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SUMMARY

Uniform grid solvers of the periodic Lippmann–Schwinger equation have been introduced by Moulinec and
Suquet for the numerical homogenization of heterogeneous materials. Based on the fast Fourier transform,
these methods use the strain as main unknown and usually do not produce displacement fields. While this is
generally not perceived as a restriction for homogenization purposes, some tasks might require kinematically
admissible displacement fields.
In this paper, we show how the numerical solution to the periodic Lippmann–Schwinger equation can be
post-processed to reconstruct a displacement field. Our procedure is general: it applies to any variant of the
Moulinec–Suquet solver. The reconstruction is formulated as an auxiliary elastic equilibrium problem of a
homogeneous material, which is solved with displacement-based finite elements. Taking advantage of the
periodicity, the uniformity of the grid and the homogeneity of the material, the resulting linear system is
formulated and solved efficiently in Fourier space. The cost of our procedure is lower than that of one iteration
of the Lippmann–Schwinger solver.
An application of this post-processing procedure is proposed, in which the reconstructed displacement field
is used to compute a rigorous upper bound on the effective shear modulus of some model microstructure.
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Self-Archiving. Sections 1 (Introduction) and 5 (Numerical results) have been significantly
reworked in the published (final) version of this article. The remainder of this article
(including Sections 3 and 4 where the method itself is presented) is essentially unchanged.

1. INTRODUCTION

The motivation for the present paper comes from the numerical homogenization of periodic media.
The reader is referred to standard textbooks for a detailed account of this theory, from the mechanical
point of view [1, 2, 3] and the mathematical point of view [4, 5, 6]. In what follows, only the essential
steps of the homogenization process are highlighted.
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2 S. BRISARD

Let Ω = (0, L1) × · · · × (0, Ld) be the unit cell of a heterogeneous, Ω-periodic material, where Li
denotes the length of the unit cell Ω in the i-th direction for (i = 1, . . . , d; d: dimension of the physical
space). Within the framework of linear elasticity, homogenization of periodic media requires the
solution to the so-called local (or corrector) problem. This problem amounts to finding the Ω-periodic
displacement u such that

∇ · (C :
(
E + ∇su

))
= 0, (1)

in the whole space Rd. In the above equations, C denotes the (Ω-periodic) local stiffness and E
denotes the macroscopic (imposed) strain; finally, ∇su denotes the symmetric part of the gradient of
the displacement u. It should be noted that the solution to Eq. (1) is unique up to an additive constant,
which need not be specified for the time being. In Sec. 4.4, we will explicitely impose the average
displacement to be null.

From the solution to problem (1), the effective stiffness Ceff is derived as the linear operator which
relates the macroscopic stress to the macroscopic strain E

1
L1 · · · Ld

∫
Ω

C(x) :
(
E + ∇su(x)

)
dx1 · · · dxd = Ceff : E. (2)

Solving problem (1) can be a daunting task if the microstructure is highly heterogeneous (that is, if
C is highly oscillatory within the unit cell Ω). In a seminal paper, Moulinec and Suquet [7] (see also
[8]) introduced a new, efficient numerical scheme on a cartesian grid. It relies on the discretization of
the so-called Lippmann–Schwinger equation [9, 10, 11] which we now proceed to introduce. It is
first observed that problem (1) is equivalent to finding the Ω-periodic displacement u such that

∇ · (C0 : ∇su + τ
)

= 0, (3a)
ε = E + ∇su, (3b)

τ = (C − C0) : ε, (3c)

where C0 denotes the elastic moduli of some arbitrary, homogeneous, reference material. In the
above equations, ε denotes the total strain, while τ is the so-called stress polarization. By definition
of the Green operator for strains Γ0 (see Appendix A), it is readily found that [compare Eqs. (3a) and
(62)]

∇su = −Γ0 ∗ τ, (4)

where ‘∗’ denotes the standard (periodic) convolution product. Eliminating the stress polarization τ
between Eqs. (3b), (3c) and (4) leads to the following integral equation

ε + Γ0 ∗ [(C − C0) : ε] = E, (5)

which is known as the Lippmann–Schwinger equation. It should be noted that in Eq. (5), the main
unknown is no longer the periodic part u of the displacement, but the total strain ε defined by Eq. (3b).
Solving Eq. (5) numerically proceeds in two steps. First, the continuous equation must be discretized.
Then, a suitable strategy must be adopted to find the solution to the resulting linear system.

Regarding the discretization, it is convenient to introduce the concept of discrete Green operator
[12], which provides a unified framework to a wide range of discretization strategies: truncation
of high frequencies [8], exact evaluation for cell-wise constant stress polarizations [13], low-pass
filtering [12], finite elements [14] or finite differences [15, 16]. Although a comparison of these
approaches is out of the scope of the present paper, the recent work by Willot [15, 16] deserves a
special mention as the most promising strategy.

As for the solution to the resulting discretized Lippmann–Schwinger equation, various iterative
schemes have been proposed, namely: the original fixed-point iterations of Moulinec and Suquet
[7, 8], the accelerated scheme of Eyre and Milton [17], the augmented Lagrangian solver of Michel et
al. [18], Krylov subspace methods [13, 12], or the polarization-based scheme of Monchiet and Bonnet
[19] (see also [20] for a comparison of some of these schemes). All these schemes share a common
matrix-free approach relying on the fast Fourier transform to efficiently compute matrix-vector
products, as was first suggested by Moulinec and Suquet [7, 8].
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RECONSTRUCTING DISPLACEMENTS 3

The combination of a discrete Green operator and an iterative linear solver constitutes what we will
call a Uniform Grid Periodic Lippmann–Schwinger solver in the remainder of this paper (in short,
UGPLS solver). The exact discretization and solving strategies are not relevant to the present work,
as long as it is understood that UGPLS solvers produce an estimate of the strain (or, equivalently,
the stress-polarization), not the displacement, on a uniform cartesian grid. While in most use-cases,
only the local stresses and strains are required, it is sometimes desirable to produce kinematically
admissible displacement fields, as illustrated below with two examples.

