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Abstract

This work investigates the formulation of lower and upper bound finite elements for the yield design (or limit analysis)
of shell structures. The shell geometry is first discretized into triangular planar facets so that previously developed
lower bound equilibrium and upper bound kinematic plate finite elements can be coupled to membrane elements. The
other main novelty of this paper relies on the formulation of generalized strength criteria for shells in membrane-bending
interaction via an implicit upscaling procedure. This formulation provides a natural strategy for constructing lower
and upper bound approximations of the exact shell strength criterion and are particularly well suited for a numerical
implementation using second-order cone programming tools. By combining these approximate strength criteria to the
previously mentioned finite elements, rigorous lower and upper bound ultimate load estimates for shell structures can be
computed very efficiently. Different numerical examples illustrate the accuracy as well as the generality and versatility
of the proposed approach.

Keywords: yield design, limit analysis, shells, generalized strength criteria, finite element method, second-order cone
programming

1. Introduction

Computational direct methods to estimate the ultimate
load of a various range of structures using yield design (or
limit analysis in the context of an elastic perfectly plas-
tic behavior) theory have gained increasing attention in
the last decades thanks to the development of efficient op-
timization solvers, in particular interior-points algorithm
for conic programming problems. The static approach,
which consists in maximizing the load multiplier over a
set of statically admissible stress fields, while statisfying
the local strength at each point of the structure, enables
to obtain a lower bound estimate for the ultimate load.
Conversely, the dual approach, namely the kinematic ap-
proach, which consists in minimizing the maximum resist-
ing work (or plastic dissipation in the context of limit anal-
ysis) over a set of kinematically admissible virtual velocity
fields, enables to obtain upper bound estimates for the ulti-
mate load. The finite element method can be implemented
in the context of both approaches using equilibrium ele-
ments for the static approach or kinematic finite elements
(which may include potential discontinuities) for the kine-
matic approach. The subsequent optimization problems
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can then be solved using dedicated convex programming
solvers, depending on the mathematical expression of the
strength criterion.
The general framework of the yield design theory
(Salençon, 1983, 2013) can be applied to a wide variety
of mechanical models : 2D/3D continuous media, beam
structures, plates and slabs, shells, etc. As regards the lat-
ter structures, one key issue is then to formulate a strength
criterion in terms of the generalized internal forces of the
considered model. From a numerical point of view, at-
tention has also been devoted to the formulation of such
criteria using conic (in particular second-order cone) con-
straints (Bisbos and Pardalos, 2007; Makrodimopoulos,
2010) in order to employ efficient second-order cone pro-
gramming (SOCP) solvers, such as the Mosek software
package (Mosek, December 2014).
Focusing more specifically on the limit analysis/yield de-
sign of shell structures, early works have been mainly ded-
icated to deriving analytical lower and upper bound es-
timates for simple structures (Hodge, 1954, 1959; Prager,
1961; Hodge, 1963; Save et al., 1997). An important num-
ber of such solutions is compiled in (Save, 1995). In this
context, the possible use of a generalized strength crite-
rion for shells in membrane-bending interaction has been
discussed (Ilyushin, 1956), and various approximate crite-
ria have been proposed to simplify the analysis (Robin-
son, 1971). From a computational point of view, papers
dedicated to a numerical implementation of limit analysis
applied to such structures remain quite scarce. Limit anal-
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ysis of axi-symmetric shells using non-linear programming
has been proposed in (Hung et al., 1978). Shakedown anal-
ysis (extension of limit analysis to cyclic loadings) of axi-
symmetric shells using a linearized yield surface has been
investigated in (Franco and Ponter, 1997a,b) and extended
in (Franco et al., 1997) including error analysis and adap-
tive remeshing. Sequential limit analysis has been used
to investigate the post-collapse behavior of a structure by
updating the geometry from using collapse mechanisms ob-
tained from the kinematic approach. Such analyses have
been performed in (Corradi and Panzeri, 2003, 2004) in the
case of a von Mises criterion and in (Raithatha and Dun-
can, 2009) using Ilyushin approximate criterion (although
some concerns with respect to the upper bound formula-
tion have been raised in (Makrodimopoulos and Martin,
2010)). A continuum-based shell element has been devel-
oped to perform shakedown analysis on von Mises shells in
(Martins et al., 2014), but due to the mixed formulation,
only approximate values of the limit loads can be obtained.
Upper bound limit and shakedown analysis based on the
exact Ilysuhin strength criterion has been considered in
(Tran et al., 2008), using a particular optimization pro-
cedure. Finally, one can mention the work of Bisbos and
Papaioannou (Bisbos and Papaioannou, 2006), who used
a Morley shell element and SOCP to solve problems in-
volving Ilyushin approximate criterion.
From all these previous works, it can first be observed that
the derivation of lower bound shell elements is almost non-
existent, although it can be highly beneficial to obtain a
reliable bracketing of the true ultimate load. Secondly, al-
most all existing works are focused on homogeneous metal
shells, which can be modeled using the von Mises strength
criterion. To the authors’ opinion, this particular focus
is partly due to the difficulty of deriving appropriate gen-
eral strength criteria for other types of constitutive ma-
terials (reinforced concrete for example). Therefore, the
present work aims at contributing to the derivation of both
lower and upper bound yield design shell finite elements
as well as proposing a general formulation of generalized
shell strength criteria which can be used in conjunction
with state-of-the-art conic programming solvers.
The paper is organized as follows : in Section 2, the main
features of the yield design analysis of shell structures are
recalled, relying on the formulation of a strength condition
expressed in terms of generalized stress variables, such as
membrane forces and bending moments. Section 3 ad-
vocates the use of a piecewise linearization of the shell
geometry by discretizing its curved surface into triangu-
lar facets, that is by replacing the initial shell by a con-
tinuous assemblage of triangular plates, for which lower
and upper bound finite element formulations have been
previously developed. Section 4 is then devoted to the
key issue of formulating a generalized stress-based crite-
rion for a multilayered shell, which can be obtained from
solving a yield design problem, where the distribution of
material local strength properties across the shell thickness
is known. The numerical performance of such an upscal-

ing procedure is favorably compared with classical existing
solutions or approximations. Finally, Section 5 presents
some illustrative applications of the whole numerical pro-
cedure, where the combination of the plate finite element
formulation and strength criterion approximation, in the
context of the lower or upper bound approach, leads to a
single global SOCP optimization problem.

2. Yield design of shells : a brief outline

2.1. General formulation using the static approach

Referring to a Cartesian orthonormal frame
(O; ex, ey, ez), the shell occupies a two-dimensional
manifold Ω. The shell geometry can be described locally
by a unit normal ν and a tangent plane spanned by two
unit vectors a1 and a2 (Figure 1).

The generalized internal forces of the shell model are
described by a symmetric tensor N = Nijai ⊗ aj of
membrane forces, a symmetric tensor M = Mijai ⊗ aj of
bending moments and a vector V = Viai of shear forces
(i, j = 1, 2).
Let then G(x) be the generalized strength domain of the
shell at x ∈ Ω, which is a convex set in the (N,M, V )
space (of dimension 8).

Assuming that the shell external loading depends upon
several loading parameters collected in a vector Q, the
domain K of potentially safe loads Q, as introduced in the
yield design theory (Salençon, 1983, 2013), is defined as
follows:

K =
{
Q ; ∃(N,M, V ) SA with Q

and ∀x ∈ Ω(
N(x),M(x), V (x)

)
∈ G(x)

} (1)

where a distribution of generalized internal forces
(N,M, V ) must satisfy all local equilibrium, continuity
and boundary conditions in order to be statically admissi-
ble (SA) with a given loading Q.

2.2. Dual formulation using the kinematic approach

A dual definition of the domain K of potentially safe
loads using the kinematic approach is classically obtained
by means of the virtual work principle. In the context of
a shell model, the virtual kinematics of the shell is char-
acterized at any point x ∈ Ω by (Figure 1) :

• a virtual velocity U = Uxex + Uyey + Uzez of the
particle attached to the point. It will be convenient
to express U in terms of its in-plane u = uiai and
out-of-plane wν components, so that : U = u+ wν.

