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Abstract

We formulate a family of direct utility functions for the consumption of

a differentiated good. This family is based on a generalization of the Shan-

non entropy. It includes dual representations of all additive random utility

discrete choice models, as well as models in which goods are complements.

Demand models for market shares can be estimated by plain regression, en-

abling the use of instrumental variables. Models for microdata can be esti-

mated by maximum likelihood.
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1 Introduction

We construct a family of direct utility functions that describe consumer demand

for one unit of a differentiated good. A consumer with income y and consumption

q = (q1, ..., qJ) of the differentiated good has utility u (q, y) = τy + q · v +
Ω (q), where τ > 0 and v = τ (a− p) is quality minus price in utility units.

The function Ω belongs to a family of generalized entropies, defined through a

number of conditions as a generalization of the Shannon (1948) entropy; it is a

concave function that expresses taste for variety while leading to a tractable link

between consumption and utility. We find a new general structure for generalized

entropy, which enables us to provide rules for constructing generalized entropies

and a range of specific examples showing that generalized entropy may be used to

generate rich patterns of substitution and complementarity.

We share the idea of using convex analysis and duality in a discrete choice

context with other recent contributions. Salanié and Galichon (2015) consider

matching models with transferable utility and arrive at a generalization of entropy

that belongs to our family of generalized entropies. Chiong et al. (2015) apply

similar ideas to dynamic discrete choice models. Melo (2012) uses duality to

show existence of a representative agent for a dynamic discrete choice model on

a network. The essential contribution of this paper is the finding that generalized

entropy has a certain structure that allows us to access a new and rich universe of

tractable demand models that has not been explored before.

Models specified in terms of generalized entropy may be estimated using sim-

ple regression with instruments that are available within the model. In this respect,

our paper is closely related to Berry (1994) and Berry and Haile (2014) who in-

vert the market shares of an additive random utility model (ARUM) to find cor-

responding utility levels. Given that this transformation is known, Berry (1994)

shows how model parameters may be estimated using standard instrumental vari-

able regression techniques with inverted markets shares as dependent variables.

Inversion of market shares may be carried out with an explicit formula for the

case of the multinomial and the nested logit models. However, these models imply

substitution patterns that may be implausible in many applications (Berry et al.,

1995). More flexible substitutions patterns may be allowed using random pa-

rameter models, but then numerical methods are necessary to carry out the Berry

inversion, which leads to numerical and computational issues in combination with

the random parameters (Knittel and Metaxoglou, 2014).

In this paper we formulate models, not in the space of indirect utilities of dis-

crete choice models, but in the dual space of consumption shares. This makes

the inverted market shares directly available and numerical methods are unnec-

essary for computing them. Consistency with maximization of a well-behaved

utility function is automatically ensured. We provide a range of examples leading
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to substitution and complementarity patterns that go well beyond the nested logit

example. These may potentially be used as alternatives to the random coefficient

logit in what has become known as Berry, Levinsohn, Pakes or just BLP models

(Berry et al., 1995).

Our generalized entropy models can also be applied to microdata of discrete

choices, allowing individual level information to be taken into account. In this

case, numerical methods are required to compute the likelihood. The likelihood

can be computed via a fixed point iteration that we show is guaranteed to converge

in a range of circumstances. Then models can be estimated using maximum likeli-

hood. Random parameters are not required to allow for more complex substitution

patterns than plain or nested logit.

The family of models based on generalized entropy is large: we show that it

comprises models corresponding to any ARUM. For the multinomial logit model,

the corresponding generalized entropy is the Shannon entropy (Anderson et al.,

1988). The generalized entropy family is in fact larger than the family of ARUM,

we show that generalized entropies exist that lead to demands that are not consis-

tent with any ARUM. Importantly, generalized entropy models exist where goods

may be complements rather than substitutes, whereas goods are always substitutes

in ARUM.

McFadden (1978) developed a family of discrete choice models based on the

form of the expected maximum utility function when random utilities follow a

multivariate extreme value (MEV) distribution. This family includes the multino-

mial and the nested logit models as the simplest special cases. McFadden (1978)

applied a nesting device to utilities to create a range of instances of MEV mod-

els; in the present paper we create instances of generalized entropy models by

applying a nesting device to market shares.

Fudenberg et al. (2014) analyzes utility of the same form as used in this paper,

but where the entropy term Ω (q) is separable as a sum of terms fj (qj). It is crucial

for the results in this paper not to require such separability. Mattsson and Weibull

(2002) have a similar setup, but where Ω (q) is interpreted as an implementation

cost and where axioms are imposed that essentially reduce Ω (q) to the Shannon

entropy such that demand arises that is consistent with the logit model. This paper

uses generalized entropy to describe substitution and complementarity patterns

that go well beyond this.

The budget set for the consumer in this paper incorporates a quantity con-

straint and is hence not linear in income and prices. This fits into the framework

of Fosgerau and McFadden (2012) who develop a micro-economic theory of con-

sumer demand under general budgets and where utility is perturbed by a linear

term such as q · v.

Section 2 introduces generalized entropy and uses it to define and solve a class

of direct utility models for market shares. A range of results and accompanying
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examples are presented that allows members of this class to be constructed. Sec-

tion 3 shows how utility parameters in generalized entropy models may be recov-

ered from market level data using standard regression techniques. Section 4 re-

lates generalized entropy to discrete choice models and shows that all ARUM are

represented by generalized entropy via duality. Section 4.1 presents a fixed point

iteration that converges to the probability vector associated with utility levels v in

a discrete choice setting and applies this in an example of maximum likelihood

estimation using microdata of discrete choices. Section 5 concludes. Proofs are

in the appendix.

2 Direct utility models for market shares

2.1 Notational conventions

Vectors are denoted simply as q = (q1, ..., qJ). A univariate function applied to

a vector is understood as coordinate-wise application of the function, e.g., eq =
(eq1 , ..., eqJ ). Consequently, if a is a real number then a+q = (a+ q1, ..., a+ qJ).