As a first example, we consider the limit analysis of periodic, heterogeneous materials, which
requires kinematically admissible displacement fields in order to produce rigorous upper bounds
on the macroscopic strength criterion. This can be achieved by means of dedicated finite element
techniques [21, 22]. Alternatively, the problem can be reformulated as the homogenization of a
non-linear, viscous material [2], for which UGPLS solvers can be used iteratively (see [7] for the first
application of UGPLS solvers to non-linear materials). The numerical solution is then post-processed,
delivering a rigorous upper bound on the collapse load. It should be noted that this approach requires
the local strength criterion to be smooth or regularized [23].

As a second example, we mention the a posteriori evaluation of the error in constitutive relation
as first introduced by Ladevèze and Leguillon [24] within the framework of finite element analysis.
From the Prager–Synge theorem, it can be shown that the error in constitutive relation provides an
upper bound on the approximation error in the energy norm (see [25] for a review, or the textbook by
Ladevèze [26]). Evaluation of the error in constitutive law requires both a kinematically admissible
displacement field (which is addressed in the present paper), and a statically admissible stress field
(which will be presented in a paper to come).

To sum up the above discussion, UGPLS schemes are attractive techniques to solve the corrector
problem in an efficient way, but fail to deliver a kinematically admissible displacement field. In the
present paper, we seek to overcome this shortcoming and propose an a posteriori construction of a
kinematically admissible displacement field. The proposed method applies to any UGPLS solver
(regardless of the discretization strategy and the linear solver). The ideas underlying the construction
are described now.

Let εN denote the discrete strain field resulting from a UGPLS analysis, where the supscript ‘N’
is a discretization parameter which relates to the fineness of the grid (see Sec. 3.1). In a Galerkin
setting, εN can be considered as a cell-wise constant estimate of the true strain ε [12]. From Eq. (3c),
the discrete stress polarization τN is evaluated. Likewise, it is seen as a cell-wise constant estimate of
the true stress polarization τ.

If the true stress polarization τ were known exactly, then the displacement u would be the periodic
solution to Eq. (3a). We therefore seek the approximate displacement field uN as the periodic solution
to Eq. (3a) where the true stress polarization τ is replaced with the approximate, cell-wise constant,
τN

∇ ·
(
C0 : ∇suN + τN

)
= 0. (6)

In other words, reconstructing the displacement field resulting from a UGPLS analysis reduces to
solving the problem of the linear elastic equilibrium of a prestressed, homogeneous material with
periodic boundary conditions. Of course, the exact solution to this problem is not known; rather, a
finite element estimate of this solution is seeked. The remainder of this paper is therefore devoted to
the numerical solution of the following problem (formulated on the whole space Rd)

∇ · (C0 : ∇su +$
)

+ b = 0, (7)

where the unknown displacement u is Ω-periodic. In the above equation, $ is the (Ω-periodic)
prestress. Problem (7) is slightly more general than problem (6) due to the body forces with Ω-
periodic volume density b.

Problem (7) is solved numerically by means of a finite element technique. The displacement
is discretized over a d-dimensional cartesian grid; interpolation is achieved through P1 shape
functions. Periodicity of the discretized displacement is enforced by construction (using periodic
shape functions).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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4 S. BRISARD

Due to the periodic boundary conditions and the homogeneity of the material, the finite element
approximation of Eq. (7) results in a block-circulant stiffness matrix. This suggests to formulate
this approximation in the Fourier space, where all frequencies are uncoupled. More precisely, while
the nodal displacements are the solution to a (Nnodesd) × (Nnodesd) system (where Nnodes is the total
number of nodes), the modal displacements (that is, the discrete Fourier transform of the nodal
displacements) are the solution to Nnodes systems of size d × d, which can be solved at virtually
no cost. Of course, this approach requires the computation of direct and inverse discrete Fourier
transforms: using the fast Fourier transform guarantees the overall efficiency of the proposed method.

At this point, the alternative approach of Vondřejc and collaborators (see [27, 28] and references
therein) should be mentioned. These authors propose a Galerkin discretization of the corrector
problem with trigonometric polynomials: their approach therefore delivers non-local, kinematically
admissible, approximations of the displacement field. Local approximations might sometimes be more
convenient, and the approach proposed in the present paper should be seen as complementary to that
of Vondřejc and collaborators. It should also be noted that, since high frequencies are discarded from
the approximation space, the displacement and strain fields delivered by Vondřejc and collaborators
might be subject to the Gibbs phenomenon.

The remainder of this paper is organized as follows. Sec. 2 introduces some convenient element-
by-element operations on vectors, which allow for more compact expressions; basic results relating
to Fourier series and the discrete Fourier transform are also recalled. We then define in Sec. 3 the
discretization grid and the discretized displacement and strain. In particular, we relate (without
approximation) the Fourier series expansion of the piecewise affine displacement field to the discrete
Fourier transform of the nodal displacements. Sec. 4 constitutes the crux of the paper: we show that
the global stiffness matrix and the vector of nodal forces have simple expressions in Fourier space.
We therefore introduce the modal stiffness (d × d) matrices and force (d × 1) vectors. A summary
of the method is provided in Sec. 4.5. This paper closes on a 2D (plane strain elasticity) example
(see Sec. 5). The reconstructed displacement field is used to produce rigorous upper bounds on the
effective elastic moduli.