• a virtual angular velocity Θ = Θxex + Θyey + Θzez,
representing the rotation of the microstructure at-
tached to the same point. Again, it will be useful to
express it in terms of in-plane and out-of-plane com-
ponents : Θ = θ + ϑν with θ = θiai.
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(a) Virtual velocity

(b) Virtual angular velocity

Figure 1: Shell kinematics

Hence, the virtual work principle reads as :

(N,M, V ) S.A. with Q⇐⇒
∀(U,Θ) K.A. with q̂,

P(e)(U,Θ) = Q · q̂ = −P(i)(U,Θ)

where P(e)(U,Θ) = Q · q̂ represents the virtual work of
external loading (q̂ being the generalized kinematic pa-
rameters associated by duality to the loading parameters
Q) and P(i)(U,Θ) the virtual work of internal forces which
can be expressed as follows :

P(i)(U,Θ) = −
∫

Ω

(N : ε+M : χ+ V · γ)dΩ (2)

where ε are the virtual membrane strain rates, χ the vir-

tual curvature strain rates and γ the virtual shear strain
rates.
In the case when the virtual velocity fields U and Θ are dis-
continuous across a line Γ, the above expression (2) should
be completed by the following additional line integral:

P
[[ ]]
(i)(U,Θ) = −

∫
Γ

(
(N · n) · [[u]] +

(M · n) · [[β]] + (V · n)[[w]]
)
dΓ

(3)

where β = ν ∧ θ and [[∗]] represents the jump of a variable
∗ when crossing Γ, of unit tangent vector t, along its unit
normal n = ν ∧ t.

The so-called maximum resisting work (also called max-
imum plastic dissipation in the context of limit analysis)

is now introduced. It is defined as :

Prm(U,Θ) =

∫
Ω

π
(
ε, χ, γ

)
dΩ

+

∫
Γ

Π
(
n; [[u]], [[β]], [[w]]

)
dΓ

(4)

where the support functions are defined as :

π
(
ε, χ, γ

)
= sup

(N,M,V )∈G

{
N : ε+M : χ+ V · γ

}
(5)

Π
(
n; [[u]], [[β]], [[w]]

)
= sup

(N,M,V )∈G

{
(N · n) · [[u]]

+ (M · n) · [[β]] + (V · n)[[w]]
} (6)

From these expressions, it is worth noting that the support
function Π of velocity discontinuities can be obtained from
the support function π of strain rates through the following
relation :

Π
(
n; [[u]], [[β]], [[w]]

)
= π

(
[[u]]

s
⊗ n, [[β]]

s
⊗ n, [[w]]n

)
(7)

where a
s
⊗ b = 1

2 (a⊗ b+ b⊗a) is the symmetrized tensorial
product.

The kinematic characterization of the domain K of po-
tentially safe loads is then given by :

Q ∈ K ⇐⇒ ∀(U,Θ) K.A. with q̂,
P(e)(U,Θ) = Q · q̂ ≤ Prm(U,Θ)

(8)

2.3. General comments

In the previous formulation, it has been implicitly
assumed that the shell presents an infinite strength
towards the drilling rotation about the shell normal
ν. Hence, the drilling strain and discontinuities asso-
ciated to the out-of-plane rotation ϑ should always be zero.

Despite the generality of the approach proposed here,
the remainder of this article will be restricted to the
case of thin shells, i.e. presenting an infinite strength
towards shear forces compared to membrane forces and
bending moments. As intensively discussed in (Bleyer
et al., 2015a), this assumption imposes that γ = 0 and
[[w]] = 0 as kinematic constraints, reducing to the classical
Love-Kirchhoff conditions in the case of a plate.

Finally, in the previous presentation, the (rather com-
plex) expressions of local equilibrium equations and com-
patibility conditions between generalized strain rates and
velocity fields have not been specified. Indeed, these ex-
pressions involve differential geometry quantities of the
shell and induce a coupling between membrane on the one
hand and bending/shear on the other hand. In the next
Section, a discretization of the shell into planar facets will
be considered so that membrane and bending effects are
decoupled in each facet.
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3. Lower and upper bound finite elements

3.1. Discretized approximation of the shell geometry

In the following, the shell will be discretized as an
assembly of NE triangular planar facets (or plates). As a
result of this discretization, the decoupling between mem-
brane and bending equilibrium and strain compatibility
equations in each facet makes it possible to use a combina-
tion of membrane and plate bending finite elements which
have been developed in (Bleyer and de Buhan, 2014)
(lower bound) and (Bleyer et al., 2015a) (upper bound).
The practical implementation being very similar to the
one described in these papers, only particular aspects
related to the shell model will be highlighted for the sake
of concision. While membrane and bending equilibrium
and strain compatibility equations are decoupled in each
planar facet, it is important to keep in mind that the
membrane forces and bending moments will still be
coupled by the generalized strength criterion in which
the membrane strength is affected by the intensity of the
bending moment and vice-versa, as is the case with beam
section interaction diagrams.

3.2. Lower bound finite element for the static approach

The numerical resolution of the static approach will be
performed by considering piecewise continuous membrane
forces, bending moment and shear force fields, separated
by statically admissible discontinuities across adjoining
elements.
For the membrane part, a linear interpolation of the
membrane force tensor N is assumed in plate each
element. As regards the plate bending part, the lower
bound finite elements developed in (Bleyer and de Buhan,
2014) is considered. This element assumes a quadratic
variation of the bending moment tensor M and a linear
variation of the shear force vector V .

The local equilibrium equations inside a plane facet read
as (in the absence of distributed bending couples) :

divN + p = 0 (9)

div V + q = 0 (10)

divM + V = 0 (11)

where p and q represent an in-plane and out-of-plane
distributed force respectively. These equations can
be exactly enforced in each element when considering
piecewise constant distributed forces in each element (as
in (Bleyer and de Buhan, 2014), equation (11) is enforced
at the three vertices of each triangular facet).

As regards jump equations, let us consider two adjacent
facets (generally non coplanar) sharing a common edge Γ
of unit tangent vector t (Figure 2). The normal to the
two facets will be denoted by ν+ and ν− and the following
in-plane normals to the interface Γ are introduced : n± =

Figure 2: Two adjacent triangular plates of the discretized shell

ν± ∧ t. In the case when there are no external line forces
applied along Γ, the jump equations for resulting forces
and bending moments are given by :

[[R]] = R+ −R− = 0 (12)

[[M · n]] = M+ · n+ −M− · n− = 0 (13)

where R± = N± · n± + (V ± · n±)ν±. From the result-
ing forces balance equation (12), it can be seen that
bending/membrane coupling occurs at the edge between
two non coplanar adjacent facets. In the case when
these facets are coplanar, the jump equations in terms
of in-plane and out-of-plane reactions are decoupled,
reducing to : [[N · n]] = 0 and [[V · n]] = 0.
As in (Bleyer and de Buhan, 2014), due to the linear
variation of N and V , it is sufficient to enforce (12) at
the two end nodes of a given edge, whereas, due to the
quadratic variation of M , (13) is enforced at both end
nodes plus the mid-side node of the edge.
Finally, static boundary conditions are imposed by
prescribing the value of the components of R and M · n
on the appropriate boundary edges.

All these elementary contributions of local equilibrium,
jump equations, and boundary conditions are then assem-
bled into a global linear relationship between the vector of
static unknowns Σ = 〈. . . , Ne

ij ,M
e
ij , V

e
i , . . .〉T and a gen-

eralized external force vector F of the form HΣ + F = 0.
The discretized fields verifying this equation are then stat-
ically admissible with the loading corresponding to F.
Assuming that the loading mode depends upon one pa-
rameter only (the global force vector being proportional
to a reference load F0 : F = λF0), the formulation of
the yield design static approach amounts to solving the
following maximization problem :

λl = max
λ,Σ

λ

s.t. HΣ + λF0 = 0
(N c

ij ,M
c
ij) ∈ G ∀c = 1, . . . , Nc ·NE

(14)
where the superscript c spans all the points where the
strength criterion has to be verified as discussed in (Bleyer
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and de Buhan, 2014) (Nc denotes the number of check
points used inside each element). Keeping in mind the
remarks made in (Bleyer and de Buhan, 2014) about a
potential violation of the strength criterion between these
points, the solution of problem (14) yields a lower bound
λl ≤ λ+ to the exact ultimate load factor λ+ that the
shell can sustain on account of adopted strength criterion.

Obviously, the resolution of problem (14) is highly de-
pendent on the form of the strength criterion constraint ex-
pressed as (Nij ,Mij) ∈ G. For example, if this constraint
can be reformulated using linear equality/inequality con-
straints only, the corresponding problem will belong to the
class of linear programming (LP) problems. Recently, im-
portant progresses have been achieved in the development
of efficient solvers for a more general class of optimization
problems, namely second-order cone programming prob-
lems. Most strength criteria involved in yield design/limit
analysis problems can be reformulated using second-order
cone constraints, so that the corresponding problems can
be dealt with using such efficient solvers. The case of shell
strength criteria has not received much attention so far
and this aspect will be the purpose of Section 4.

3.3. Upper bound finite element for the kinematic ap-
proach

As regards the upper bound kinematic approach, the
w6-d plate bending finite element presented in (Bleyer
et al., 2015a) is combined with an upper bound membrane
element. Hence, a quadratic interpolation of the virtual
velocity U and a linear interpolation of the virtual
rotation velocity Θ are considered in each element. As in
(Bleyer et al., 2015a), the considered interpolation may
be discontinous from one element to another, the degrees
of freedom being attached to the element itself and not to
a geometrical node shared by several adjacent elements.
Including potential discontinuities of the virtual velocity
fields in upper bound kinematic approaches have already
proved to be not only more efficient in terms of accuracy
of the produced estimates, but also to avoid in a natural
way the shear locking phenomenon in the thin plate limit
(Bleyer et al., 2015a). For these reasons, this strategy has
been retained here.