The multivariate function S : RJ → RJ is composed of univariate functions

with superscripts (j): S (q) =
(
S(1) (q) , ..., S(J) (q)

)
. Subscripts denote partial

derivatives, e.g. Gj (v) = ∂G(v)
∂vj

. The gradient with respect to a vector v is ∇v;

e.g., for v = (v1, ..., vJ), ∇vG (v) =
(
∂G(v)
∂v1

, ..., ∂G(v)
∂vJ

)
. The Jacobian is denoted

J with, for example,

JlnS (q) =

 ∂ lnS(1)

∂q1
... ∂ lnS(1)

∂qJ

... ... ...
∂ lnS(J)

∂q1
... ∂ lnS(J)

∂qJ

 .

A dot indicates an inner product or products of vectors and matrixes. The unit

simplex in RJ is ∆. A subset g ⊆ {1, ..., J} is called a nest and we use the

notation qg =
∑
j∈g

qj as shorthand for the sum of q over a nest g.

2.2 Consumer demand

Consider a consumer with income y facing a price vector p for J varieties of a

differentiated good and a numeraire good with price 1. The consumer maximizes

utility τz + τq · a+ Ω (q), where τ > 0, q is the vector of quantities of the differ-

entiated good, and z is the quantity of the numeraire good. The consumer has a

budget constraint y ≥ z+q ·p. Importantly, the consumer also has a quantity con-

straint
∑

j qj = 1, which normalizes demand for the differentiated good. Income
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is sufficiently large, y > maxj {pj}, that consumption of the numeraire good is

always positive. The budget constraint is always binding and substituting it into

utility leads to

u (q, y) = τy + q · v + Ω (q) , (1)

where v = τ (a− p).

We begin by giving an abstract formulation of Ω; specific examples will be

provided afterwards. Generalized entropy is a function Ω : [0,∞)J → R∪{−∞}
given by

Ω (q) =

{
−q · lnS (q) , q ∈ ∆
−∞, q /∈ ∆

, (2)

where the function S: [0,∞)J → [0,∞)J is a flexible generator, defined next.

Note that the domain of generalized entropy embodies the constraint that demands

qj sum to 1.1

A function S is a flexible generator if it satisfies the following four conditions.

Condition 1 S is continuous, and homogenous of degree 1.

Condition 2 Ω is concave.

Condition 3 S is differentiable at any q ∈ relint (∆) with

J∑
j=1

qj
∂ lnS(j) (q)

∂qk
= κ, k ∈ {1, ..., J} ,

where κ > 0.

Condition 4 S is globally invertible.

In order to build intuition, let us consider what happens if the components S(j)

of a flexible generator are identical and, as in Fudenberg et al. (2014), each S(j)

depends only on qj . Then Condition 3, which may be expressed as q · JlnS (q) =

κ (1, ..., 1), reduces to
∂ lnS(j)(qj)

∂qj
= κ/qj , which implies that S(j) (qj) = cqj , for

some c > 0. The function S (q) = cq satisfies Conditions 1-4 and the correspond-

ing generalized entropy Ω (q) = −q · ln q − ln c is just the Shannon entropy up to

a constant. Maximizing utility (1) with this entropy under the quantity constraint

1We will show (in Theorem 4) that the convex conjugate of the ARUM surplus function has

this form.
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∑
j qj = 1 leads to logit demand (Anderson et al., 1988)

q (v) =

(
ev1∑J
j=1 e

vj
, ...,

evJ∑J
j=1 e

vj

)
.

In general, each S(j) depends on the whole vector q, which complicates the deriva-

tion of an expression for the demand. Here Condition 3 plays a key role, ensuring

that −∂Ω (q) /∂qk = lnS(k) (q) + κ. This leads to a tractable and familiar form

for demand as shown in the next theorem.

Theorem 1 Let Ω be a generalized entropy as given in (2). Maximization of utility

u (q, y) = τy + q · v + Ω (q) leads to a demand system with interior solution

q (v) =

(
H(1) (ev)∑J
j=1H

(j) (ev)
, ...,

H(J) (ev)∑J
j=1H

(j) (ev)

)
, (3)

where H = S−1.

Demand q corresponds to v in the expression (3) if and only if v and q are

related through the flexible generator S by v = lnS (q) + c for some c ∈ R.

As we have seen, the form (3) of demand generalizes the logit demand. We

shall establish in Section 4 that for any ARUM there exists a generalized entropy

that leads to the same demand. We shall also show in Theorem 2 that generalized

entropies exist that are not consistent with ARUM demand.

The second part of Theorem 1 establishes that utility can be computed up to a

constant directly from demand, given a flexible generator S. This result is used in

Section 3, which discusses estimation of these models via regression.

Throughout the paper, we denote the inverse of a flexible generator S by H ≡
S−1. The formulation of generalized entropy does not rule out corner solutions in

general. Whether zero demands can arise depends on the specific formulation of

generalized entropy.

We end this section by a proposition, proved in Fosgerau and McFadden

(2012)2, showing that each demand qj is weakly increasing as a function of the

corresponding vj . More generally, it establishes a cyclical monotonicity condition

(Rockafellar, 1970, chap. 24) which guarantees that demand is contained in the

subdifferential of a convex function.

Proposition 1 (Cyclical monotonicity) If
{
vk
}K+1

1
, K ≥ 1 is a finite sequence

2We have not been able to find an earlier statement of this result.
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of vectors with vK+1 = v1, then

K∑
k=1

(
vk+1 − vk

)
· q
(
vk
)
≤ 0. (4)

Each demand function qj (v) is weakly increasing in vj, j = 1, ..., J .

Having thus established that the demand described in Theorem 1 does indeed

make sense, we proceed to construct instances of generalized entropy for applica-

tions.

2.3 Construction of generalized entropies

We have already identified one flexible generator, namely the identity S (q) = q.
The following subsections provide ways to generate many more flexible genera-

tors. An obstacle that we will face is to establish invertibility of candidate flexi-

ble generators. To overcome this, we have the following lemma, adapted from a

global inversion theorem for homogeneous nonlinear maps.

Lemma 1 (Ruzhansky and Sugimoto 2014) Let J ≥ 3 and let S: (0,∞)J →
(0,∞)J be continuously differentiable, linearly homogenous with a Jacobian de-

terminant that never vanishes and with infq∈∆ ‖S (q)‖ > 0. Then S is invertible.