2. PRELIMINARIES

2.1. Element-by-element operations on the components of vectors

In the present paper, it will be convenient to consider vectors of Rd (Nd, Zd) as tuples of size d, and
define non-linear operations on the coordinates of the vectors. We first define element-by-element
product and division of two vectors x and y as follows

xy =

d∑
j=1

x jy je j (8a)

x
y

=

d∑
j=1

x j

y j
e j. (8b)

Then, f denoting a scalar function of a scalar variable, we define f (x) for any vector x ∈ Rd as the
product

f (x) =

d∏
j=1

f (x j). (9)

The above definitions lead to very compact expressions, which can be read naturally, as though
they were written in a one-dimensional space. This allows the reader to concentrate on the overall
structure of the equations, rather than their (dimension dependent) details. As a first example,

sinc
(
π

N
(k + pN)

)
=

d∏
i=1

sinc
(
π

N j

(
k j + p jN j

))
, (10)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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RECONSTRUCTING DISPLACEMENTS 5

where the sinc function (cardinal sine) is defined as follows

sinc x =

1 if x = 0,
x−1 sin x otherwise.

(11)

As further examples, the following identities resulting from rules (8) and (9) will be extensively used
below

|x| = |x1| · · · |xd | = |x1 · · · xd | (12)

exp
(
2iπ

kx
L

)
= exp

2iπ
d∑

j=1

k jx j

L j
e j

 =

d∏
j=1

exp
(
2iπ

k jx j

L j

)
= exp

2iπ
d∑

j=1

k jx j

L j

 , (13)

in particular, |N| = N1 · · ·Nd is the total number of elements in the cartesian grid described in Sec. 3.1.
It should be noted that rules (8) and (9) have a shortcoming: they are not intrinsic operations.

In other words, the results of these operations depend on the basis in which they are performed.
However, it is observed that in the present setting, only the basis which is attached to the sides of
the rectangular box Ω is relevant, and no change of basis will be performed or required. Therefore,
we will continue to use bold letters to denote vectors and tensors, even if they should really be
understood as their arrays of components in the global basis.

2.2. Fourier series and the discrete Fourier transform

In the present section, we briefly recall the essential formulas regarding Fourier series and the discrete
Fourier transform. In particular, we clarify the normalization constants that we adopt.

Fourier series Under some regularity assumptions which are not recalled here, any Ω-periodic
function f can be expressed as the sum of a Fourier series

f =
∑
k∈Zd

f̃kΨk, (14)

where the basis functions Ψk are defined as follows for k ∈ Zd

Ψk(x) = exp
(
2iπ

kx
L

)
, (15)

and the Fourier coeffcients f̃k are related to f

f̃k =
1
|L|

∫
Ω

f (x) exp
(
−2iπ

kx
L

)
dx1 · · · dxd. (16)

Parseval’s theorem then relates the L2 Hermitian product of two Ω-periodic functions f and g to
the `2 Hermitian product of their Fourier coefficients

1
|L|

∫
Ω

f (x) g(x)dx1 · · · dxd =
∑
k∈Zd

f̃k g̃k, (17)

where overlined quantities denote complex conjugates.

The discrete Fourier transform We now consider a sequence of numbers (yn)n∈Zd , which we
assume N-periodic (N ∈ Nd), that is yn+pN = yn for all n,p ∈ Zd. Clearly, this infinite sequence is
fully defined by the finite sequence (yn)n∈N , where N denotes the following set of multi-indices

N = {n ∈ Nd, 0 ≤ ni < Ni}. (18)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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6 S. BRISARD

The discrete Fourier transform of (yn)n∈Zd is the N-periodic sequence (ŷk)k∈Zd

ŷk =
∑
n∈N

exp
(
−2iπ

kn
N

)
yn, (19)

and we have the inversion formula

yn =
1
|N|

∑
k∈N

exp
(
2iπ

kn
N

)
ŷk. (20)

The Plancherel theorem relates the `2 Hermitian product of two N-periodic sequences (yn)n∈Zd and
(zn)n∈Zd to the `2 Hermitian product of their discrete Fourier transforms∑

n∈N
yn zn =

1
|N|

∑
k∈N

ŷk ẑk. (21)

3. P1 DISCRETIZATION ON A PERIODIC, UNIFORM GRID

In the present section, we define the discretized displacement and strain fields. Both are Ω-periodic;
as such, they can be expanded into Fourier series. Since the displacement is piecewise affine, we
show that the Fourier series expansions take very simple forms. It will be seen that the discrete
Fourier transform of the nodal values of the displacement arises naturally in the derivation, without
any approximation. The fast Fourier transform can therefore be used to switch efficiently to and
from Fourier space. In Sec. 3.1, we define the discretization grid, and show that cell-averages can
be computed in Fourier space. Then, we define in Sec. 3.2 the discretized displacement, and show
that its Fourier series expansion is completely defined by the discrete Fourier transform of the nodal
displacements. Finally, spatial derivation of the discretized displacement leads in Sec. 3.3 to the
discretized strain.

3.1. The discretization grid

In the present section, we define the cartesian grid which is to be used to discretize the mechanical
fields resulting from problem (7). In the i-th direction (i = 1, . . . , d), the side of the unit cell Ω is
divided into Ni equal segments of size Li/Ni (see Fig. 1). As a result, the vertices of the grid are
located at

xN
n =

nL
N

(n ∈ Zd), (22)

where L = Liei and N = Niei. In the above formula, the element-by-element operations introduced in
Sec. 2.1 have been used. We further define the grid-cells ΩN

n as follows

ΩN
n = {x ∈ Ω, niLi ≤ Nixi < (ni + 1) Li, i = 1, . . . , d} , (23)

so that
Ω =

⋃
n∈N

ΩN
n , (24)

where the setN previously defined by Eq. (18) should be understood as the set of node multi-indices.
We will need in what follows expressions of the cell-averages of a Ω-periodic function f , as well

as their discrete Fourier transform. We introduce the following notations for these quantities

meanN
n ( f ) =

|N|
|L|

∫
ΩN

n

f (x) dx1 · · · dxd, (25a)

m̂eanN
k ( f ) =

∑
n∈N

meanN
n ( f ) exp

(
−2iπ

kn
N

)
. (25b)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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RECONSTRUCTING DISPLACEMENTS 7

L1

L2

L3

x1
x2

x3

Figure 1. The discretization grid in the 3D case. In the present example, N1 = 4, N2 = 5 and N3 = 3.