As regards virtual strain rates, membrane strains ε,
bending curvatures χ, shear strains γ and drilling strains

$ associated with the rotation around the facet normal
are computed in each element using the following strain
compatibility relations in a planar facet :

ε =
1

2
(∇u+ T∇u) (15)

χ =
1

2
(∇β + T∇β) (16)

γ = ∇w − β (17)

$ = a2 ·
1

2
(∇u− T∇u) · a1 − ϑ (18)

where ∇ denotes the gradient operator associated with
the plane of the facet and a1 · a2 = 0.
As mentioned before, in the thin shell case, the Love-
Kirchhoff kinematics is prescribed inside each facet as an
additional constraint by imposing γ = 0, that is β = ∇w,
whereas the infinite strength with respect to the drilling
rotation imposes $ = 0.
With the retained degrees of interpolation, the membrane
strain rate ε varies linearly inside each element, whereas
the bending curvature χ is uniform per element. The

contribution of the strain term to the maximum resisting
work (first integral in (4)) is performed as described in
(Bleyer et al., 2015a).

As regards the contribution of virtual velocity discon-
tinuities to the maximum resisting work (second integral
in (4)) through each edge j = 1, . . . , ND of the mesh, the
discontinuities of U are computed at both end nodes plus
the mid-side node wheareas, due to its linear variation,
the discontinuities of Θ are computed only at both end
nodes.
It has already been pointed out that the thin shell
hypothesis requires the out-of-plane virtual velocity w
to be continuous for the upper bound approach to be
relevant. Hence, an average normal ν̂ is defined along
each edge shared by two non-coplanar facets (Figure
2). The out-of-plane velocity jump is then defined as
[[w]] = (U+−U−)·ν̂ and is imposed to be zero. The same is
done for the out-of-plane rotation [[ϑ]] = (Θ+−Θ−) · ν̂ = 0.

Thus, considering a loading mode with one parameter
only for a reference loading F0, the implementation of the
upper bound kinematic approach amounts to solving the
following minimization problem on the generalized vector
of kinematic unknowns V = 〈. . . , Uei ,Θe

i , . . .〉T :

λu = min
V

NE∑
e=1

∑
g

ωe,gπ(εe,g,χe,g) + (19)

ND∑
j=1

∑
g′

ω′j,g′Π(nj ; [[u]]j,g′ , [[β]]j,g′)

s.t. F0
T ·V = 1 (20)

BεV = ε (21)

BχV = χ (22)

BγV = 0 (23)

B$V = 0 (24)

DuV = [[u]] (25)

DβV = [[β]] (26)

DwV = 0 (27)

DϑV = 0 (28)

where ωe,g (resp. ω′j,g′) are integration weights for
the contribution of virtual strain rates (resp. velocity
discontinuities) to the maximum resisting work. Con-
straint (20) represents a normalization of the work of
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external loads. Constraints (21)-(24) are the discretized
form of the compatibility equations (15)-(18) whereas
constraints (25)-(28) represent the computation of differ-
ent components of velocity jumps across edges of the mesh.

In the case when the quadrature rules used to compute
the discretized maximum resisting work ensure an approx-
imation by excess of the true maximum resisting work, the
solution of problem (19) yield an upper bound λu ≥ λ+

to the exact ultimate load factor λ+. Concerning the way
of preserving the upper bound status, more details can be
found in (Bleyer et al., 2015a).
As before, the resolution of problem (19) is highly depen-
dent on the form of the support functions, which itself
depend on the form of the generalized strength criterion
G. If G can be expressed using second-order cone con-
straints, then it will also be the case for its support func-
tions. The corresponding optimization problem will then
belong to the class of SOCP problems and can be solved
with dedicated solvers.

4. Formulation of shell generalized strength crite-
ria

4.1. Approximate shell strength criteria for a von Mises
plate

Obtaining an exact analytical expression of a generalized
strength criterion for a plate or shell in membrane-bending
interaction is quite a difficult task. In the case of a ho-
mogeneous shell made of a von Mises material, Ilyushin
(Ilyushin, 1956) obtained a parametrisation of the exact
6-dimensional hypersurface using 3 parameters only.
Unfortunately, the expressions involved in this parametri-
sation are very complex and cannot be formulated using
conic constraints, thus precluding the use of efficient conic
programming solvers to tackle the associated optimization
problems (14) and (19).
Various approximate expressions have then been pro-
posed by several authors in order to derive analytical
approximate limit analysis solutions or to obtain more
tractable expressions from a numerical point of view. We
will review some of these approximate strength criteria
and discuss their representation, as well as the expression
of their corresponding support function, using conic
constraints.

Considering a homogeneous shell of thickness t made
of a von Mises material of uniaxial traction/compression

strength σ0, the following notations are introduced :

n =
1

σ0t
〈N11 N22 N12〉T =

1

σ0t
N (29)

m =
4

σ0t2
〈M11 M22 M12〉T =

4

σ0t2
M (30)

qn = nTQn (31)

qm = mTQm (32)

qnm = mTQn = nTQm (33)

Q =

 1 −1/2 0
−1/2 1 0

0 0 3

 (34)

One can immediately observe that the von Mises mem-
brane strength criterion (M = 0) is simply given by√
qn ≤ 1, whereas the von Mises bending strength crite-

rion (N = 0) is given by
√
qm ≤ 1. As mentioned before,

several authors have proposed approximate expressions for
the generalized strength criteria of a von Mises shell :

• Ilyushin (Ilyushin, 1956) :√
qn + qm +

1√
3
|qnm| ≤ 1 (35)

• Hodge (Hodge, 1959) :
√
qm + qn ≤ 1 (36)

• Prager (”sandwich” approximation) (Prager, 1961) :√
qn + qm + 2|qnm| ≤ 1 (37)

• Robinson (Robinson, 1971) :
√
qm + qn ≤ 1 (38)

It is interesting to note that all these approximations
are exact for pure membrane (i.e. Mij = 0, hence
qm = qnm = 0) sollicitations as well as for pure bending
(i.e. Nij = 0, hence qn = qnm = 0) sollicitations, being
equivalent, respectively, to the membrane strength crite-
rion
√
qn ≤ 1 and the bending strength criterion

√
qm ≤ 1.

As a result, all of these approximations only differ in the
way they describe the membrane-bending interaction. For
a more complete presentation of these approximations, we
refer to (Robinson, 1971). In this paper, the maximum
distance of these approximate surfaces to the exact one is
also computed. Results are reported in Table 1.

Let us also mention that it is possible to consider other
very crude approximations such as :

• the ”square”-shaped strength criterion which assumes
no interaction between membrane and bending. It
consists in the cartesian product of the pure mem-
brane and the pure bending strength criteria :{√

qn ≤ 1
√
qm ≤ 1

(39)
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Approximation under-estimation over-estimation
(35) 7.1% 3.4%
(36) 16.7% 0%
(37) 20% 0%
(38) 4.5% 15.5%

Table 1: Maximum under- and over-estimation relative errors of dif-
ferent approximate generalized strength criteria with respect to the
exact criterion of a homogeneous von Mises shell (from (Robinson,
1971))

• the ”diamond”-shaped strength criterion which as-
sumes a linear interaction between membrane and
bending. It consists in the convex hull of the pure
membrane and the pure bending strength criteria :

√
qn +

√
qm ≤ 1 (40)

• the ”circle”-shaped strength criterion which assumes
a non-linear interaction between membrane and
bending. It consists in a 6-dimensional ellipsoid gen-
erated by the pure membrane and the pure bending
strength criteria and is equivalent to (38).

These three approximations rely only on the pure mem-
brane and bending strength criteria and can thus easily
be generalized to other constitutive materials by replacing√
qn (resp.

√
qm) by the corresponding expression of the

pure membrane (resp. bending) criterion expressed, for
instance, as gmemb(Nij) ≤ 1 (resp. gbend(Mij) ≤ 1).

All of the approximations mentioned so far can be ex-
pressed using conic constraints as shown in Appendix
A, where expressions of the corresponding support func-
tion are also given. Hence, it is possible to use any of
these approximate strength criteria in conjunction with
the lower and upper bound finite elements presented be-
fore and conic programming solvers. As an illustration,
all these different strength criteria are represented in the
plane (N11,M11) (Figure 3a) and (N22,M11) (Figure 3b).