In the examples below we will see ways to construct functions that satisfy

Conditions 1-3. In order for these functions to be flexible generators, it then re-

mains to ensure that they are invertible. Building on Lemma 1, the next lemma

establishes conditions under which the weighted geometric average of such func-

tions, where just one of them must itself be a flexible generator, leads to a new

flexible generator.

Lemma 2 (Averaging) Let T1, ..., TK : (0,∞)J → (0,∞)J satisfy Conditions

1-3, where the Jacobian of each lnTk is symmetric and positive semidefinite and

positive definite for at least one k. If T
(j)
k (q) ≥ qj for each k and j and α1, ..., αK

are positive numbers that sum to 1, then S: (0,∞)J → (0,∞)J given by

S =
K∏
k=1

Tαkk

is a flexible generator.

As a consequence, a mapping created by averaging the identity T1 (q) = q with

some T2 that satisfies the conditions of the lemma except positive definiteness is

always invertible and hence it is a flexible generator.
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Figure 1: Nesting example with 9 goods and 7 nests.

Proposition 2 presents a general construction of flexible generators through

a nesting operation. A nest g is a set of goods for which a term q
µg
g enters the

entropy component of utility, where µg ∈ ]0, 1] is a nesting parameter. The closer

µg is to 1, the more the goods in nest g act in the utility as one single good and

they become closer to being perfect substitutes. The division of alternatives into

nests is illustrated in Figure 1. As the figure shows, one alternative may belong

in several nests, and nests may or may not be subsets of other nests. Proposition

2 requires that the nesting parameters sum to 1, summed across the nests that

contain any given of the J goods.3

Proposition 2 (General nesting) Let G ⊆ 2{1,...,J} be a finite set of nests with

associated nesting parameters µg, where
∑
{g∈G|j∈g} µg = 1 for all j and µg > 0

3In the example this may achieved by letting µ1 = µ3 = µ6 = µ > 0 and µ2 = µ4 = µ5 =
µ7 = 1− µ > 0.
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for all g ∈ G. Let S =
(
S(1), ..., S(J)

)
be given by

S(j) (q) =
∏

{g∈G|j∈g}

q
µg
g . (5)

Then S satisfies Conditions 1-3, the Jacobian of lnS is symmetric and positive

semidefinite, and for each j, S(j) (q) ≥ qj . If the Jacobian of lnS is positive

definite, then S has an inverse and S is a flexible generator.

The following examples illustrate the application of Proposition 2 to construct

a flexible generator.

Example 1 Consider J ≥ 3 with all possible nests with 1 or 2 alternatives as

elements, e.g. for J = 3:

G = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}} .

Each alternative belongs to J nests and we let µg = 1/J . Define in accordance

with (5) the function S by

S(j) (q) = q
1
J
j

∏
i 6=j

(qi + qj)
1
J .

By Proposition 2 this is a flexible generator. The demand solves S (q) = ev−c for

some c ∈ R.

The next example shows that Proposition 2 leads to the nested logit model as

a special case.

Example 2 Partition the set of alternatives {1, ..., J} into nests g ∈ G and denote

by gj the nest that contains alternative j. Let

S(j) (q) = q
µgj
j q

1−µgj
gj , j ∈ gj, (6)

where µgj ∈]0, 1] are parameters. Then S is a flexible generator by Proposition 2.

It is straightforward to verify that the equation S (q̃) = ev has solution

q̃j = e
vj
µgj

∑
i∈gj

e
vi
µgj

µgj−1

.
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Normalizing the sum of demands to 1 leads to

qj =
q̃j∑
g∈G q̃g

=
e
vj
µgj∑

i∈gj e
vi
µgj

e
µgj ln

(∑
i∈gj

e

vi
µgj

)

∑
g∈G e

µg ln

(∑
i∈g e

vi
µg

) ,

which is the nested logit model (McFadden, 1978).4

We shall now use the general nesting result of Proposition 2 to create a cross-

nested model, which generalizes the nested logit model. Say that a set of products

can be naturally grouped according to two criteria, where one grouping is not a

subdivision of the other. For example, automobiles may be grouped according

to brand or according to body type. We shall create a structure that is similar to

the nested logit model, but which, unlike the nested logit model, allows for non-

nested groupings.5 In this example, we also include an outside good, with index

zero.

Example 3 Let µ0, µ1, µ2 > 0, µ0 +µ1 +µ2 = 1. Let σc (j) be the set of products

that are grouped together with product j on criteria c = 1, 2. Denote as before

qσc(j) =
∑

i∈σc(j) qi and define S by

S(j) (q) =

{
q0, j = 0
q
µ0
j q

µ1
σ1(j)q

µ2
σ2(j), j > 0.

(7)

Then it follows directly from Proposition 2 that S is a flexible generator. The

cross-nesting model is applied in Section 3.1.

The next proposition provides a case that goes beyond averaging of simple

nesting flexible generators and where the inversion of market shares can be carried

out to yield a closed form expression for demand.

Proposition 3 (Invertible nesting) Let S be given by (5), where the number of

nests is equal to the number of alternatives. Let W = diag
(
µg1 , .., µgJ

)
be a

diagonal matrix of positive nesting parameters and let MJ×J =
{

1{j∈g}
}

be an

incidence matrix, where rows correspond to alternatives and columns correspond

4Berry (1994) noticed the explicit inversion of the nested logit demand and used inversion

of market shares to estimate utility parameters using standard regression techniques. Verboven

(1996) used the same inversion when deriving nested logit demand for a representative consumer.
5With only the nested logit model available, researchers have been forced to choose a hierarchy

of criteria, for example first grouping cars by make and then by body type within each make. With

cross-nesting, it is not necessary to fix such hierarchy.
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to nests. Suppose that M is invertible. Then S has an inverse and S is a flexible

generator. Moreover, unnormalized demand satisfies

v = lnS (q̃)⇔ q̃ =
(
M>)−1

exp
(
W−1M−1v

)
.

The next example illustrates the application of Proposition 3.