It should be noted that the the cell-averages of a Ω-periodic function are N-periodic; therefore, it
is meaningful to compute the discrete Fourier transform of the cell-averages of a Ω-periodic function
(see Sec. 2.2). Definitions (25a) and (25b) are applied below to the Fourier basis functions Ψk defined
in Eq. (15). We first find by straightforward integration

meanN
n (Ψk) = sinc

(
πk
N

)
exp

(
i
πk
N

(2n + 1)
)
, (26)

where 1 denotes the vector 1 = e1 + · · · + ed, and the sinc function has been defined above [see
Eq. (11)]. Taking the discrete Fourier transform of both sides of Eq. (26), we find, for h ∈ N

m̂eanN
h (Ψk) =

|N| sinc
(
πk
N

)
exp

(
i
πk
N

)
if k = h + pN (p ∈ Zd),

0 otherwise.
(27)

The above formulas can be used to compute the cell-averages of any Ω-periodic function f with
Fourier coefficients f̃k. In particular, the following expression is found for the discrete Fourier
transform of the cell-averages of f

m̂eanN
k ( f ) = |N|

∑
p∈Zd

sinc
(
π

N
(k + pN)

)
exp

( iπ
N

(k + pN)
)

f̃k+pN, (28a)

with

f =
∑
k∈Zd

f̃kΨk. (28b)

3.2. The discretized displacement and its Fourier series expansion

Let uN denote the P1 finite element approximation of the solution to problem (7), discretized over
the cartesian grid (ΩN

n )n∈N defined in Sec. 3.1. It is expressed as follows

uN(x) =
∑
n∈N

ΦN
(
x − xN

n

)
uN

n , (29)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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8 S. BRISARD

L1
L2

x1

x2

Figure 2. The periodic shape function ΦN in the 2D case, with N1 = 3, N2 = 4.

where ΦN denotes the Ω-periodic P1 shape function (to be defined below), and uN
n are the nodal

values of the discretized displacement

uN
n = uN(xN

n ) (n ∈ Zd), (30)

which are N-periodic owing to the Ω-periodicity of the discretized displacement. As already argued
in Sec. 2.2, the discretized displacement is therefore fully defined by its values at nodes n ∈ N .

The Ω-periodic shape function ΦN is first defined for x ∈ Rd such that |x j| ≤ L j/2 for all
j = 1, . . . , d

ΦN(x) =


d∏

j=1

(
1 − N j|x j|

L j

)
if |x j| ≤

L j

N j
for all j = 1, . . . , d,

0 otherwise,

(31)

it is then extended to Rd by Ω-periodicity (see Fig. 2). Thus defined, ΦN is the periodic counterpart
of the usual P1 shape function. Its Fourier series expansion reads (see Appendix B)

ΦN(x) =
1
|N|

∑
k∈Zd

sinc2
(
πk
N

)
Ψk(x), (32)

and, upon substitution in Eq. (29)

uN(x) =
1
|N|

∑
k∈Zd

sinc2
(
πk
N

)
Ψk(x)

∑
n∈N

exp
(
−2iπ

kn
N

)
uN

n , (33)

where Eq. (22) has been used.
In the above expression, the inner sum is recognized as the discrete Fourier transform of the nodal

displacements (uN
n )n∈N , so that we finally find the compact expression of the Fourier series expansion

of the discretized displacement uN

uN(x) =
∑
k∈Zd

Ψk (x) ũN
k , (34)

where the Fourier coefficients ũN
k are given by the following formula

ũN
k =

1
|N| sinc2

(
πk
N

)
ûN

k . (35)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
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RECONSTRUCTING DISPLACEMENTS 9

Evaluation of the potential energy of the external loads (see Sec. 4.3) further requires the DFT of
the cell-averages of the displacement, which can be expressed as follows (see Appendix C.1)

m̂eanN
k (uN) = cos

(
πk
N

)
exp

(
i
πk
N

)
ûN

k . (36)

3.3. The discretized strain and its Fourier series expansion

Let εN = ∇suN be the strain associated to the discretized displacement uN. Its Fourier series expansion
is readily obtained from the differentiation of Eq. (34)

ε(x) =
∑
k∈Zd

Ψk (x) ε̃N
k , (37)

where the following expression is found for the Fourier coefficients ε̃N
k

ε̃N
k = 2iπ ũN

k
s⊗ k

L
=

2iπ
|N| sinc2

(
πk
N

)
ûN

k
s⊗ k

L
. (38)

Combining Eqs. (28), (37) and (38) then leads to the following compact expression of the discrete
Fourier transform of the cell averages of the strain

m̂eanN
k (εN) = ûN

n
s⊗ B̂N

k , (39)

where the modal strain-displacement vector B̂N
k has been introduced

B̂N
k = 2iπ

∑
p∈Zd

sinc3
(
π

N
(k + pN)

)
exp

( iπ
N

(k + pN)
) k + pN

L
. (40)

A lengthy but straightforward (see Appendix C.2) calculation shows that

B̂N
k · e1 =

2iN1

L1
sin

πk1

N1
cos

πk2

N2
· · · cos

πkd

Nd
exp iπ

(
k1

N1
+ · · · + kd

Nd

)
, (41)

and the other components of the modal strain-displacement vector are deduced by circular
permutations of the indices.