4.2. Extension to other material strength criteria

In the case when the shell constitutive material obeys
another strength criterion than von Mises (e.g. Tresca),
other approximations are necessary. For example, it is pos-
sible to assimilate the homogeneous shell to two lower and
upper membranes (”sandwich” approach) as suggested in
(Hodge, 1954; Lubliner, 1990). It is also possible to use the
previous approximations obtained in the von Mises case
since the Tresca strength criterion can be circumscribed
by the von Mises ellipsoid and inscribed by the same el-
lipsoid reduced by a factor

√
3/2. Finally, as mentioned

before, the ”square”, ”diamond” and ”circle” criteria can
be obtained from the pure membrane and bending strength
criteria.
However, these different strategies produce, in general, ap-
proximations of a relatively poor quality, especially for

[Prager, 1961],
"diamond"

"circle"

"square"

(a) (N11,M11)-plane

"diamond"

"circle"
[Prager, 1961]

"square"

(b) (N22,M11)-plane

Figure 3: Representation of exact and approximate generalized
strength criteria for a von Mises shell
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complex constitutive strength criteria or in the case when
the constituent material is heterogeneous through the shell
thickness (multilayered shell for example).

4.3. Formulation of generalized strength criteria using an
implicit up-scaling procedure

In order to overcome the previously mentioned draw-
backs and to obtain approximate strength criteria with
a desired level of accuracy, we now propose a general
approach which will be well suited for a numerical
implementation using conic programming tools.

If the shell is made of a constituent material with ho-
mogeneous strength properties in the in-plane directions of
the shell (case of multilayered shells), then it can be shown
that the generalized membrane-bending strength criterion
G can be expressed from the local constitutive strength
criterion G(ξ) by considering a distribution of plane stress
states depending on the thickness coordinate ξ only (Save
et al., 1997; Dallot and Sab, 2008)1 :

(N,M) ∈ G⇔



∀ξ ∈ [−t/2; t/2] and i, j = 1, 2
∃ σ(ξ) = σij(ξ)ai ⊗ aj ∈ G(ξ)

Nij =

∫ t/2

−t/2
σij(ξ)dξ

Mij =

∫ t/2

−t/2
(−ξ)σij(ξ)dξ

(41)

This formulation results from an upscaling approach
and makes it possible to express the generalized strength
criterion as a function of the local constitutive strength
criterion G, although in an implicit way through the
solution of the auxiliary yield design problem (41).

It is also possible to obtain a similar determination of
the generalized support function π(ε, χ). Indeed, recalling

the definition

π(ε, χ) = sup
(N,M)∈G

{
N : ε+M : χ

}
(42)

and using (41), we obtain :

π(ε, χ) = sup
σ(ξ)∈G(ξ)

{(∫ t/2

−t/2
σ(ξ)dξ

)
: ε

+

(∫ t/2

−t/2
(−ξ)σ(ξ)dξ

)
: χ

}

= sup
σ(ξ)∈G(ξ)

∫ t/2

−t/2
σ(ξ) : (ε− ξχ)dξ

=

∫ t/2

−t/2
πpsloc(ε− ξχ)dξ (43)

1Strictly speaking, (41) represents a lower bound approximation
to G making use of plane stress distributions. Actually, it may
be proved (from using for instance the upper bound kinematic ap-
proach) that it leads to the exact determination of G.

where πpsloc(d) corresponds to the support function of the
local plane stress strength criterion.
The generalized support function is then obtained by in-
tegrating through the thickness the local support function
for a virtual strain rate d = ε − ξχ corresponding to a

Love-Kirchhoff kinematics.

4.3.1. Numerical lower bound approximation

Nevertheless, the continuous formulation (41) cannot be
used as such for a numerical implementation. Hence, a
lower bound approximation of the true generalized strength
criterion G will first be proposed. To do so, a piecewise
constant distribution of plane stress states in n different
layers [tk−1, tk] with k = 1, . . . , n and t0 = −t/2, tn = t/2
is considered. Assuming that the local strength criterion
G(ξ) = Gk is uniform in each layer k (multilayered approx-
imation), we define the following lower bound approxima-
tion Glb of G :

(N,M) ∈ Glb ⊆ G⇔



∃ σkij such that
k = 1, . . . , n and i, j = 1, 2
σkijai ⊗ aj ∈ Gk

Nij =

n∑
k=1

(tk − tk−1)σkij

Mij =

n∑
k=1

(
t2k−1 − t2k

2

)
σkij

(44)
It can be immediately seen that this definition leads, for
any value of n, to a lower bound estimate Glb ⊆ G in
the case of a piecewise constant local strength criterion.
Hence, Glb will converge to G, from the inside, at the
limit n→∞.
From a numerical point of view, Glb can be determined by
introducing 3n auxiliary optimization variables σkij . Be-
sides, due to the linear relationship between the auxiliary
variables σkij and the membrane forces Nij and bending
moments Mij , Glb can be expressed using conic con-
straints if the local strength criterion Gk can be expressed
using such constraints, which is the case for an important
number of classical plane stress criteria e.g. Rankine, von
Mises, Tresca, Mohr-Coulomb, Drucker-Prager, etc...

Example of a homogeneous von Mises shell :
As an illustration, let us consider again the case of
the homogeneous von Mises shell. Introducing σk =
〈σk11 σk22 σk12〉T for k = 1, . . . , n, the local plane stress
strength criterion may be written as :

σkijai ⊗ aj ∈ Gk ⇐⇒ σk
TQσk ≤ σ0

⇐⇒ ‖PTσk‖ ≤ σ0 with P =
1√
3

 1 0 0

−1/2
√

3/2 0

0 0
√

3


(45)

where P is the Cholesky factor of Q = PPT , the local
strength criterion ‖PTσk‖ ≤ σ0 being here written in the
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form of a second-order conic constraint.
In the case of a crude approximation using n = 2 layers of
thickness t/2, Glb can be expressed as follows :

(N,M) ∈ Glb ⇔



‖PTσ1‖ ≤ σ0

‖PTσ2‖ ≤ σ0

N =
t

2
(σ1 + σ2)

M =
t2

8
(σ2 − σ1)

(46)

leading, after some computations, to :√
qn + qm − 2qnm =

1

σ0
‖PTσ1‖ ≤ 1 (47)√

qn + qm + 2qnm =
1

σ0
‖PTσ2‖ ≤ 1 (48)

Therefore, we see that for n = 2, (N,M) ∈ Glb ⇔√
qn + qm + 2|qnm| ≤ 1. As a conclusion, the lower bound

multilayered approximation using 2 layers of equal thick-
ness for a von Mises material is equivalent to approxima-
tion (37). This should not be a surprise since approxi-
mation (37) has been obtained using the ”sandwich” ap-
proach mentioned before. However, as it will be seen later,
increasing the number n of layers will produce more accu-
rate approximations than those mentionned earlier.

4.3.2. Numerical upper bound approximation

The previous multilayered strategy makes it possible to
construct lower bound approximations for the generalized
strength criteria, which can then be used in conjunction
with a lower bound finite element yield design of the shell,
so as to keep the lower bound status of the so-computed
ultimate load estimate. It would then be interesting to
obtain an equivalent upper bound approximation to G, to
be used in conjunction with upper bound finite elements
for the same reasons.

To do so, let us recall expression (43) which relates the
generalized support function to that of the local strength
criterion :

π(ε, χ) =

∫ t/2

−t/2
πpsloc(ε− ξχ)dξ (49)

Since πpsloc(d) is a convex function of its argument, which
is itself an affine function of the thickness variable (d =
ε − ξχ), the previous integral can then be estimated by

excess using a trapezoidal quadrature rule with n ≥ 2
points :

π(ε, χ) ≤ πub(ε, χ) =

n∑
k=1

ωkπ
ps
loc(ε− ξkχ) (50)

where ξk are the quadrature points with ξ1 = −t/2 and
ξn = t/2 and ωk = (ξk+1 − ξk−1)/2 for 2 ≤ k ≤ n − 1,
ω1 = (ξ2 − ξ1)/2 and ωn = (ξn − ξn−1)/2.
For the previous estimate to be a true upper bound,

the local strength criterion must be uniform across the
shell thickness. Nevertheless, in the case of a piecewise
constant strength criterion, an upper bound estimate
can be obtained by splitting the integral on the different
domains where the strength criterion is uniform. The
trapezoidal quadrature is then adapted to take into
account the discontinuities between the different domains.