Example 4 Consider J ≥ 3 and define nests from the symmetric incidence matrix

M with entries Mij = 1{i 6=j}. Then each alternative is in J − 1 nests and we may

associate weights µg = 1/ (J − 1) with each nest. The inverse of the incidence

matrix has entries (M−1)ij = 1
J−1
− 1{i=j}. Solving lnS (q̃) = v leads to q̃ =

M−1 exp [(J − 1)M−1v],or equivalently

q̃i =

J∑
j=1

(
1

J − 1
− 1{i=j}

)
exp

(
J∑
k=1

(
1− (J − 1) 1{k=j}

)
vk

)

=
J∑
j=1

(
1

J − 1
− 1{i=j}

)
exp

(
J∑
k=1

vk

)
e−(J−1)vj

= exp

(
J∑
k=1

vk

)(
1

J − 1

J∑
j=1

e−(J−1)vj − e−(J−1)vi

)
.

Normalized demand is then

qi =

∑J
j=1 e

−(J−1)vj − (J − 1) e−(J−1)vi∑J
j=1 e

−(J−1)vj
.

The model in the previous example looks similar to the multinomial logit but

is different in important ways. First, it does not have the independence from

irrelevant alternatives property. Second, zero demands may arise.6 The above

expression for demand leads to non-negative demands only for values of v within

some set. A way to ensure that demands are strictly positive is to average with a

flexible generator such as the simple identity, since then ln qj must all be finite.

Third, the demand from the invertible nesting model in the example is not

consistent with any ARUM. ARUM demand has the restrictive feature that the

mixed partial derivatives of qj alternate in sign (McFadden, 1981). This feature is

not exhibited by the demand generated in this example, since ∂q1
∂v2

< 0, ∂2q1
∂v2∂v3

< 0.7

Thus, we have established the following theorem.

6Zero demands may also arise in an ARUM where the error terms have bounded support.
7Note that ∂q1

∂v2
∼ − (J − 1)2 e−(J−1)(v1+v2) < 0 and ∂2q1

∂v2∂v3
∼

−2 (J − 1)3 e−(J−1)(v1+v2+v3) < 0.
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Theorem 2 Some generalized entropies lead to demand systems that cannot be

rationalized by any ARUM.

In Section 4 we establish that all ARUM have a generalized entropy as coun-

terpart that leads to the same demand. Thus the class of generalized entropies is

strictly larger than the class of ARUM models.

The signs of the mixed partial derivatives of a quantity with respect to the

prices of other goods vary in the same way also for CES demand under the stan-

dard linear budget constraint when CES utility is u (x) =
∑J

j=1 αjx
γ
j , αj > 0, γ ∈

(0, 1). It is thus possible for a well-behaved utility function that the signs of the

mixed partial derivatives of qj are not consistent with those predicated by ARUM.

Consider now a pair Ω, S of generalized entropy and flexible generator. If A
is a J × J permutation matrix, then q → Ω (Aq) is also a generalized entropy,

since application of a permutation matrix to q just amounts to a reordering of the

dimensions of q. The convex hull of the set of J×J permutation matrixes is the set

of J×J doubly stochastic matrixes, i.e. matrixes with non-negative elements that

sum to 1 across rows and columns (Birkhoff, 1946; Mirsky, 1958) The following

proposition shows more generally how a flexible generator can be transformed

into a new flexible generator by a location shift and a matrix with non-negative

entries that sum to 1 across columns.

Proposition 4 (Transformation) Let T be a flexible generator, m ∈ RJ , and let

A = {aij} ∈ RJ × RJ be invertible with aij ≥ 0 and
∑
i

aij = 1. Then

S : q → exp
(
A> [ln (T (Aq))] +m

)
(8)

is a flexible generator.

We shall illustrate Proposition 4 with a flexible generator that leads to demand

where goods may be complements in the sense that the demand for one good

increases as the utility component vj of another good increases.

Example 5 Let J = 3 and define

A =

 .4 .6 0
.6 .4 0
0 0 1

 .

Compute demand according to Proposition 4 with m = 0 to find that

q̃ = A−1
(

exp
[(
A>
)−1

v
])

=

 3e3v1−2v2 − 2e3v2−2v1

3e3v2−2v1 − 2e3v1−2v2

ev3

 ,
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which leads to q3 = ev3
e3v2−2v1+e3v1−2v2+ev3

. Then
∂q3
∂v1

> 0 iff v2 − v1 >
1
5

ln 3
2
.

Goods are always substitutes in an ARUM. Complementarity is, however, im-

portant for describing situations where some goods tend to be bought together,

for example taco chips and salsa. The example above establishes that generalized

entropy models are able to allow goods to be complements. We state this insight

as a theorem and note that this is also another example of a generalized entropy

model that is not consistent with any ARUM.

Theorem 3 Some generalized entropies allow goods to be complements.

The last proposition in this section presents a nesting device that can be used

to combine flexible generators into new flexible generators.

Proposition 5 (Nesting) Let T1, T2 be flexible generators with T1 : RJ1 → RJ1
and T2 : RJ2 → RJ2 . Then S : RJ1+J2−1 → RJ1+J2−1 defined for q1 ∈ RJ1 and

q2 ∈ RJ2−1by

S(j)
(
q1, q2

)
=

{
T

(j)
1

(
q1

1·q1

)
T

(1)
2 (1 · q1, q2) , j ≤ J1

T
(j−J1)
2 (1 · q1, q2) , J1 < j ≤ J1 + J2 − 1

(9)

is a flexible generator with inverse given by H
(
ev

1
, ev

2
)

=
(
sT−1

1

(
ev

1
)
, q2
)

,

where s is given by ((1 · q1) s, q2) = T−1
2

(
(1 · q1) , ev

2
)

.

Propositions 2-5 allow a wide range of flexible generators to be constructed for

applications. Through averaging and nesting operations it is possible to combine

patterns of substitution and complementarity in a single model.

3 Estimation of generalized entropy models

In this section we consider the estimation of generalized entropy models from

market share data. Later, in Section 4.1, we consider estimation based on micro

data of discrete choices.