4. FINITE ELEMENT APPROXIMATION OF THE PROBLEM

The approximate nodal displacements for the solution to problem (7) are found by minimization
of the total potential energy Π = U − V . The strain energy U = Ue + Up is the sum of an elastic
contribution Ue and a term arising from the prestress Up, and we have

Ue =

∫
Ω

1
2
ε(x) : C : ε(x) dx1 · · · dxd, (42a)

Up =

∫
Ω

$(x) : ε(x) dx1 · · · dxd, (42b)

V =

∫
Ω

b(x) · uN(x) dx1 · · · dxd, (42c)

where V denotes the potential of the external loads. The three above contributions are evaluated in
Secs. 4.1, 4.2 and 4.3, respectively, by substitution of the discretized displacement uN (defined in
Sec. 3.2) or strain εN (derived in Sec. 3.3) into Eqs. (42a), (42b) and (42c). The total potential energy
is then computed and optimized in Sec. 4.4, leading to a series of low-dimensional linear systems in
the Fourier space. A summary of the method is provided in Sec. 4.5.
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4.1. Evaluation of the strain energy (elastic contribution)

Owing to the homogeneity of the material, the elastic part Ue of the strain energy [see Eq. (42a)] can
readily be computed in Fourier space by means of Parseval’s identity (17)

Ue =

∫
Ω

1
2
εN(x) : C0 : εN(x) dx1 · · · dxd =

|L|
2

∑
k∈Zd

ε̃N
k : C0 : ε̃N

k

= 2π2 |L|
|N|2

∑
k∈Zd

sinc4
(
πk
N

)
ûN

k · A0(k/L) · ûN
k (43)

where the Fourier coefficients ε̃N
k of the strain are given by Eq. (38) and A0 denotes the acoustic tensor,

A0(q) = q · C0 · q. Replacing in the above series k ∈ Zd with k + pN (with k ∈ N and p ∈ Zd), and
taking advantage of the N-periodicity of the discrete Fourier transform ûN

k , we find

Ue = 2π2 |L|
|N|2

∑
k∈N

∑
p∈Zd

sinc4
(
π

N
(k + pN)

)
ûN

k · A0

(
k + pN

L

)
· ûN

k . (44)

We then introduce the so-called modal stiffness matrices K̂N
k defined as follows

K̂N
k = 4π2

∑
p∈Zd

sinc4
(
π

N
(k + pN)

)
A0

(
k + pN

L

)
, (45)

and expression (44) of the strain energy reduces to

Ue =
|L|

2|N|2
∑
k∈N

ûN
k · K̂

N
k · ûN

k . (46)

As expected, it is observed that for k = 0, K̂N
0 = 0. Indeed, the strain energy associated with

constant displacements (associated with the k = 0 mode) is zero. For isotropic materials with shear
modulus µ0 and Poisson ratio ν0, a lengthy but straightforward calculation (see Appendix C.3) leads
to the following closed-form expression of the modal stiffness matrices

K̂N
k = µ0 tr

(
ĤN

k

)
I +

µ0

1 − 2ν0
ĤN

k , (47)

and the diagonal and off-diagonal coefficients of ĤN
k are fully defined (up to a circular permutation of

the indices) by the following identities

e1 · ĤN
k · e1 =

2
3d−1

(
N1

L1

)2 (
1 − cos

2πk1

N1

) d∏
j=2

(
2 + cos

2πk j

N j

)
, (48a)

e1 · ĤN
k · e2 =

1
3d−2

N1N2

L1L2
sin

2πk1

N1
sin

2πk2

N2

d∏
j=3

(
2 + cos

2πk j

N j

)
. (48b)

4.2. Evaluation of the strain energy (contribution of the prestress)

We now turn to the second term Up of the strain energy [see Eq. (42b)]. We assume that the prescribed
prestress $ is cell-wise constant, and denote $N

n its value in cell ΩN
n . Then, from the Plancherel

theorem (21)

Up =
|L|
|N|

∑
n∈N

$N
n : meanN

n (εN) =
|L|
|N|2

∑
k∈N

$̂N
k : m̂eanN

k (εN), (49)

and, upon substitution of Eq. (39)

Up =
|L|
|N|2

∑
k∈N

ûN
k · $̂N

k · B̂
N
k . (50)
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4.3. Potential energy of the external loads

The volume density of body forces b is assumed cell-wise constant in Eq. (42c): bN
n denotes its value

in cell ΩN
n . Then, using again the Plancherel theorem (21)

V =
|L|
|N|

∑
n∈N

bN
n ·meanN

n (uN) =
|L|
|N|2

∑
n∈N

b̂N
n · m̂eanN

k (uN), (51)

which, upon substitution of Eq. (36), leads to the following expression

V =
|L|
|N|2

∑
n∈N

F̂N
k · ûN

k , (52)

where the modal forces F̂N
k have been introduced

F̂N
k = cos

(
πk
N

)
exp

(
− iπk

N

)
b̂N

k . (53)

4.4. Optimization of the total potential energy

Gathering Eqs. (46), (50) and (52), leads to the following expression of the total potential energy Π

Π = U − V =
|L|
|N|2

∑
k∈N

(
1
2

ûN
k · K̂

N
k · ûN

k + ûN
k · $̂N

k · B̂
N
k − F̂N

k · ûN
k

)
, (54)

the optimization of which (with respect to the modal displacements ûN
k ) results in a set of d × d linear

systems of equations (one such system for each value of k ∈ N)

K̂N
k · ûN

k = F̂N
k − $̂N

k · B̂
N
k . (55)

For k = 0, the linear system (55) is ill-posed, since K̂N
0 = 0 [see Eq. (45)]. This is consistent with

the fact that the solution to Eq. (7) is unique up to an additive constant. It is customary to impose the
average displacement to be zero. Then, Eq. (55) must be replaced for k = 0 with

ûN
0 = 0. (56)

4.5. Summary of the method

The procedure proposed in this paper for the reconstruction of the displacement field results from the
above developments (see Secs. 4.1, 4.2 and 4.3). It proceeds in four steps.

Algorithm 1 (Reconstruction of the displacement) 1. Compute the discrete Fourier transform
($̂N

k )k∈N of the cell values ($N
n )n∈N of the prestress.

2. Compute the discrete Fourier transform (b̂N
k )k∈N of the cell values (bN

n )n∈N of the body forces.
3. For each discrete frequency k ∈ N

(a) Use Eq. (41) to compute the modal strain-displacement vector B̂N
k .

(b) Use Eqs. (47), (48a) and (48b) to compute the modal stiffness matrix K̂N
k .