The convex set defined as follows :

Gub =
{

(N,M) s.t. N : ε+M : χ ≤ πub(ε, χ) ∀ε, χ
}

(51)
is clearly an upper bound approximation to G for all val-
ues of n. Gub will converge to G, from the outside, at the
limit n→∞.
Similarly, if the local strength criterion G can be expressed
using conic constraints, it will also be the case for its sup-
port function by a duality argument. Therefore, the upper
bound generalized support function πub(ε, χ) can also be

expressed using such constraints and this approximation
can efficiently be used in conjunction with conic program-
ming solvers.
Using duality, it can also be easily shown that Gub can be
expressed in a way similar to (44) as follows :

(N,M) ∈ Gub ⊇ G⇔



∃ σkij such that
k = 1, . . . , n and i, j = 1, 2
σkijai ⊗ aj ∈ Gk

Nij =

n∑
k=1

ωkσ
k
ij

Mij =

n∑
k=1

(−ωkξk)σkij

(52)
This expression also involves 3n auxiliary optimization
variables but, contrary to (44), Gub cannot be inter-
preted as a discretization of the shell thickness into n non-
overlapping layers with uniform plane stress states in each
layer.

4.3.3. Other possible approximations

The two previous strategies enabled to build a lower and
an upper bound approximation of G respectively. This
bounding property is indispensable to preserve the bound-
ing status of a numerical ultimate load estimate for the
shell when used with lower or upper bound finite elements.
In some cases, keeping the bounding status of the approxi-
mation may not be necessary, e.g. when using mixed finite
elements for which the bounding status of the computed
estimate is lost, even when using an exact strength cri-
terion. For this reason, it is also possible to obtain non-
bounding approximations of the exact generalized strength
criterion G.
A simple idea then consists in applying the same strategy
as for the upper bound approximation 4.3.2 but using a
quadrature rule of integral (43) which does not necessarily
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yield an estimate by excess :

π(ε, χ) ≈ πapprox(ε, χ) =

n∑
k=1

ω′kπ
ps
loc(ε− ξ

′
kχ) (53)

where ξ′k are the quadrature points in [−t/2; t/2] and ω′k
the quadrature weights. The choice of different quadrature
rules (e.g. Simpson’s rule, Gauss-Legendre quadrature,
...) will therefore produce different approximations.

As before, the convex set defined as follows :

Gapprox =
{

(N,M) s.t. N : ε+M : χ ≤ πapprox(ε, χ) ∀ε, χ
}

(54)
is a non-bounding approximation of G which converges to
G as n→∞.
Gapprox can also be expressed using implicit auxiliary op-
timization variables as in (52) by simply replacing ωk and
ξk by ω′k and ξ′k.

4.4. Assessing the quality of the different approximations

4.4.1. Two testing cases

To assess the accuracy of the different proposed ap-
proximations, two testing cases of different complexity
will be investigated.

The first one corresponds to a homogeneous von Mises
shell, for which existing approximations have already
been discussed in 4.1. The local strength criterion being
isotropic, it can directly be concluded that the macroscopic
strength criterion G is also isotropic. This property will
also be true for all the considered approximations. Other
remarkable properties can be deduced such as :

• G is symmetric with respect to the origin : (N,M) ∈
G ⇔ −(N,M) ∈ G. This is easily proven using (41)
and noting that the von Mises criterion itself is sym-
metric with respect to the origin.

• G is symmetric with respect to the membrane sub-
space : (N,M) ∈ G ⇔ (N,−M) ∈ G. This is easily
proven using (41) and observing that the shell is sym-
metric with respect to ξ = 0 (homogeneous shell).

• From the two previous properties, G is also symmetric
with respect to the bending subspace : (N,M) ∈ G⇔
(−N,M) ∈ G.

The first property is also true for all approximations,
whereas the second will be true if the discretization is
symmetric with respect to the shell mid-surface ξ = 0
(even (resp. odd) value of n for the lower (resp. upper)
bound approximation with a uniform discretization).

The second example consists in two layers of thick-
ness t/2 made of a material obeying a generalized or-
thotropic plane stress Rankine strength criterion (used

for example to decribe the strength properties of a con-
crete). The two orthogonal directions of orthotropy for
each layer are denoted by eα = cosαa1 + sinαa2 and
eβ = − sinαa1 + cosαa2. In the following, we assume
that α = 0◦ in the lower layer [−t/2; 0] and α = 45◦ in the
upper layer. The orthotropic generalization of the plane
stress Rankine strength criterion reads as :

σ ∈ G ⇐⇒


(σ−0α + σαα)(σ−0β + σββ) ≥ σ2

αβ

(σ+
0α − σαα)(σ+

0β − σββ) ≥ σ2
αβ

−σ−0α ≤ σαα ≤ σ
+
0α

−σ−0β ≤ σββ ≤ σ
+
0β

(55)

where σ±0α,β are the tensile/compressive uniaxial strength
in the directions of orthotropy. In the following, we will
assume that σ+

0α = 5σ0 and σ−0α = σ+
0β = σ−0β = σ0 for both

layers. The conic formulation of this strength criterion as
well as of his support function are given in Appendix B.
Contrary to the simple case of the homogeneous von Mises
shell, the generalized strength criterion G is not isotropic
(not even orthotropic) and does not possess the symme-
tries with respect to the origin (the local strength criterion
being non-symmetric with respect to the origin) or with
respect to the pure bending/membrane sollicitations (the
shell being non-symmetric with respect to its mid-plane).

4.4.2. Projections on different planes

To investigate the accuracy of the proposed lower and
upper bound approximations for the von Mises shell, the
corresponding strength criteria have been represented in
the (N11,M11) plane (Figure 4a) and in the (N22,M11)
plane (Figure 4b) for different values of the discretization
parameter n. Uniform discretization for both lower and
upper bound approximations have been chosen. Only even
(resp. odd) values of n have been chosen for the lower
(resp. upper) bound approximations so that approxima-
tions are exact for pure bending sollicitations. One can
observe the increasing quality with n of the approxima-
tion from the inside and from the outside.
As a comparison, approximate criteria obtained with a
Gauss-Legendre quadrature have been represented in Fig-
ure 5. The accuracy of the approximation seems to be
higher for similar values of the discretization parameter n
compared to the previous lower and upper bound approx-
imations. But, it can clearly be seen that this approxi-
mation has no bounding status and that the pure bending
strength, in particular, is never exact.

As regards the bilayered orthotropic Rankine shell, pro-
jections of the different approximate strength criteria on
the (N11,M11) and (N22,M11) planes have been reported
in Figure 6a and 6b for the lower and upper bound approx-
imations and in Figure 7a and 7b for the Gauss-Legendre
approximation. Despite the relative complexity of this ex-
ample, the proposed approximations are of excellent qual-
ity, especially for n ≥ 4 for both the lower and upper
bound approximations. Furthermore, in spite of the lack
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upper bound
lower bound
exact

(a) (N11,M11) plane

upper bound
lower bound
exact

(b) (N22,M11) plane

Figure 4: Representation of lower and upper bound approximate
strength criteria for a homogeneous von Mises shell

(a) (N11,M11) plane

Gauss-Legendre
exact

(b) (N22,M11) plane

Figure 5: Representation of approximate strength criteria obtained
with a Gauss-Legendre quadrature for a von Mises shell
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of symmetry, it is also interesting to observe that both ap-
proximations always yield the exact value of the maximum
strength in membrane and bending. On the contrary, this
is not the case for the Gauss-Legendre quadrature.

4.4.3. Maximum approximation errors

In order to quantify more precisely the relative errors
induced by the different approximations, the boundary of
the different yield surfaces have been captured by sampling
the six-dimensional space R6 with 10,000 points. The max-
imum distance between the approximated criteria and the
exact one (identified with either of the two approximations
using n = 100) has then been computed. Results in the
case of the bilayered shell have been represented in Figure
8a for the lower and upper bound approximations (44) and
(50). First, it can be verified that the lower (resp. upper)
bound approximation always induces an approximation of
the exact strength criterion by default (resp. by excess).
Besides, such approximations are of relatively good quality
for n = 4, 5 (roughly ±10% maximum error). The conver-
gence is also relatively fast, since it can be estimated to
decrease proportionally to n−2.
In Figure 8b, the evolution of the maximum relative error
for a Gauss-Legendre quadrature has been represented.
The previous results are also recalled in dashed lines.
It can be observed that the Gauss-Legendre quadrature
strategy always produce by default and by excess errors,
which seem to be approximately of the same order. It
is also interesting to note that these maximum errors are
very close to those produced by the lower and upper bound
strategy. Therefore, it can be concluded that the Gauss-
Legendre strategy does not necessarily yield better esti-
mates than the lower and upper bound approximations.
The latter should, therefore, be preferred, due to their rig-
orous bounding status and equivalent computational cost.

5. Illustrative applications to the yield design of
shell structures

The last part of this paper is devoted to applying the
above described numerical procedure to evaluating the ul-
timate yield strength of various shell structures, ranging
from classical to more complex problems.

