauchy continuum, with an error less then
1%.

7. CONCLUSIONS

The development of robust and efficient numerical procedures is a principal task prior to modeling
materials with complex micro-structure. In the attempt of describing the macroscopic behaviour
of such materials, this aspect is even more pronounced. Particularly important is in fact the
determination of the overall response of the material, as function of the properties and the spatial
arrangement of its micro-structure. Especially in the inelastic range, this is not a trivial task, since
even when the macroscopic properties are established, one needs to resort to numerical tools for the
assessment of the material response.

The use of the Cosserat continuum has gained much interest in this field, by virtue of its relatively
simple formulation (limited number of variables and clear physical meaning) which yet allows to
handle quite complex configurations of materials with pronounced micro-structure (masonry, soils,
rocks, grid-works, etc.).

This paper was devoted to the development and validation of a numerical procedure for the
analysis of micro-structured materials with macroscopic non-linear behaviour. For this purpose,
the time-independent multisurface plasticity theory was extended to the Cosserat continuum.
Multisurface plasticity theory allows the description of a large class of mechanisms, such as strain
hardening and softening mechanisms, and the definition of both associative and non-associative
properties for the material. Moreover, through this theory the elastic domain may be constructed
by using a set of multiple plastic, intersecting surfaces of general form. When referred to the
macroscopic description of the material, this may prove particularly useful, as each plastic surface
may be related to distinct failure mechanisms at the micro-structure level.

The implementation of the multisurface plasticity theory into a Cosserat finite element
formulation was presented in general manner. The implementation of the theory was based on a
projection algorithm formulated for implicit time-integration schemes. The same algorithm may
be encountered in more classical formulations, as the theory of classical (Cauchy) continua and
the generalised theories of beams and shells. The paper focused on several numerical aspects
concerning the element implementation, in relation with the iterative solution schemes used at
the local (integration point) and global (element) level. A full Newton-Raphson method was used
at both levels. At the local level, the projection algorithm required the use of a non conventional
matrix-inversion technique (SVD). This technique was introduced in order to fully exploit all the
salient features of the multisurface plasticity theory and to avoid some important limitations that
were explored in details. It allowed the definition of plastic surfaces which are (hypothetically)
unlimited in number and of the most general form. At the global level, the full rate of convergence
was assured by the use of the elastoplastic stiffness tangent matrix of the Cosserat element. This
matrix was herein derived explicitly in algorithmic form and for the very general multisurface and
non-associative case.
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A specific Cosserat finite element developed for micropolar plate models was finally presented.
The element considered was already developed and tested in elasticity and dynamics. This paper
was concerned with its extension and validation to the multisurface plasticity. Numerical tests
assessed the (high) level of accuracy reached by the projection algorithm in case of multisurface
Cosserat plasticity. Several benchmarks showed that the element provides accurate results under
non-conventional loading and boundary conditions, involving strain softening, multiple plastic
surfaces and strain localisation.
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6. de Borst, R., Mühlhaus, H.-B., 1991. Continuum models for discontinuous media.
URL http://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:
f6615aa2-abca-4e09-81fa-846713cd4e1b

7. de Borst, R., Sluys, L., Sep. 1991. Localisation in a Cosserat continuum under static and dynamic loading
conditions. Computer Methods in Applied Mechanics and Engineering 90 (1-3), 805–827.
URL http://linkinghub.elsevier.com/retrieve/pii/0045782591901859

8. de Borst, R., Sluys, L., Muhlhaus, H., Pamin, J., 1993. Fundamental issues in finite element analyses of localization
of deformation. Engineering Computations 10 (2), 99–121.
URL http://www.emeraldinsight.com/journals.htm?articleid=1662802&show=
abstract

9. Dujc, J., Brank, B., 2012. Stress resultant plasticity for shells revisited. Computer Methods in Applied Mechanics
and Engineering 247-248, 146–165.
URL http://dx.doi.org/10.1016/j.cma.2012.07.012

10. Eringen, A. C., Jan. 1967. Theory of micropolar plates. ZAMP - Zeitschrift für angewandte Mathematik und Physik
18 (1), 12–30.
URL http://link.springer.com/article/10.1007/BF01593891http://link.springer.
com/10.1007/BF01593891

11. Eringen, A. C., 1999. Microcontinuum field theories. I: Foundations and solids. Springer, New York.
URL http://www.citeulike.org/group/13900/article/8270507