Flexible generators may be used to estimate market share models in a way

similar to Berry (1994). Berry starts from the perspective of a discrete choice

model and inverts market shares to determine utility levels (up to a constant) as-

sociated with a set of products in a number of markets. These utility levels form

the basis for a regression where instrumental variable techniques may be used to

deal with endogeneity, notably occurring if there are unobserved quality attributes

that are correlated with prices. Here we shall exploit Theorem 1, which delivers
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utility levels (up to a constant) as a flexible generator applied to a vector of mar-

ket shares. Models specified in terms of flexible generators thus circumvent the

need to invert market shares numerically, while offering the opportunity to use

functional forms that generalize the nested logit model.

Let us consider a market with J products and an outside good. The market

share qj of product j depends only on utility levels v = (v1, ..., vJ), where vj =
zj · β + ξj . The ξj is an unobserved demand characteristic of product j, which is

mean independent of z and independent across markets, zj is a vector of variables

and β is a vector of parameters to be estimated. The utility of the outside good is

normalized as v0 = 0. Assume further that demand given v is (3), where H is the

inverse of a flexible generator S. Then, by Theorem 1, we have lnS (q) = v + c,
where c ∈ R, or equivalently

lnS(j) (q)− lnS(0) (q) = zj · β + ξj. (10)

Given a specific form for S, (10) may be estimated using linear regression

techniques. Given suitable instruments, it is possible to allow for endogeneity

of some of the variables in zj . Here we shall focus on the estimation of the pa-

rameters in lnS(j). We shall provide two examples: the first has a cross-nested

structure, the second has an ordered structure.

3.1 A cross-nested model for market shares

We consider the cross-nesting example 3. Cross-nesting is appropriate if there are

several dimensions along which products may be similar and closer substitutes for

each other. We have mentioned the example of automobiles.

Insert (7) into (10), rearrange slightly and reparametrize using β̃ = β
µ0
, µ̃1 =

µ1
µ0
, µ̃2 = µ2

µ0
, δ = 1

µ0
, ξ̃j = 1

µ0
ξj to obtain the regression

ln qj = zj · β̃ − µ̃1 ln qσ1(j) − µ̃2 ln qσ2(j) + δ ln q0 + ξ̃j. (11)

This can be estimated treating ln qσ1(j), ln qσ2(j) and ln q0 as endogenous. Potential

instruments include characteristics of products i that share nests with product j as

well as the sum of characteristics over all products.

We have simulated data for this model using a cross-nested structure as shown

in Figure 2. There are three by three alternatives and an outside option. There

is one explanatory variable zj , which is i.i.d. standard normal. Unobserved

characteristics ξ̃j are i.i.d. standard normal multiplied by a factor 1/2. We set

(β , µ1, µ2) = (1, 0.1, 0.4), such that there is both a small and a larger nesting

parameter. True regression parameters become these divided by 1 − µ1 − µ2.

The market shares (q0, q1, ..., q9) corresponding to each draw of (z1, ..., z9) and

14



0

1

4

7

2

5

8 9

6

3

Figure 2: Cross-nested structure of model in the simulation example, with 3 by 3

products and an outside option 0.

Table 1: Parameter estimates in simulation with cross-nested model
β̃ −µ̃1 −µ̃2 δ

True parameters 2 -0.2 -0.8 2

Avg. IV estimates 2.00 -0.20 -0.79 1.99

Std.dev. 0.04 0.05 0.08 0.06

Avg. OLS estimates 1.76 0.10 -0.41 1.59

Std.dev. 0.04 0.04 0.05 0.05

(
ξ̃1, ..., ξ̃9

)
are determined by solving numerically the utility maximization prob-

lem in Theorem 1. We have generated 1000 datasets with 100 observations in

each, where one observation consists of vectors (q0, q1, ..., q9) and (z1, ..., z9).

For each dataset we estimate the regression (11) using instrumental variable

(IV) regression with instruments 1, zj, zσ1(j), zσ2(j),
∑

i zi and squares of these.

These instruments correlate with the endogenous variables and are independent of

the noise term by construction of the data. F-statistics for the excluded instruments

in the first-stage regression range mostly above 100 for ln qσ1(j) and ln qσ2(j). For

ln q0, F-statistics are lower but still with average around 100 and minimum above

30.

Table 1 summarizes the simulation. The average of the IV estimates is close
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to the true values; the corresponding standard deviations may be considered small

considering that each dataset only has 100 observations. The average OLS es-

timates are all more than two standard deviations from their true values, which

indicates that the instruments play a significant role in the IV estimation.

3.2 An ordered model for market shares

The cross-nested model that we estimated in the previous section is among the

simplest of the new models that we can create using flexible generators. Many

more models can be created using Proposition 2. We shall now present an example

where there is an ordering among products such that products that are nearer each

other in the ordering are closer substitutes.

Products 1, ..., J are ordered in sequence. For simplicity, the ordering is cir-

cular such that there are no endpoints. There is an outside option 0 with markets

share q0. Define a flexible generator S by

S(j) (q) =

{
q0, j = 0
q
µ0
j I

µ1
1 (j) I

µ2
2 (j) I

µ3
3 (j) , j > 0,

where I1 (j) = qj−2 + qj−1 + qj, I2 (j) = qj−1 + qj + qj+1, I3 (j) = qj + qj+1 +
qj+2 and parameters µi are positive and sum to 1. This is a flexible generator by

Proposition 2. The structure is illustrated in Figure 3. There is a nest for any

triple of neighboring products and each product is then in three nests. Then each

product has its immediate neighbors as closest substitute and next neighbors as

less close substitutes.

As before we simulated 1000 datasets from this model with 100 observations

in each dataset. Variables zj and ξ̃j are again respectively i.i.d. N (0, 1) and i.i.d.

0.5 ·N (0, 1). We estimate the regression,

ln qj = zj · β̃ − µ̃1 ln

( ∑
j−2≤i≤j

qi

)
− µ̃2 ln

( ∑
j−1≤i≤=j+1

qi

)

−µ̃3 ln

( ∑
j≤i≤j+2

qi

)
+ δ ln q0 + ξ̃j,

using the same transformation of parameters as before. Note that we allow for

three different values of µ̃i, although they all have the same true value µ̃i = µ1/µ0.