5.1. Simply supported spherical cap under uniform pres-
sure

The first example considers the problem of a spherical
cap shell of radius R and thickness t made of a consi-
tutent material obeying the Tresca strength criterion of
uniaxial strength σ0. The shell is subjected to a uniformly
distributed external radial pressure p and is simply sup-
ported on its boundary (see Figure 9). The cap opening
angle is denoted by α and the following non-dimensional
slenderness ratio is introduced k = t/4R. In the following,
estimates for the ultimate pressure will be given in terms
of the non-dimensional pressure p∗ = pR/(σ0t).

upper bound lower bound exact

(a) (N11,M11) plane

upper bound lower bound exact

(b) (N22,M11) plane

Figure 6: Representation of lower and upper bound approximate
strength criteria for the bilayered Rankine shell. The values of n
corresponding to different line styles are the same as those of Figure
4.
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Gauss-Legendre exact

(a) (N11,M11) plane

Gauss-Legendre exact

(b) (N22,M11) plane

Figure 7: Representation of approximate strength criteria obtained
with a Gauss-Legendre quadrature for the bilayered shell. The values
of n corresponding to different line styles are the same as in Figure
5.
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(a) Maximum relative error of lower and upper bound approxi-
mations
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(b) Maximum relative error of Gauss-Legendre approximations
(the corresponding errors for lower and upper bound approxi-
mations are recalled in dashed lines)

Figure 8: Evolution of the maximum relative error of different ap-
proximations with respect to the exact generalized strength criterion
of the bilayered shell for increasing values of the discretization pa-
rameter n. Circles (◦) correspond to maximum by excess error and
squares (�) for maximum by default error.
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Figure 9: Simply supported spherical cap problem and typical mesh

This classical problem has already been considered by var-
ious authors who provided different analytical lower and
upper bound estimates for the ultimate pressure p∗. In
particular, by considering estimates derived by Hodge in
(Hodge, 1963) based on plate and membrane solutions, as
well as different approximate generalized strength criteria,
the following analytical estimates for the ultimate pressure
can be obtained (Save et al., 1997) :

p∗LB = max{p∗2; 0.618p∗1} ≤ p∗ ≤ min{p∗1; 1.25p∗3} = p∗UB
(56)

where :

p∗1 = 2 + 2k sinα

(
ln

1 + sinα

cosα
− sinα

)−1

(57)

p∗2 = max

{
2;

2k

(1 + k)(1− α cotα)

}
(58)

p∗3 =


2k

1− α cotα
if cosα ≥ 1− k

2 (sinα− ϕ cosα− (1− k)(sinα− sinϕ))

sinα− α cosα
if cosα < 1− k

(59)
with cosϕ = cosα/(1− k)

Numerical lower (resp. upper) bound estimates for the
ultimate load p∗ have been computed using the static
lower (resp. kinematic upper) bound finite elements pre-
sented in Section 3, in conjunction with the approximate
lower (resp. upper) bound formulation (44) (resp. (50))
of the generalized strength criterion. Typical meshes
for different values of the opening angle α consisted of
roughly 700-800 triangular facets (Figure 9), while the
discretization parameter n of the shell thickness has been
varied from n = 2 to n = 6. The so-obtained SOCP
problems have been solved using the Mosek software
package (Mosek, December 2014). Typical optimization

times needed to solve such problems ranged from 10s
to less than a minute, for increasing values of n, on a
standard desktop computer.

In Figure 10, lower bound estimates using n = 2, 4, 6
and upper bound estimates using n = 2, 3, 5 have been
reported along with the analytic lower (pLB) and up-
per (pUB) bounds (56) for a shell with a moderate value
(k = 0.1) of the slenderness ratio. First, it can be observed
that the ultimate pressure is estimated with an excellent
accuracy in the regime of high values of the opening angle
(α ≥ 45◦) for all values of n. This can be attributed to the
fact that the solution is close to a membrane state and that
the approximate formulations of the generalized strength
criterion are exact for such states. Secondly, the quality
of the bracketing is improved when increasing the value of
the discretization parameter n. It is to be noted that, even
for a not so refined mesh and moderate values of n, the
quality of the computed estimates is relatively good, the
maximum relative gap between the static approach with
n = 6 and the kinematic approach with n = 5 being less
than 10% for this mesh density. It is to be noted that
these estimates fall inside the domain delimited by the an-
alytic lower and upper bounds. Finally, the poor quality
of the upper bound estimates obtained with n = 2 can be
explained by the fact that the corresponding approximate
generalized strength criterion is not exact for pure bending
states, which deteriorates the quality of the corresponding
estimate. Hence, using a Gauss-Legendre quadrature for
the approximate formulation as suggested in (53) would
lead to similar results.
In Figure 11, lower bound estimates using n = 6 and up-
per bound estimates using n = 5 have been reported along
with the analytic lower (pLB) and upper (pUB) bounds of
(56) for a shell with a small value k = 0.005 of the slen-
derness ratio. It can be observed that the quality of the
estimate is similar, the maximum relative gap between the
two approaches being less than 8%. As an illustration, the
numerical estimates obtained with the Ilysuhin approxi-
mate strength criterion (35) have also been represented.
These bounds have been computed using lower and up-
per bound finite elements and appropriate coefficients have
then been applied to the so-obtained ultimate loads in or-
der to bound the Tresca generalized strength criterion by
Ilyushin approximate surface as discussed in Section 4.2.
The quality of the so-obtained estimates is relatively bad,
with a maximum relative gap of 40%. From a computa-
tional point of view, computing times with Ilyushin surface
took approximately 15s. Finally, it can be noted that the
solution approaches the limit p∗ = 2 for a value of the
opening angle much smaller (α ≈ 15◦) than in the case
k = 0.1 (α ≈ 60◦). One can observe that the lower bound
analytic estimate p∗LB seems to be very close to the exact
solution in this case.
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Figure 10: Ultimate load estimates for the simply supported spheri-
cal cap in the case k = 0.1 for different discretization parameters
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Figure 11: Ultimate load estimates for the simply supported spheri-
cal cap in the case k = 0.005

5.2. Clamped cylindrical shell under vertical distributed
loading

The second example investigates the ultimate load of a
cylindrical shell of radius R, thickness t and length 2L,
clamped at both ends x = 0 and x = 2L. This shell is
subjected to a uniformly distributed vertical loading −fez
and only a quarter of the shell has been modeled by taking
appropriate symmetry boundary conditions into account
(Figure 12). In the following, the thickness to radius ratio
will be kept constant to t/R = 0.01 while the structural
slenderness ratio 2L/R will be varied. The shell constitu-
tive material is assumed to obey the von Mises strength
criterion of uniaxial strength σ0.

symmetry
conditions

clamped
boundary

Figure 12: Clamped cylinder problem and typical mesh

In the limit of high slenderness ratios 2L/R � 1, this
shell problem is expected to be appropriately modeled by
a one-dimensional bending beam. The corresponding ul-
timate load of such a beam model can be computed ex-
actly: the corresponding collapse mechanism consisting
of two rigidly rotating regions separated by three hinges
located at both clamped extremities x = 0, 2L and at
the mid-span x = L. Hence, this ultimate load is given
by q+ = 16M0,beam/(2L)2 where q corresponds to the
equivalent lineic load (i.e. q = 2πRf) while M0,beam =

4t(R2 + t2

12 )σ0 ≈ 4tR2σ0 is the ultimate bending moment
of a beam with a tubular section of radius R and thickness
t. Finally, the ultimate load obtained with the bending
beam model is given by :

f+
beam =

32

π
σ0t

(
R

2L

)2

(60)

Lower and upper bound finite element computations,
using respectively n = 6 and n = 5 for the approximate
von Mises generalized strength criterion, have been
performed on structured meshes with 20 elements along
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Figure 13: Normalized ultimate load estimates for the clamped cylin-
der problem as a function of the slenderness ratio, using present
lower and upper bound approximate formulation of the generalized
strength criterion, Ilysuhin approximate criterion and elastoplastic
(EP) computations.

the half-circumference and elements of length R/4 along
the x direction. The so-obtained lower and upper bound
estimates of the ultimate load f+ have been normalized
with respect to the beam model ultimate load f+

beam

and represented in Figure 13 for varying values of the
structural slenderness ratio 2L/R. As a comparison,
ultimate load estimates obtained with Ilyushin approxi-
mate strength criterion, multiplied by appropriate scaling
factors (see Table 1) to ensure the bounding status of
Ilyushin surface, have been represented. Finally, ultimate
load estimates obtained by elastoplastic shell finite
element computations using Cast3m (Verpeaux et al.,
1988) software have also been reported.