12. Forest, S., Sab, K., Jul. 1998. Cosserat overall modeling of heterogeneous materials. Mechanics Research
Communications 25 (4), 449–454.
URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cosserat+
overall+modelling+of+heterogeneous+materials#0http://linkinghub.elsevier.
com/retrieve/pii/S0093641398000597

13. Godio, M., Stefanou, I., Sab, K., Sulem, J., Sep. 2014. Cosserat Elastoplastic Finite Elements for Masonry
Structures. Key Engineering Materials 624, 131–138.
URL http://www.scientific.net/KEM.624.131

14. Godio, M., Stefanou, I., Sab, K., Sulem, J., 2015. Dynamic finite element formulation for Cosserat elastic plates.
International Journal for Numerical Methods in Engineering 101 (13), 992–1018.
URL http://doi.wiley.com/10.1002/nme.4833

15. Green, A., Naghdi, P., Osborn, R., 1968. Theory of an elastic-plastic Cosserat surface. International Journal of
Solids and Structures 4, 907–927.

16. Hughes, T., 1987. The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, New
Jersey.
URL http://www.dandelon.com/servlet/download/attachments/dandelon/ids/
DE001C964953B446034A0C1257276003D0A31.pdfhttp://scholar.google.com/scholar?
hl=en&btnG=Search&q=intitle:The+finite+element+method+Linear+static+and+
dynamic+finite+element+analysis#0http://scholar.google.com/scholar?hl=en&
btnG=Search&q=intitle:The+finite+element+method:+linear+static+and+dynamic+
finite+element+analysis#0

17. Khoei, A., Karimi, K., Dec. 2008. An enriched-FEM model for simulation of localization phenomenon in Cosserat
continuum theory. Computational Materials Science 44 (2), 733–749.
URL http://linkinghub.elsevier.com/retrieve/pii/S0927025608002541

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

http://linkinghub.elsevier.com/retrieve/pii/S0045794914000145 http://www.sciencedirect.com/science/article/pii/S0045794914000145
http://linkinghub.elsevier.com/retrieve/pii/S0045794914000145 http://www.sciencedirect.com/science/article/pii/S0045794914000145
http://doi.wiley.com/10.1002/zamm.200800207
http://www.emeraldinsight.com/10.1108/eb023842
http://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:f6615aa2-abca-4e09-81fa-846713cd4e1b
http://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:f6615aa2-abca-4e09-81fa-846713cd4e1b
http://linkinghub.elsevier.com/retrieve/pii/0045782591901859
http://www.emeraldinsight.com/journals.htm?articleid=1662802&show=abstract
http://www.emeraldinsight.com/journals.htm?articleid=1662802&show=abstract
http://dx.doi.org/10.1016/j.cma.2012.07.012
http://link.springer.com/article/10.1007/BF01593891 http://link.springer.com/10.1007/BF01593891
http://link.springer.com/article/10.1007/BF01593891 http://link.springer.com/10.1007/BF01593891
http://www.citeulike.org/group/13900/article/8270507
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cosserat+overall+modelling+of+heterogeneous+materials#0 http://linkinghub.elsevier.com/retrieve/pii/S0093641398000597
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cosserat+overall+modelling+of+heterogeneous+materials#0 http://linkinghub.elsevier.com/retrieve/pii/S0093641398000597
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Cosserat+overall+modelling+of+heterogeneous+materials#0 http://linkinghub.elsevier.com/retrieve/pii/S0093641398000597
http://www.scientific.net/KEM.624.131
http://doi.wiley.com/10.1002/nme.4833
http://www.dandelon.com/servlet/download/attachments/dandelon/ids/DE001C964953B446034A0C1257276003D0A31.pdf http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method+Linear+static+and+dynamic+finite+element+analysis#0 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method:+linear+static+and+dynamic+finite+element+analysis#0
http://www.dandelon.com/servlet/download/attachments/dandelon/ids/DE001C964953B446034A0C1257276003D0A31.pdf http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method+Linear+static+and+dynamic+finite+element+analysis#0 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method:+linear+static+and+dynamic+finite+element+analysis#0
http://www.dandelon.com/servlet/download/attachments/dandelon/ids/DE001C964953B446034A0C1257276003D0A31.pdf http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method+Linear+static+and+dynamic+finite+element+analysis#0 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method:+linear+static+and+dynamic+finite+element+analysis#0
http://www.dandelon.com/servlet/download/attachments/dandelon/ids/DE001C964953B446034A0C1257276003D0A31.pdf http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method+Linear+static+and+dynamic+finite+element+analysis#0 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method:+linear+static+and+dynamic+finite+element+analysis#0
http://www.dandelon.com/servlet/download/attachments/dandelon/ids/DE001C964953B446034A0C1257276003D0A31.pdf http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method+Linear+static+and+dynamic+finite+element+analysis#0 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method:+linear+static+and+dynamic+finite+element+analysis#0
http://www.dandelon.com/servlet/download/attachments/dandelon/ids/DE001C964953B446034A0C1257276003D0A31.pdf http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method+Linear+static+and+dynamic+finite+element+analysis#0 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+finite+element+method:+linear+static+and+dynamic+finite+element+analysis#0
http://linkinghub.elsevier.com/retrieve/pii/S0927025608002541