(c) Use Eq. (53) to compute the modal force F̂N
k .

(d) Solve the d × d linear system (55) [or use Eq. (56)] to find the modal displacement ûN
k .

4. Compute the inverse Fourier transform of the modal displacements (ûN
k )k∈N to obtain the nodal

displacements (uN
n )n∈N .

In the absence of body forces, it is observed that the overall cost of Algorithm 1 is dominated
by that of d + s discrete Fourier transforms, where s = d (d + 1) /2. This should be compared to the
cost of one iteration of the UGPLS solver, which in general requires 2s discrete Fourier transforms.
Therefore, the cost of the proposed reconstruction is commensurable with that of one iteration of the
UGPLS solver. Of course, the fast Fourier transform is used to compute discrete Fourier transforms;
the cost of the present computation therefore grows as |N| log |N|, where |N| is the total number of
cells.
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µm, νm

Figure 3. The model microstructure studied in Sec. 5.

N1 = N2 Iterations Ceff
1212 from τ Ceff

1212 from u
32 97 1.41823 1.43758
64 159 1.41872 1.42527

128 190 1.41887 1.42113
256 197 1.41892 1.41971
512 192 1.41894 1.41921

1024 185 1.41894 1.41904
2048 178 1.41895 1.41898
4096 176 1.41895 1.41896

Table I. Summary of the simulations carried out on the microstructure depicted in Fig. 3. The first column is
the grid size, the second column is the number of CG iterations. The third column is the direct estimate from
Eq. (59) of the 1212 macroscopic modulus and the fourth column is the bound on this modulus, computed by

means of the displacement reconstructed from Algorithm 1 and the minimum potential energy principle.

5. NUMERICAL RESULTS

This section provides an application of Algorithm 1. The method proposed in this paper applies
equally well in two and three dimensions. However, for the sake of simplicity, we selected a plane
strain elasticity problem. The geometry of the biphasic microstructure is defined in Fig. 3. This
kind of model microstructures has already been used for illustration purposes by many authors
[13, 12, 15, 27, 16]. The material constants of the two phases are

µi = 100µm, νm = 0.3, νi = 0.2, (57)

and the unit cell is subjected to a macroscopic shear strain

E = E12 (e1 ⊗ e2 + e2 ⊗ e1) . (58)

The corrector problem (1) is solved by means of a UGPLS solver combining a conjugate gradient
(CG) solver [13] and the so-called filtered Green operator [12]. The elastic constants of the reference
material are µ0 = 0.9µm and ν0 = 0.3. The tolerance for the stopping criterion of the CG solver was set
to 10−10, which is extremely low. The computation was carried out on square grids of increasing size
(64 × 64, 128 × 128, . . . , 4096 × 4096), and was distributed over 8 cores for the largest simulations. It
is observed (see Table I, second column) that the total number of iterations is fairly stable regardless
of the grid size. Fig. 4 shows maps of the numerical estimates of the stress polarization, τN for
N1 = N2 = 32.

For each grid-size N, the piecewise constant estimate of the stress polarization τN provides an
estimate of the 1212 effective elastic modulus. Indeed, taking the volume average of Eq. (3c), we
have

Ceff
1212 = µ0 +

τ12

2E12
' µ0 +

τN
12

2E12
, (59)
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x1
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τ11/µm
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L/2
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Figure 4. Maps of the normalized components of the stress polarization: τ11/µm (left), τ22/µm (middle) and
τ12/µm (right). Owing to the choice of the reference material, the stress polarization is almost null in the
“matrix”; therefore, only the (0, L/2) × (0, L/2) region (“inclusion”) is shown. The same color scale was used

for all three maps. The present images correspond to the 32 × 32 simulation.

x1

x2

u1/ (E12L)
0

0
L

L

L/4 3L/4

x1

x2

u2/ (E12L)
0

0
L

L

−0.2

−0.1

0.0

0.1

0.2

Figure 5. Maps of the normalized components of the displacement: u1/(E12L) (left) and u2/(E12L) (right).
Unlike Fig. 4, the whole unit cell (0, L) × (0, L) is represented here. The same color scale was used for the two
maps (mutually symmetrical about the first bisector); the present images correspond to the 32 × 32 simulation.
On the left image are also represented the lines along which the displacement profiles are plotted in Fig. 6.

and the resulting estimates are shown in Table I (third column). Then, Algorithm 1 is used to
reconstruct the displacement uN. Fig. 5 shows the resulting maps for N1 = N2 = 32.

For validation purposes, Fig. 6 compares the 32 × 32 UGPLS results with a standard, 256 × 256
displacement-based finite element approximation of the displacement, which serves as a reference. A
very good agreement is observed, despite the fact that the grid used for the Lippmann–Schwinger
based approach is rather coarse. It should be noted that the reference solution was computed with the
deal.II finite element library [29, 30].

To close this section, the minimum energy principle is used to produce guaranteed upper bounds
on the 1212 elastic modulus with the reconstructed displacements uN

2Ceff
1212E2

12 =
1
2

E : Ceff : E ≤ 1
2
(
E + ∇suN)

: C :
(
E + ∇suN)

. (60)

It is therefore necessary to evaluate the strain energy of the heterogeneous microstructure for the
displacement uN. Unlike the homogeneous case, this is carried out in the real space, using the P1
element stiffness matrix. More precisely,

1
2
(
E + ∇suN)

: C :
(
E + ∇suN)

=
1

2|L|
∑
n∈N

qT
n Kn qn, (61)

where Kn denotes the element stiffness matrix of element n, and qn is the column vector of the full
nodal displacements (including the affine part: E · xN

n + uN
n ). The resulting bounds are tabulated in

Table I (fourth column), and plotted in Fig. 7, alongside the estimates of the same quantity derived
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x2/L
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u 1
/(

E
12
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x1 = L/4
x1 = 3L/4

Figure 6. Profile of the first component of the normalized displacement, u1/(E12L), along the lines x1 = L/4
(squares) and x1 = 3L/4 (triangles). Solid lines correspond to a reference, displacement-based FEM solution
computed on a 256 × 256 cartesian grid with P1 elements. Symbols correspond to the displacement
reconstructed from the stress polarization τN, with N1 = N2 = 32. Both approaches are in excellent agreement.