As instruments we use 1, zj,
∑

j−2≤i≤j zi,
∑

j−1≤k≤=j+1 zi,
∑

j≤k≤j+2 zi as well

as squares of these variables. F-statistics for the excluded instruments in the first-

stage regression are again very high.
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Figure 3: Ordered structure of model in simulation example products and an out-

side option
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Table 2: Parameter estimates in simulation with ordered model
β̃ −µ̃1 −µ̃2 −µ̃3 δ

True parameters 2.50 -0.50 -0.50 -0.50 2.50

Avg. IV estimates 2.49 -0.49 -0.49 -0.49 2.49

Std.dev. 0.06 0.08 0.08 0.08 0.08

Avg. OLS estimates 2.16 -0.10 -0.36 -0.10 1.91

Std.dev. 0.06 0.05 0.06 0.06 0.06

Estimation results are summarized in Table 2. As before, the average of the IV

estimates is close to the true value. The corresponding standard errors again seem

small, considering that the datasets only have 100 observations. The average OLS

estimates are again all more than two standard deviations from their true values,

indicating again the necessity of accounting for endogeneity in the regression.

4 Discrete choice and generalized entropy

According to Theorem 2 there exists a generalized entropy that leads to a de-

mand system that is not consistent with any ARUM. This section establishes that

the class of demand systems (3) that can be created using generalized entropy

includes all demands systems derived from ARUM. The class of generalized en-

tropy demands is thus strictly larger than the class of ARUM demands.

We consider ARUM with utilities vj+εj, j ∈ {1, ..., J}, where v = (v1, ..., vJ)
is deterministic and ε = (ε1, ..., εJ) is a vector of random utility residuals. The

joint distribution of ε = (ε1, ..., εJ) is absolutely continuous with finite means and

independent of v. Suppose for simplicity that ε is supported on all of RJ . Each

consumer draws a realization of ε and chooses the alternative χ = argmaxj {vj + εj}
with the maximum utility, such that εχ is the residual of the maximum utility al-

ternative. The expected maximum utility is denoted

G (v) = E (vχ + εχ) . (12)

We denote the vector of choice probabilities as P (v) = (P1 (v) , ..., PJ (v)),

where Pj (v) = P (χ = j). It is well known that P (v) = ∇G (v) (McFadden,

1981). All choice probabilities are everywhere positive since ε has full support.

The following lemma collects some properties of G and εχ.

Lemma 3 The functionG is convex and finite everywhere. G has the homogeneity

property that G (v + c) = G (v) + c for any c ∈ R, and G is twice continuously

differentiable. Furthermore, G is given in terms of the expected residual of the
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maximum utility alternative by

G (v) = P (v) · v + E (εχ|v) .

When the function G is convex and finite, it is also continuous and closed.

Define

H (ev) = ∇v

(
eG(v)

)
. (13)

It follows directly from this definition that

∇G (v) =
H (ev)

1 ·H (ev)
. (14)

In the case of the multinomial logit model, G (v) = ln
∑J

j=1 e
vj , H (ev) = ev,

such that (14) is the well known expression for the probabilities of that model.

Lemma 4 is essentially the content of the appendix in Berry (1994). However,

the proof in Berry relies on the existence of an outside option. The present proof

does not require an outside option to be present. The proof of Lemma 4 uses

Lemma 1, which allows it to be quite short.

Lemma 4 The function H defined by H (ev) = ∇v

(
eG(v)

)
is invertible.

The invertibility of H allows us to define

S (q) = H−1 (q) . (15)

Let

G∗ (q) = sup
v
{q · v −G (v)} (16)

be the convex conjugate of G (Rockafellar, 1970, p. 104). Theorem 4 provides an

explicit form for G∗ (q), which underlies the findings that we present below. The

function G∗ (q) is finite only on the unit simplex ∆, the set of probability vectors.

Theorem 4 The convex conjugate of the expected maximum utility G (v) is

G∗ (q) =

{
q · lnS (q) , q ∈ ∆

+∞, q /∈ ∆.

Moreover, G (v) = supq {q · v −G∗ (q)} and E (εχ|v) = −G∗ (q) when q =
∇G (v).

When ε is an i.i.d. extreme value type 1 vector, then G (v) = ln (1 · ev), while

−G∗ (q) = −q · ln q is the Shannon entropy (Shannon, 1948). This shows that
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−G∗ (q) is a generalization of entropy. We shall explore some properties of this

generalization.

The generalization of entropy−G∗ (q) is concave, since G∗ is the convex con-

jugate of a convex function. It has maximum where 0 ∈ ∂G∗ (q) or equivalently

where ∂G∗ (q) = {v|v = (c, ..., c) , c ∈ R}. Hence it is maximal at the probabil-

ity vector corresponding to vectors v that are constant across choice alternatives

in the ARUM and do not affect the discrete choice. This is consistent with the

interpretation of entropy as a measure of the expected surprise associated with a

distribution.

The Shannon entropy is always positive. The generalization of entropy−G∗ (q)
may take any value, but it is necessarily positive when the random components

have zero mean - this is a direct consequence of Jensen’s inequality.

Proposition 6 If E (εj) = 0 for all j in an ARUM, then the corresponding gener-

alized entropy is always non-negative: −G∗ (q) ≥ 0, q ∈ ∆.

We now turn to establishing the relation between ARUM and generalized en-

tropy. The following two lemmas are used to show that a function S derived from

an ARUM is a flexible generator as defined in Section 2.

Lemma 5 The function S = H−1 is continuous and homogenous of degree 1.

Lemma 6 The function S = H−1 satisfies Condition 3.

We note by Lemmas 4, 5 and 6 that an S derived from an ARUM via (15)

is a flexible generator. The ARUM demand (14) is the same as the demand (3)

resulting from maximization of utility (1). Then, by Theorem 4, we have proved

Theorem 5 LetG∗ be the convex conjugate of an ARUM surplus functionG (v) =
Emaxj {vj + εj}. Then−G∗ is a generalized entropy. The ARUM demand equals

the utility maximizing demand in Theorem 1.

Section 2.3 provided an example of a generalized entropy that is not the convex

conjugate of an ARUM surplus function.