26 M. GODIO ET AL.

18. Krabbenhø ft, K., Lyamin, a. V., Sloan, S. W., 2007a. Formulation and solution of some plasticity problems as conic
programs. International Journal of Solids and Structures 44 (5), 1533–1549.

19. Krabbenhø ft, K., Lyamin, A. V., Sloan, S. W., Wriggers, P., Jan. 2007b. An interior-point algorithm for
elastoplasticity. International Journal for Numerical Methods in Engineering 69 (3), 592–626.
URL http://doi.wiley.com/10.1002/nme.1771

20. Li, X., Tang, H., 2005. A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat
continua and modelling of strain localisation. Computers and Structures 83 (1), 1–10.

21. Makrodimopoulos, A., Martin, C. M., 2006. Lower bound limit analysis of cohesive-frictional materials using
second-order cone programming. International Journal for Numerical Methods in Engineering 66 (4), 604–634.
URL http://dx.doi.org/10.1002/nme.1567

22. Muhlhaus, H. B., Vardoulakis, I., 1987. The thickness of shear bands in granular materials. Geotechnique 37 (3),
271–283.

23. Neff, P., Chemiski, K., Müller, W., Wieners, C., 2007. a Numerical Solution Method for an Infinitesimal Elasto-
Plastic Cosserat Model. Mathematical Models and Methods in Applied Sciences 17 (08), 1211–1239.

24. Papanastasiou, P. C., Vardoulakis, I., 1992. Numerical treatment of progressive localization in relation to borehole
stability. International Journal for Numerical and Analytical Methods in Geomechanics 16 (6), 389–424.
URL http://doi.wiley.com/10.1002/nag.1610160602

25. Press, W. H., Teukolsky, S., Vetterling, W. T., Flannery, B. P., Nov. 1992. Numerical recipes in Fortran 77: the art
of scientific computing. Cambridge University Press, Cambridge.
URL http://linkinghub.elsevier.com/retrieve/pii/037847549390043T

26. Providas, E., Kattis, M., Nov. 2002. Finite element method in plane Cosserat elasticity. Computers & Structures
80 (27-30), 2059–2069.
URL http://linkinghub.elsevier.com/retrieve/pii/S0045794902002626

27. Sharbati, E., Naghdabadi, R., Dec. 2006. Computational aspects of the Cosserat finite element analysis of
localization phenomena. Computational Materials Science 38 (2), 303–315.
URL http://linkinghub.elsevier.com/retrieve/pii/S0927025606000541

28. Simo, J., Hughes, T., 1998. Computational inelasticity.
URL http://www.ulb.tu-darmstadt.de/tocs/127987207.pdf

29. Simo, J., Kennedy, J., Gonvindjee, S., 1988. Non-smooth multisurface plasticity and viscoplasticity.
Loading/unloading conditions and numerical algorithms. International Journal for Numerical Methods in
Engineering 26 (June 1987), 2161–2185.
URL http://onlinelibrary.wiley.com/doi/10.1002/nme.1620261003/abstract

30. Simo, J., Taylor, R., 1985. Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in
Applied Mechanics and Engineering 48 (1), 101–118.