101 102 103 104

N1 = N2

1.415

1.420

1.425

1.430

1.435

1.440

C
12

12
/µ

m

Estimate
Bound

Figure 7. Comparison of the estimates (squares) of Ceff
1212 based on Eq. (58) (see also Table I, third column)

with the upper bounds (triangles) based on Eq. (60) (see also Table I, fourth column). As expected, both
estimates and bounds seem to converge to the same value; however, the estimates are more accurate than the

rigorous bounds.

from the average stress polarization [see Eq. (59)]. It is observed that both bounds and estimate seem
to converge to the same value; this was an expected result, which provides a quantitative validation
of the procedure presented in this paper. It should be noted that, for the same grid size, the estimates
are slightly more accurate than the rigorous bounds (the maximum relative distance between estimate
and bound is about 1 %).

6. CONCLUSION

A procedure is presented to reconstruct displacements from the output of a Lippmann–Schwinger
solver on a uniform, rectangular grid with periodic boundary conditions. The reconstruction is
formulated as a standard problem of elastic equilibrium of a homogeneous material (also with
periodic boundary conditions).

This auxiliary problem is solved by means of displacement-based P1 finite elements. Owing to
the uniformity of the grid and the homogeneity of the material, the global stiffness matrix exhibits
a block-circulant structure, which lends itself to an efficient implementation in Fourier space. As a
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result, the overall cost of the reconstruction is similar to the cost of one iteration of the Lippmann–
Schwinger solver. It is emphasized that the procedure presented here ought to be regarded as a mere
post-processing of the output of a Uniform Grid Periodic Lippmann–Schwinger (UGPLS) solver. As
such, it applies to any UGPLS solver, regardless of the actual discrete Green operator that is used.

The method applies to both two- and three-dimensional problems. A simple, two-dimensional
(plane strain) illustration is provided. The reconstructed displacements are compared to a direct
calculation with displacement-based finite elements; both approaches were found to be in excellent
agreement. The reconstructed displacement field is then combined with the minimum potential energy
principle to produce rigorous upper bounds on the effective elastic moduli.

This work constitutes the first step towards a posteriori error estimates for UGPLS solvers, based
on the error in constitutive relation. To achieve this goal, both kinematically admissible displacement
field and statically admissible stress field are required. The present paper addresses the former; as for
the latter, we are currently investigating how standard techniques commonly used for the aposteriori
error analysis of finite element solutions can be adapted to the present case.
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24. Ladevèze P, Leguillon D. Error estimate procedure in the finite element method and applications. SIAM Journal on
Numerical Analysis 1983; 20(3):485–509, doi:10.1137/0720033.

25. Ainsworth M, Oden J. A posteriori error estimation in finite element analysis. Computer Methods in Applied
Mechanics and Engineering 1997; 142(12):1–88, doi:10.1016/S0045-7825(96)01107-3.

26. Ladevèze P, Pelle JP. Mastering Calculations in Linear and Nonlinear Mechanics. Mechanical Engineering Series,
Springer, 2005.
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A. ON THE PERIODIC GREEN OPERATOR FOR STRAINS

The periodic Green operator for strains Γ0 of some arbitrary, homogeneous, reference material with
elastic moduli C0 was introduced in a periodic setting by e.g. Suquet [31] and Nemat-Nasser et al.
[32]. It is defined as the linear operator which maps any (Ω-periodic) prestress $ to the opposite
of the strain ε induced by this prestress. More precisely, −Γ0 ∗$ is by definition geometrically
compatible with a periodic displacement u (that is, Γ0 ∗$ = −∇su) such that

∇ · (C0 : ∇su +$
)

= 0. (62)

The Green operator for strains Γ0 is conveniently expressed in the Fourier space

(Γ0 ∗$) (x) =
∑
k∈Zd

exp
(
2iπ

kx
L

)
Γ̃0(k) : $̃k, (63)

where $̃k are the Fourier coefficients of the prestress $ [see Eq. (16)]. For isotropic reference
materials, the Fourier coefficients of the Green operator read for k , 0

Γ̃0(k) =


0 if k = 0,

1
4µ0

(
δihn jnl + δiln jnh + δ jhninl + δ jlninh

)
− 1

2µ0 (1 − ν0)
nin jnhnl otherwise,

(64)

with n = k/‖k‖.

B. ON THE PERIODIC P1 SHAPE FUNCTION

In the present section we derive the Fourier series expansion (32) of the periodic P1 shape function
ΦN. To do so, it will prove convenient to introduce the so-called one-dimensional periodic hat
function ΛN . Assuming the (−1/2, 1/2) range has been divided into N equal segments, the periodic
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−1 −1 + h −h 0 h 1 − h 1

ξ

0

1/2

1

Λ
N

(ξ
)

Figure 8. The periodic hat function ΛN(ξ) defined in Appendix B. In the above figure, N = 5, and h = 1/N.

hat function is first defined over this range as follows

ΛN(ξ) =

1 − N|ξ| if 0 ≤ N |ξ| ≤ 1,
0 otherwise.

it is then extended to the whole real line R by 1-periodicity (see Fig. 8). ΛN thus defined is the
periodic counterpart of the standard one-dimensional Lagrangian shape function of degree one. The
Fourier coefficients of ΛN are found by means of Eq. (16)

Λ̃N
k =

∫ 1/2

−1/2
ΛN(ξ) exp (−2iπkξ) dξ =

∫ 1/N

−1/N
(1 − N|ξ|) exp (−2iπkξ) dξ

= 2
∫ 1/N

0
(1 − Nξ) cos (2πkξ) dξ =

1
N

sinc2 πk
N
, (65)

and the Fourier series expansion of ΛN therefore reads

ΛN(ξ) =
1
N

∑
k∈Z

sinc2
(
πk
N

)
exp(2iπkξ). (66)

Eq. (31) clearly shows that the d-dimensional periodic shape function ΦN is the tensor product of
d one-dimensional periodic hat functions

ΦN(x) =

d∏
j=1

ΛN j (x j/L j), (67)

and upon substitution of Eq. (66)

ΦN(x) =

d∏
j=1

 1
N j

∑
k j∈Z

sinc2
(
πk j

N j

)
exp

(
2iπ

k jx j

L j

) =
1
|N|

∑
k∈Zd

sinc2
(
πk
N

)
exp

(
2iπ

kx
L

)
, (68)

where the tensorization rules (8), (9), (12) and (13) have been used. Thus Eq. (32) is retrieved.