4.1 Application to discrete choice data

We shall consider how to apply the generalized entropy model to microdata with

observations of discrete choices. Such data are commonly available and provide

the opportunity for incorporating individual specific information. The associated

cost is that it is not possible to estimate microdata models merely by regression in

the same way as with market level data. This section demonstrates the feasibility

of estimation by maximum likelihood.
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We take as a starting point that individuals choose good j with probability qj
satisfying v = lnS (q) + c for some flexible generator S and with c ∈ R ensuring

that probabilities sum to 1. If the generalized entropy in utility (1) is the convex

conjugate of an ARUM surplus function, then q are simply the corresponding dis-

crete choice probabilities. Generalized entropies that are not ARUM consistent

may still correspond to nonadditive random utility models, i.e. models where util-

ities are not just sums but more general functions of vj and εj (Matzkin, 2007).

Alternatively, individuals could be seen as making random choices with probabil-

ities that are the result of utility maximization (Fudenberg et al., 2014).

We will consider estimation by maximum likelihood. This requires us to com-

pute the likelihood q given v and we hence need a way to invert S that is feasible

within a maximum likelihood routine. The following theorem indicates how the

likelihood may computed by using an iterative process to solve a fixed point prob-

lem. We use the Kullback and Leibler (1951) distance function dr (q) = r · ln
(
r
q

)
to evaluate the distance from the fixed point r to some q. This is a convex function

with minimum at r with dr (r) = 0. Hence dr (q) will be larger the further q is

from r.

Theorem 6 Let S be the flexible generator defined in Proposition 2 and let r ∈ ∆
satisfy v = lnS (r) + c for some c ∈ R. Then the mapping

w (q) =

 qie
vi/S(i) (q)∑

j

qjevj/S(j) (q)

 (17)

has r as unique fixed point and iteration of (17) from any starting point in ∆
converges to r.

If S has the form

S(j) (q) = q
µ0
j

∏
{g∈G|j∈g,g 6={j}}

q
µg
g (18)

for some µ0 > 0, then dr (w (q)) ≤ (1− µ0) dr (q).

Theorem 6 then shows that iteration of (17) will always converge to the fixed

point. Intuitively, the numerator of (17) adjusts each qi in the direction that makes

v = lnS (q)+c true, while the denominator ensures that 1 ·w (q) = 1. The second

part of the theorem concerns the special case when the flexible generator is an

average of the identity with something else. Beginning from q0 and iterating such

that qn = w (qn−1) , n ≥ 1 the theorem shows that dr (qn) ≤ (1− µ0)n dr (q0),

which means that the distance to the fixed point decreases exponentially
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Table 3: Maximum likelihood estimates in discrete choice simulation with cross-

nested model
α β µ1 µ2

True parameters 0.500 0.500 0.200 0.500

Avg. estimates 0.498 0.498 0.208 0.495

Std.dev. 0.050 0.050 0.043 0.055

A question is now how well it is possible to recover parameters underlying

utility from the observation of discrete choices. We have investigated this in a

simulation experiment where we have simulated data from the cross-nested struc-

ture of Section 3.1. We do not include the outside option as we have a situation

in mind where we observe the choices of consumers who buy one of the varieties

of some good under consideration. Utilities are specified as vj = αx1j + βx1jx2,

where x1j represents an alternative specific characteristic, while x2 represents in-

dividual specific variation. We performed 100 replications with 1000 individuals

in each, each individual selects 1 among the 9 alternatives in the model with prob-

abilities q, where lnS (q) = v + c. The independent variables were generated as

i.i.d. standard normal. The likelihood was computed using Theorem 6 and was

maximized numerically.8 The results are summarized in Table 3. As in the previ-

ous simulations in this paper, we find that the true parameters are well recovered.

5 Concluding remarks

This paper has introduced the concepts of generalized entropy and flexible gener-

ators and used them to derive a general family of demand systems. General rules

for constructing demand systems have been provided along with some specific

examples and it has been shown how these models may be estimated using either

market share or individual level data.

We believe that generalized entropy models may be useful in a range of cir-

cumstances. One example that we have mentioned is the demand for automobiles

(e.g. Berry et al., 1995; Goldberg and Verboven, 2001; Train and Winston, 2007).

The number of varieties of new cars is large and there are likely complex substi-

tution patterns that may be accounted for using flexible generators. Another ap-

plication area characterized by a large number of alternative "products" is spatial

models, where flexible generators may be used to describe spatial correlations,

for example in models of equilibrium sorting (Kuminoff et al., 2013). Yet an-

other area where generalized entropy models may be useful are matching models

(Salanié and Galichon, 2015), where the range of possible models could be ex-

8Using BFGS with numerical derivatives.
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tended. It would also be of interest to develop generalized entropy models in the

context of dynamic discrete choice models (Chiong et al., 2015). We hope that

the family of demand systems provided here will stimulate future empirical work.

The generalized entropy model extends to the case where the vector v is ran-

dom with each consumer having some realization of v. Then demand conditional

on v still has the form (3) and the expected demand is the expectation of (3). This

is analogous to the mixed logit model (McFadden and Train, 2000). Moreover,

both in the present case and in the mixed logit, the presence of the expectation

implies that the explicit inversion in Theorem 1 does not carry through when v is

random.

The nesting device we use to create flexible generators does not exhaust all

possibilities. One possibility that we have not explored, for example, is to combine

our nesting device with the idea that membership of a nest may be partial. There is

thus scope for finding more flexible generators with properties that may be useful

in specific circumstances.
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A Proofs

A.1 Proofs for Section 2

Proof of Theorem 1. Form the Lagrangian

Λ (q, λ) = τy + q · v − q · lnS (q) + λ (1− 1 · q) .

The first-order conditions for (q1, ..., qJ) are

0 =
∂Λ

∂qk
= vk − lnS(k) (q)−

J∑
j=1

qj
d lnS(j) (q)

dqk
− λ,

resulting by Condition 3 in

S (q) = ev−κ−λ > 0.

The homogeneity of S implies homogeneity of H = S−1 and then

q = H
(
ev−κ−λ

)
= e−(κ+λ)H (ev) .