31. Simo, J. C., Kennedy, J. G., Apr. 1992. On a Stress Resultant Geometrically Exact Shell Model. Part V: Nonlinear
Plasticity: Formulation and Integration Algorithms. Comput. Methods Appl. Mech. Eng. 96 (2), 133–171.
URL http://dx.doi.org/10.1016/0045-7825(92)90129-8

32. Stefanou, I., Sulem, J., Vardoulakis, I., Feb. 2008. Three-dimensional Cosserat homogenization of masonry
structures: Elasticity. Acta Geotechnica 3 (1), 71–83.
URL http://link.springer.com/10.1007/s11440-007-0051-y

33. Stefanou, I., Sab, K., Heck, J.-V., 2015. Three dimensional homogenization of masonry structures with building
blocks of finite strength: A closed form strength domain. International Journal of Solids and Structures 54, 258–
270.
URL http://dx.doi.org/10.1016/j.ijsolstr.2014.10.007

34. Steinmann, P., 1995. Theory and numerics of ductile micropolar elastoplastic damage. International Journal for
Numerical Methods in Engineering 38 (4), 583–606.
URL http://dx.doi.org/10.1002/nme.1620380406

35. Steinmann, P., Willam, K., 1991. Localization within the Framework of Micropolar Elasto-Plasticity. In: Brüller,
O., Mannl, V., Najar, J. (Eds.), Advances in Continuum Mechanics. Springer Berlin Heidelberg, pp. 296–313.
URL http://dx.doi.org/10.1007/978-3-642-48890-0_24

36. Sulem, J., Stefanou, I., Veveakis, E., Feb. 2011. Stability analysis of undrained adiabatic shearing of a rock layer
with Cosserat microstructure. Granular Matter 13 (3), 261–268.
URL http://link.springer.com/10.1007/s10035-010-0244-1

37. Vardoulakis, I., Sulem, J., 1995. Bifurcation analysis in geomechanics. Blackie Academic and Professional,
Glasgow.
URL http://books.google.com/books?hl=en&lr=&id=W8K79FaiQTwC&oi=fnd&
pg=PP1&dq=Bifurcation+analysis+in+geomechanics&ots=nyVBR5mlFs&sig=
2QjiIdEIUW9IgobkygrQ4qxHv8U

38. Vermeer, P., de Borst, R., 1984. Non-associated plasticity for soils, concrete and rock. HERON 29 (3), 1–64.
URL http://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:
4ee188ab-8ce0-4df3-adf5-9010ebfaabf0

39. Zervos, A., 2008. Finite elements for elasticity with microstructure and gradient elasticity. International Journal for
Numerical Methods in Engineering 73 (4), 564–595.
URL http://onlinelibrary.wiley.com/doi/10.1002/nme.2093/abstract

40. Zienkiewicz, O., Taylor, R., 2005. The finite element method for solid and structural mechanics, sixth Edition.
Elsevier Butterworth-Heinemann, Oxford.
URL http://books.google.com/books?hl=en&lr=&id=VvpU3zssDOwC&oi=fnd&pg=
PP1&dq=The+Finite+element+method+for+solid+and+structural+mechanics&ots=
f122jTFE56&sig=oL3WUvQEcwndSoXEJGaxdVfR9tQ

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme

http://doi.wiley.com/10.1002/nme.1771
http://dx.doi.org/10.1002/nme.1567
http://doi.wiley.com/10.1002/nag.1610160602
http://linkinghub.elsevier.com/retrieve/pii/037847549390043T
http://linkinghub.elsevier.com/retrieve/pii/S0045794902002626
http://linkinghub.elsevier.com/retrieve/pii/S0927025606000541
http://www.ulb.tu-darmstadt.de/tocs/127987207.pdf
http://onlinelibrary.wiley.com/doi/10.1002/nme.1620261003/abstract
http://dx.doi.org/10.1016/0045-7825(92)90129-8
http://link.springer.com/10.1007/s11440-007-0051-y
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.007
http://dx.doi.org/10.1002/nme.1620380406
http://dx.doi.org/10.1007/978-3-642-48890-0_24
http://link.springer.com/10.1007/s10035-010-0244-1
http://books.google.com/books?hl=en&lr=&id=W8K79FaiQTwC&oi=fnd&pg=PP1&dq=Bifurcation+analysis+in+geomechanics&ots=nyVBR5mlFs&sig=2QjiIdEIUW9IgobkygrQ4qxHv8U
http://books.google.com/books?hl=en&lr=&id=W8K79FaiQTwC&oi=fnd&pg=PP1&dq=Bifurcation+analysis+in+geomechanics&ots=nyVBR5mlFs&sig=2QjiIdEIUW9IgobkygrQ4qxHv8U
http://books.google.com/books?hl=en&lr=&id=W8K79FaiQTwC&oi=fnd&pg=PP1&dq=Bifurcation+analysis+in+geomechanics&ots=nyVBR5mlFs&sig=2QjiIdEIUW9IgobkygrQ4qxHv8U
http://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:4ee188ab-8ce0-4df3-adf5-9010ebfaabf0
http://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:4ee188ab-8ce0-4df3-adf5-9010ebfaabf0
http://onlinelibrary.wiley.com/doi/10.1002/nme.2093/abstract
http://books.google.com/books?hl=en&lr=&id=VvpU3zssDOwC&oi=fnd&pg=PP1&dq=The+Finite+element+method+for+solid+and+structural+mechanics&ots=f122jTFE56&sig=oL3WUvQEcwndSoXEJGaxdVfR9tQ
http://books.google.com/books?hl=en&lr=&id=VvpU3zssDOwC&oi=fnd&pg=PP1&dq=The+Finite+element+method+for+solid+and+structural+mechanics&ots=f122jTFE56&sig=oL3WUvQEcwndSoXEJGaxdVfR9tQ
http://books.google.com/books?hl=en&lr=&id=VvpU3zssDOwC&oi=fnd&pg=PP1&dq=The+Finite+element+method+for+solid+and+structural+mechanics&ots=f122jTFE56&sig=oL3WUvQEcwndSoXEJGaxdVfR9tQ