C. ON THE COMPUTATION OF SOME TRIGONOMETRIC SERIES

In this section, it will be convenient to introduce the functions S 2(z), S 3(z) and S 4(z) defined for
z < Z as the following series

S k(z) =
∑
p∈Z

(z + p)−k. (69)

Starting from the classical identity (see e.g. [33], Chap. 23)

π cot πz =
1
z

+

+∞∑
p=1

(
1

z + p
+

1
z − p

)
, (70)
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we find by successive differentiation with respect to z

S 2(z) = −πd cot πz
dz

=
π2

sin2 πz
, (71a)

S 3(z) = −1
2

dS 2

dz
= π3 cos πz

sin3 πz
, (71b)

S 4(z) = −1
3

dS 3

dz
=
π4

3
2 + cos 2πz

sin4 πz
. (71c)

Also, the following identity will be frequently invoked for k ∈ N and p ∈ Zd

sinc
(
π (k + pN)

N

)
= π−d (−1)p1+···+pd sin (πz) |z + p|−1, (72)

where z = k/N.

C.1. Cell-averages of the displacement

In the present section, we derive the expression (36) of the DFT of the cell-averages of the discretized
displacement. Combining Eqs. (28), (34) and (35), and taking advantage of the N-periodicity of the
discrete Fourier transform ûN

k , we first find

m̂eanN
k (uN) =

∑
p∈Zd

sinc3
(
π

N
(k + pN)

)
exp

( iπ
N

(k + pN)
)

ûN
k , (73)

then, introducing z = k/N, and using Eqs. (69), (71b) and (72)

m̂eanN
k (uN) = π−3 sin3 (πz) exp (iπz) S 3(z1) · · · S 3(zd) ûN

k = cos (πz) exp (iπz) ûN
k , (74)

and Eq. (36) is proved.

C.2. Derivation of the modal strain-displacement vector

In order to retrieve the closed-form expression (41) of the modal strain-displacement vector, we start
from the definition (40), and introduce z = k/N

B̂N
k · e1 = 2iπ1−3d sin3 (πz) exp (iπz)

∑
p∈Zd

|z + p|−3 k1 + p1N1

L1

= 2iπ1−3d N1

L1
sin3 (πz) exp (iπz)

∑
p∈Zd

|z + p|−3 (z1 + p1)

= 2iπ1−3d N1

L1
sin3 (πz) exp (iπz) S 2(z1)S 3(z2) · · · S 3(zd)

= 2iπ1−3d N1

L1
sin3 (πz) exp (iπz)

π2

sin2 πz1
π3 cos πz2

sin3 πz2
· · · π3 cos πzd

sin3 πzd

= 2i
N1

L1
sin πz1 cos πz2 · · · cos πzd exp (iπz) , (75)

and the proof of Eq. (41) is complete.

C.3. Derivation of the modal stiffness matrix

In this section, we derive Eqs. (47), (48a) and (48b) which define the modal stiffness matrix of an
isotropic, linearly elastic material with shear modulus µ0 and Poisson ratio ν0. The acoustic tensor
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A0(q) of such materials reads [34]

A0(q) = µ0q2 I +
µ0

1 − 2ν0
q ⊗ q = µ0 tr(q ⊗ q) I +

µ0

1 − 2ν0
q ⊗ q, (76)

which, upon substitution in Eq. (45), leads to Eq. (47), with

ĤN
k = 4π2

∑
p∈Zd

sinc4
(
π

N
(k + pN)

) (k + pN
L

)
⊗

(
k + pN

L

)
. (77)

The diagonal and off-diagonal coefficients of ĤN
k are derived below. Substituting Eq. (72) into

Eq. (77)

ĤN
k = 4π2−4d sin4 (πz)

∑
p∈Zd

|z + p|−4
(
k + pN

L

)
⊗

(
k + pN

L

)
, (78)

we successively find

e1 · ĤN
k · e1 = 4π2−4d sin4 (πz)

∑
p∈Zd

|z + p|−4
(
k1 + p1N1

L1

)2

= 4π2−4d
(

N1

L1

)2

sin4 (πz)
∑
p∈Zd

|z + p|−4 (z1 + p1)2

= 4π2−4d
(

N1

L1

)2

sin4 (πz) S 2(z1)S 4(z2) · · · S 4(zd),

=
2

3d−1

(
N1

L1

)2

(1 − cos 2πz1) (2 + cos 2πz2) · · · (2 + cos 2πzd) , (79)

and

e1 · ĤN
k · e2 = 4π2−4d sin4 (πz)

∑
p∈Zd

|z + p|−4
(
k1 + p1N1

L1

) (
k2 + p2N2

L2

)
= 4π2−4d N1N2

L1L2
sin4 (πz)

∑
p∈Zd

|z + p|−4 (z1 + p1) (z2 + p2)

= 4π2−4d N1N2

L1L2
sin4 (πz) S 3(z1)S 3(z2) · · · S 4(zd),

=
1

3d−2

N1N2

L1L2
sin 2πz1 sin 2πz2 · · · (2 + cos 2πzd) , (80)

and the proof of Eqs. (48a) and (48b) is complete.
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