First, it can be observed that elastoplastic computation
estimates fall between the lower bounds of the static ap-
proach and the upper bounds of the kinematic approach,
thus comforting our results. As expected, an evolution of
the ultimate load towards a value close to the beam model
for increasing values of the slenderness ratio can clearly
be observed. For moderate values of 2L/R, the computed
ultimate load is much smaller than the one predicted by
the beam model.
These aspects are further confirmed when inspecting the
collapse mechanisms obtained with the kinematic ap-
proach for different slenderness ratios (Figure 14). In spite
of the infinite shear strength of the shell itself, the struc-
tural collapse mechanism for low values of the slender-
ness ratio is similar to a global shear failure of the beam.
In particular for 2L/R = 5, the circular section of the
cylinder exhibits a collapse mode involving three hinge

(a) Slenderness 2L/R = 5

(b) Slenderness 2L/R = 10

(c) Slenderness 2L/R = 20

(d) Slenderness 2L/R = 30

Figure 14: Collapse mechanism and local dissipation for different
slenderness ratios
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Figure 15: Hyperbolic paraboloid problem and typical mesh

(or yield) lines along the x longitudinal direction (Figure
14a). For high values of the slenderness ratio, a bend-
ing beam-like collapse mechanism involving localized de-
formations near the clamped supports and at mid-span,
separated by rigidly rotating regions, is retrieved, recalling
the three hinges involded in the one dimensional beam col-
lapse mechanism (Figure 14c-14d). Finally, let us mention
that such collapse mechanisms are very similar to those
obtained by the last increments of the elastoplastic com-
putations using Cast3m.
As regards the bounds obtained with Ilyushin surface, the
relative gap is larger (15% in average) than with our ap-
proach (8% in average). By using the same strength cri-
terion for both the static and the kinematic approach, it
is possible to estimate the contribution of the mesh dis-
cretization to this relative gap. It is interesting to note
that the relative gap due to the mesh discretization only
is about 4%, the remainder (4% for our approach, 11% for
Ilyushin surface) being due to the distance between the
lower and upper bound approximate strength criteria.

5.3. Hyperbolic paraboloid shell with orthotropic strength
criterion

This last short example aims at illustrating the capabil-
ity of the proposed approach to deal with more complex lo-
cal strength criteria. A hyperbolic parabolic shell of equa-
tion z = −4hxy/L2 for x, y ∈ [−L/2;L/2] (with L = 10
and h = 2 in the following) is clamped on four square
supports of width c = 0.4 at its four corners, the whole
surface being subjected to a uniformly distributed vertical
load −fez while the shell thickness is t = 0.1 (see Figure
15). The shell constitutive material is supposed to obey
the orthotropic generalized Rankine strength criterion (55)
with eα = cosαex + sinαey and eβ = − sinαex + cosαey
as directions of orthotropy and σ+

0α = σ+
0β = σ−0β = σ0 and

σ−0α = 100σ0 (direction eα being, thus, highly resistant in
compression).

Collapse mechanisms for different values of the maxi-
mum resisting direction angle α have been represented in

Figure 16. First, it is to be observed that, for α = 0◦,
the geometrical reflection symmetry with respect to both
diagonals y = x and y = −x is broken by the orthotropy
of the strength criterion. The collapse mechanism reduces
here to a yield line along y = 0 due to a weakest bending
strength in the ey = eβ direction. One can observe ex-
actly the same for α = 90◦ along x = 0. For α = 45◦ and
α = 135◦ the diagonals symmetry is restored since the
orthotropy directions are aligned with the latter. How-
ever, a slight difference between both mechanisms can be
observed. This is due to the difference between tensile
and compressive strength when the strongest direction is
aligned either with the first diagonal x = y, mainly sol-
licited in compression, or with the second one y = −x,
mainly sollicited in traction. The same differences can be
observed between α = 60◦ and α = 120◦. Finally, all
of these remarks are corroborated by the rather erratic
evolution of the so-computed ultimate load estimates rep-
resented in Figure 17.

17



Figure 16: Collapse mechanisms of the hyperbolic paraboloid shell
for different values of the most resisting direction (represented by the
white segment) : isocontours represent the relative amplitude of the
vertical velocity component Uz .

Figure 17: Evolution of the normalized ultimate load estimate f∗ =

f+/(σ0
t2

4
) as a function of the orthotropy angle α

6. Conclusions and future work

A numerical procedure for performing lower and
upper bound yield design analysis of shells with general
strength criteria has been presented. Using a faceted
discretization of the shell surface, lower and upper bound
plate finite elements are combined to membrane elements
in a simple manner. Apart from the implementation
of lower bound equilibrium and upper bound kinematic
shell finite elements, the main novelty of this paper relies
in the formulation of generalized shell strength criteria
in membrane-bending interaction. Implicit through-the-
thickness formulations are proposed to derive lower and
upper bound approximations of the exact generalized
strength criterion for any local constitutive material.
Such a formulation is particularly suited for a numerical
implementation of the lower and upper bound yield design
shell problems using second-order cone programming.
Different illustrative applications have been considered to
illustrate the potentials of the proposed approach.

From such numerical results, it can be concluded that
the proposed procedure combines the following aspects :

• accuracy : the ultimate load estimates enable to
bound the exact ultimate load with a relatively good
accuracy, which can be controled by mesh refinement
as well as by increasing the discretization parameter
n. Despite the fact that the optimization problem
size scales with n, numerical tests showed that the
computational cost remained reasonable (e.g. for
n = 6, depending on the local strength criterion,
between 2 to 4 times more expensive than when using
Ilyushin approximate surface).

• generality : the proposed approximate formulation
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of the generalized strength criteria combined to
conic programming enables to treat a wide range of
problems with different local strength criteria, pro-
vided they can be formulated using conic constraints
(Rankine, Tresca, von Mises, Drucker-Prager, etc.).
In particular, it can tackle anisotropy as well as
through-the-thickness heterogeneity of the local
constitutive material (Bleyer et al., 2015b). Besides,
although this paper has only considered shells with
infinite shear strength, a finite resistance to shear
can be easily incorporated in the model (see (Bleyer
et al., 2015a; Bleyer and de Buhan, 2014) in the case
of homogeneous plates).

• bounding status : the proposed methodology ensures,
at each of its steps (finite element discretization and
strength criteria approximation), that the bounding
status of the static and kinematic yield design ap-
proaches is preserved2. This particular aspect allows
to obtain reliable estimates of the ultimate load.

Perspectives on the basis of this work are quite numer-
ous. First, such shell finite elements could be used for
shakedown analysis in the case of cyclic loading for pipes,
tanks and vessels. In the case of reinforced concrete shell
structures, the proposed methodology can also be very
easily extended to take into account the presence of re-
inforcing steel bars (Bleyer et al., 2015b). It would also
be interesting to investigate the performance of the pro-
posed method on multilayered structures, in which shear
effects may become particularly important. Finally, the
development of curved shell finite element would certainly
increase the accuracy of the numerical estimates with re-
spect to the mesh size.
When interpreting results from yield design/limit analysis
on slender structures, one should keep in mind that the
influence of geometrical non-linearities is not taken into
account. For such structures, local or global buckling can
occur at a lower load than the ultimate load predicted by
a yield design analysis and will therefore influence the de-
sign of the structure. In some other cases, geometrical
changes can occur slightly before or during collapse and
can possibly reduce the computed ultimate load. Previous
works (Save et al., 1997; Corradi and Panzeri, 2003, 2004;
Raithatha and Duncan, 2009; Bleyer et al., 2015b) have
already attempted to provide a means for assessing the in-
fluence of geometrical changes but this question still need
further investigation in order to be included in applications
on real structures.
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Appendix A. Conic formulation of generalized
strength criteria for shells

This appendix aims at formulating different generalized
strength criteria, as well as their support functions, using
second-order conic constraints.

Appendix A.1. Second-order cone programming

Second-order cone programming (SOCP) is a particular
class of convex programming which consists in the min-
imization/maximization of a linear function, under lin-
ear equality and/or inequality constraints and particular
non-linear constraints, namely second-order cone (SOC)
constraints. A SOCP is, therefore, a convex optimization
problem which can be cast under the following form (Boyd
and Vandenberghe, 2004) :

min
x

cT · x
s.t. Ax = b

x ∈ K1 × . . .Kp
(A.1)

where x, c ∈ Rn, b ∈ Rm, A ∈ Rn×m and each Ki is one
of the following second-order cone of dimension qi (with
p∑
i=1

qi = n) :

• the positive orthant Ki = Rqi+ = {r ∈ Rqi s.t. r ≥ 0}

• the Lorentz cone Ki = Lqi = {(s, r) ∈ R+ ×
Rqi−1 s.t. ‖r‖ ≤ s}

• the rotated Lorentz cone Ki = Lqir = {(s1, s2, r) ∈
R+ × R+ × Rqi−2 s.t. ‖r‖2 ≤ 2s1s2}

Appendix A.2. Pure membrane and bending von Mises
strength criteria

Recalling matrix P introduced in (45) as the Cholesky
factor of Q = PPT , the pure membrane von Mises
strength criterion can be written as :

√
qn =

√
nTQn = ‖PTn‖ ≤ 1 (A.2)

It is, thus, expressed as a SOC constraint on a Lorentz
cone of dimension 4 : (1,PTn) ∈ L4 or, equivalently,
(σ0t,P

TN) ∈ L4.
It follows immediately that the pure bending criterion is

given by (1,PTm) ∈ L4 or, equivalently, (σ0
t2

4 ,P
TM) ∈

L4.
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Appendix A.3. ”Square”,”circle” and ”diamond” interac-
tion criteria

Using the previous results, the ”square” strength crite-
rion (39) is given by :{

(1,PTn) ∈ L4

(1,PTm) ∈ L4
(A.3)

The ”circle” strength criterion (38) can be rewritten as
: √

nTQn + mTQm ≤ 1

⇔
∥∥∥∥[PT 0

0 PT

]{
n
m

}∥∥∥∥ ≤ 1⇔ ‖P̂TΣ‖ ≤ 1
(A.4)

where Σ = 〈n m〉T . Hence, the ”circle” strength criterion
is expressed as a SOC constraint on a Lorentz cone of
dimension 7 : (1, P̂TΣ) ∈ L7.