MULTISURFACE PLASTICITY FOR COSSERAT MATERIALS 27

stress path

0 2 4 6 8
0

2

4

6

8
0 2 4 6 8

0

2

4

6

8

τ11 [MPa]

τ
2
2
[M
P
a]

F4=F6

Perfect plasticity

0 2 4 6 8
0

2

4

6

8
0 2 4 6 8

0

2

4

6

8

τ11 [MPa]

τ
2
2
[M
P
a]

F
4
=F

6

Hardening plasticity

τ11 vs. γ11
e

τ11 vs. γ11
p

τ11 vs. γ11
τ11 vs. α

0.0 0.2 0.4 0.6 0.8
0

2

4

6

8
0.0 0.2 0.4 0.6 0.8

0

2

4

6

8

[%]γ11,α

τ 1
1
[M
P
a]

Perfect plasticity

0.0 0.2 0.4 0.6 0.8
0

2

4

6

8
0.0 0.2 0.4 0.6 0.8

0

2

4

6

8

[%]γ11,α

τ 1
1
[M
P
a]

Hardening plasticity

τ22 vs. γ22
e

τ22 vs. γ22
p

τ22 vs. γ22
τ22 vs. α

0.0 0.2 0.4 0.6 0.8
0

2

4

6

8
0.0 0.2 0.4 0.6 0.8

0

2

4

6

8

[%]γ22,α

τ 2
2
[M
P
a]

Perfect plasticity

0.0 0.2 0.4 0.6 0.8
0

2

4

6

8
0.0 0.2 0.4 0.6 0.8

0

2

4

6

8

[%]γ22,α

τ 2
2
[M
P
a]

Hardening plasticity

Figure 11. Element response to bi-axial test B4. Top: stress path in the (τ11 − τ22)-plane. Center and bottom:
stress-strain curve.
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Figure 12. Element response to bi-axial test B5. Top: stress path in the (τ11 − τ22)-plane. Center and bottom:
stress-strain curve.
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Figure 13. Hollow cylinder under axial rotation. Notations and boundary conditions.
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Figure 14. Macroscopic behaviour of the hollow cylinder (left) and localisation of the in-plane shear strain
γ12 (right) for different discretisations with the COSS8R finite element (FE).
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Figure 15. Deformation pattern and iso-contour of in-plane shear strain distribution for different
discretisations of the hollow cylinder: left 16× 8 FE, centre 24× 16 FE, right 32× 24 FE. Values for the

ultimate resulting moment beyond the peak level.
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Figure 16. Square plate under torsion. Illustration of the boundary conditions and of the expected
deformation pattern.
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Figure 17. Macroscopic behaviour of the square plate under torsion for different finite element
discretisations.
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Figure 18. Deformation pattern and iso-contour of the number of activated plastic surfaces for different
discretisations of the square plate: left 2× 2 FE, centre 4× 4 FE, right 8× 8 FE.
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Figure 19. Shallow foundation under distributed pressure supported by a soil with micropolar properties.
Geometry and boundary conditions.
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Figure 20. Illustration of the set of plastic surfaces describing the elastoplastic response of the soil.
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Figure 21. Left: macroscopic response of the shallow foundation for soils with different internal lengths.
Right: response for small internal lengths (lc = 0.00025m) and comparison with finite elements based on

the Cauchy continuum [19].
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