The ”diamond” strength criterion (40) is equivalent to :

‖PTn‖+ ‖PTm‖ ≤ 1⇔


s1 + s2 ≤ 1

‖PTn‖ ≤ s1

‖PTm‖ ≤ s2

(A.5)

Hence, the ”diamond” strength criterion is expressed as
a two SOC constraints on Lorentz cones of dimension 4,
(s1,P

Tn) ∈ L4 and (s2,P
Tm) ∈ L4, plus one linear in-

equality constraint s1 + s2 ≤ 1.

Appendix A.4. ”Square”,”circle” and ”diamond” support
functions

First, let us recall the following classical results of convex
analysis (Boyd and Vandenberghe, 2004) :

• the support function of a convex set defined by E =
{x s.t. ‖Ax‖ ≤ 1} (equation of an ellipsoid) is given
by :

πE(y) = sup
x∈E
{xT · y} = ‖A−Ty‖ (A.6)

• the support function of the convex hull CH(A;B) of
two convex sets A and B (with support functions πA
and πB) is given by :

πCH(A;B)(y) = sup{πA(y);πB(y)} (A.7)

• the support function of the intersection A ∩B of two
convex sets A and B (with support functions πA and
πB) is given by :

πA∩B(y) = inf
z1,z2

πA(z1) + πB(z2)

s.t. y = z1 + z2

(A.8)

The support function of the ”square” strength criterion
follows directly from the absence of interaction between
membrane and bending :

πsquare(ε,χ) = sup
‖PTn‖ ≤ 1
‖PTm‖ ≤ 1

{NT · ε + MT · χ}

= sup
‖PT n‖≤1

{σ0t(n
T · ε)}

+ sup
‖PT m‖≤1

{σ0
t2

4 (mT · χ)}

= σ0t‖Cε‖+ σ0
t2

4 ‖Cχ‖ (A.9)

with C = P−1, ε = 〈εxx εyy 2εxy〉T and χ =
〈χxx χyy 2χxy〉T .
In order to obtain a conic formulation of the corresponding
kinematic approach, the expression of the support function
has to be reformulated using conic constraints. In the case
of the ”square” criterion, this reformulation reads as :

πsquare(ε,χ) = min
s1,s2

s1 + s2

s.t. σ0t‖Cε‖ ≤ s1

σ0
t2

4 ‖Cχ‖ ≤ s2

(A.10)

The support function of the ”circle” strength criterion
follows from expression (A.4) and result (A.6) :

πcircle(ε,χ) =

∥∥∥∥[σ0tC 0

0 σ0
t2

4 C

]{
ε
χ

}∥∥∥∥ = ‖Ĉd‖ (A.11)

where d = 〈ε χ〉T . Its conic reformulation is immediate :

πcircle(ε,χ) = min
s

s

s.t. ‖Ĉd‖ ≤ s
(A.12)

Finally, as regards the ”diamond” strength criterion, one
has to recall that it is the convex hull of the pure mem-
brane strength criterion : (n,m) such that ‖PTn‖ ≤ 1 and
m = 0 and the pure bending strength criterion : (n,m)
such that n = 0 and ‖PTm‖ ≤ 1. Using result (A.7), its
support function is given by :

πdiamond(ε,χ) = max
{
σ0t‖CT ε‖;σ0

t2

4 ‖Cχ‖
}

= min
s

s

s.t. σ0t‖Cε‖ ≤ s
σ0

t2

4 ‖Cχ‖ ≤ s
(A.13)

Appendix A.5. Ilyushin and Prager strength criteria and
support functions

Let us now consider the Ilysuhin (35) and the Prager
(”sandwich”) (37) strength criteria written as :

√
ΣT Q̂αΣ ≤ 1√
ΣT Q̂−αΣ ≤ 1

where Q̂α =

[
Q αQ
αQ Q

]
(A.14)
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where the Ilyushin strength criterion is obtained for α =
1

2
√

3
and the Prager ”sandwich” criterion for α = 1. The

Cholesky factorization of matrix Q̂α = P̂αP̂T
α is given by

:

P̂α =

[
P 0

αP
√

1− α2P

]
(A.15)

The conic formulation of these criteria is, therefore, given
by : {

‖P̂T
αΣ‖ ≤ 1

‖P̂T
−αΣ‖ ≤ 1

(A.16)

corresponding to the intersection of two Lorentz cone
constraints of dimension 7 (this dimension reduces to 4
for the Prager criterion with α = 1 due to the null second
column of P̂α).

Now, using result (A.8), the support function of such
criteria is given by :

πIlyushin/Prager(ε,χ) = inf
d1,d2

‖Ĉαd1‖+ ‖Ĉ−αd2‖

s.t. d = d1 + d2

= inf
d1,d2,s1,s2

s1 + s2

s.t. d = d1 + d2

‖Ĉαd1‖ ≤ s1

‖Ĉ−αd2‖ ≤ s2

(A.17)

where Ĉα = P̂−1
α

[
σ0tI3 0

0 σ0
t2

4 I3

]
=[

σ0tC 0

−σ0t
α√

1−α2
C σ0

t2

4
1√

1−α2
C

]
.

Appendix A.6. Hodge strength criterion and support
function

Hodge strength criterion (36) can be rewritten as follows
:

‖PTm‖+ ‖PTn‖2 ≤ 1⇔


s1 + s2 ≤ 1

‖PTm‖ ≤ s1

‖PTn‖2 ≤ s2

⇔


s1 + s2 ≤ 1

‖PTm‖ ≤ s1

‖PTn‖2 ≤ 2s2s3

s3 = 1/2

(A.18)

Hence, Hodge strength criterion can be expressed as a
two SOC constraints on a Lorentz cone of dimension
4, (s1,P

Tm) ∈ L4, and on a rotated Lorentz cone of
dimension 5, (s2, s3,P

Tn) ∈ L5
r, plus one linear inequality

constraint s1+s2 ≤ 1 and one equality constraint s3 = 1/2.

After some computations, it is possible to show that the
support function of the Hodge strength criterion can be

expressed as :

πHodge(ε,χ) = min
s1,s2

s1 + s2/2

s.t. (σ0t)
2‖Cε‖2 ≤ 2s1s2

σ0
t2

4 ‖Cχ‖ ≤ s1

=

σ0
t2

4 ‖Cχ‖+ σ0
‖Cε‖2

‖Cχ‖
if ‖Cε‖ ≤ t

2‖Cχ‖

σ0t‖Cε‖ otherwise

(A.19)

Appendix B. Conic formulation of the general-
ized Rankine strength criterion

We recall expression (55) :

σ ∈ G ⇐⇒


(σ−0α + σαα)(σ−0β + σββ) ≥ σ2

αβ

(σ+
0α − σαα)(σ+

0β − σββ) ≥ σ2
αβ

−σ−0α ≤ σαα ≤ σ
+
0α

−σ−0β ≤ σββ ≤ σ
+
0β

(B.1)

Introducing the following auxiliary variables :

r+ =


σ+

0α

σ+
0β

0

−
1 0 0

0 1 0

0 0
√

2

σαασββ
σαβ

 = σ+
0 −Aσ

r− =

σ
−
0α

σ−0α
0

+

1 0 0
0 1 0

0 0
√

2

σαασββ
σαβ

 = σ−0 + Aσ

expression (B.1) is therefore equivalent to :{
(r±3 )2 ≤ 2r±1 r±2
r±1 , r

±
2 ≥ 0

⇔ r+, r− ∈ L3
q (B.2)

This local strength criterion is, therefore, expressed using
two rotated Lorentz cone constraints of dimension 3.

Its support function can be readily computed as :

π(d) = sup
σ∈G

σT · d = min
d±

(σ+
0 )T · d+ + (σ−0 )T · d−

s.t. d = A(d+ − d−)
d+,d− ∈ L3

q
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