The constraint 1 · q = 1 implies that eκ+λ = 1 · H (ev) such that any solution to

the first-order conditions satisfies

q =
H (ev)

1 ·H (ev)
(19)

and thus q is uniquely determined.

Existence of a solution is established as follows: Existence can fail only if

the denominator in (19) is zero; but since the H(j) (ev) are non-negative, this can

only occur if H(j) (ev) = 0 for all j; this implies in turn by invertibility and

homogeneity of S that ev = 0, which is a contradiction. By Condition (2), the

utility u (q) is concave, and hence the solution (19) to the first-order conditions is

a global maximum.

To prove the second part of the theorem, note first that if q is an interior so-

lution to the utility maximization problem then it satisfies equation (3), which

implies that

lnS (q) + ln (1 ·H (ev)) = v.

Conversely, if v = lnS (q) + c, then q solves (3).

Proof of Lemma 1. This follows from Theorem 2.4 in Ruzhansky and Sugimoto
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(2014) upon noting that S may be extended to

f (x) =

{
S (x) , x ∈ (0,∞)J

x, x ∈ RJ\ (0,∞)J .

Note thatA ≡ RJ\ (0,∞)J is closed , f isC1 onRJ\Awith det Jf 6= 0 onRJ\A,

f is continuous and injective on A, and RJ\f (A) is simply connected. It is also

the case that f
(
RJ\A

)
⊂ RJ\f (A). Let {xn} ⊆ (0,∞)J with ‖xn‖ → ∞.

Then ‖S (xn)‖ = ‖xn‖
∥∥∥S ( xn

‖xn‖

)∥∥∥ ≥ ‖xn‖ infq∈∆ S (q) → ∞. Since f satisfies

the conditions in the Ruzhansky and Sugimoto (2014) theorem, S is invertible.

Proof of Lemma 2. (Averaging) Conditions 1-3 are easily verified. We shall

verify that T is invertible using Lemma 1. Since T
(j)
k (q) ≥ qj , also S(j) (q) ≥ qj,

and then infq ‖S (q)‖ ≥ J−1 > 0, which is the first requirement in Lemma 1.

The Jacobian of lnS is

JlnS =
K∑
k=1

αkJlnTk .

Then JlnS is positive definite and hence its determinant is positive. The Jacobian

JS = diag
{
S(1) (q)−1 , ..., S(J) (q)−1} · JlnS also has positive determinant, which

is the second requirement in Lemma 1.

Proof of Proposition 2. (General nesting) Condition 1 follows directly. Condi-

tion 2 follows by noting that Ω (q) is a linear combination of functions of the type

−t ln t and that t→ −t ln t is strictly concave when t > 0. Finally,

J∑
j=1

qj
d lnS(j) (q)

dqk
=

J∑
j=1

qj

∑
g µg1{j∈g}1{k∈g}∂ ln (qg)

∂qk

=
∑
g∈G

µg1{k∈g}

J∑
j=1

qj1{j∈g}
qg

= 1

showing that Condition 3 holds as required.

We have

S(j) (q) =
∏

{g∈G|j∈g}

q
µg
g ≥

∏
{g∈G|j∈g}

q
µg
j = qj.

The Jacobian of lnS has elements jk∑
{g∈G|j∈g,k∈g}

µg
1

qg
,
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such that it is symmetric and positive semidefinite. If it is positive definite, then

by Lemma 2 S has an inverse and is a flexible generator.

Proof of Proposition 3. (Invertible nesting) Observe that (6) may be written in

matrix form as lnS (q) = MW ln
(
M>q

)
. Then

lnS (q) = v ⇔
q =

(
M>)−1

exp
(
W−1M−1v

)
.

Hence S has an inverse and it follows from Proposition 2 that S is a flexible

generator.

Proof of Proposition 4. (Transformation) We shall verify Conditions 1-4. Ob-

serve that S defined by (8) is continuous and that for α > 0,

S (αq) = exp
(
lnα + A> [ln (T (Aq))] +m

)
= αS (q) ,

since columns of A sum to 1. This verifies Condition 1.

Let ΩT (q) = −q · lnT (q); this is concave on ∆ by assumption. Note that for

q ∈ ∆

−ΩT (Aq) + q ·m = Aq · lnT (Aq) + q ·m

=
∑
i

(∑
j

aijqj

)
lnT (i) (Aq) + q ·m

=
∑
j

qj

[∑
i

aij lnT (i) (Aq)

]
+ q ·m

= q ·
(
A> [ln (T (Aq))] +m

)
= q · lnS (q) .

Hence, −ΩT (Aq) + q ·m = q · lnS (q). The transformation q → ΩT (Aq)− q ·m
is concave on ∆ (Rockafellar, 1970, Thm. 12.3) and then so is −q · lnS (q).

The next step is to verify Condition 3. The condition holds by assumption for

ΩT , and may be expressed as −∇ΩT (q) = lnT (q) + 1. Now, with ΩS (q) =
−q ·

(
A> [ln (T (Aq))] +m

)
= − (Aq)> · [ln (T (Aq))]− q ·m, we see that

−∇ΩS (q) = A> (−∇ΩT (Aq)) +m

= A> (lnT (Aq) + 1) +m

= lnS (q) + 1

as required.
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Finally, we shall verify the invertibility Condition 4 by solving the equation

lnT (q) = v.

lnT (q) = A> [ln (S (Aq))] +m = v ⇔
q = A−1H

(
exp

[(
A>
)−1

(v −m)
])
.

Thus, T is invertible. This completes the proof.

Proof of Proposition 5. (Nesting) Consider the function S defined by (9). Con-

dition 1 is clearly satisfied. Generalized entropy corresponding to S is

Ω (q) = −q1 · lnT1

(
q1

1 · q1

)
−
(
1 · q1, q2

)
· lnT2

(
1 · q1, q2

)
, q ∈ ∆,

which is concave and then Condition 2 is satisfied.

For q = (q1, q2) = (q1, ..., qJ1+J2−1), and with r = q1

1·q1 , we have

J1+J2−1∑
j=1

qj
∂ lnS(j) (q)

∂qk

= 1{k≤J1}
J1∑
j=1

q1
j

∂ lnT
(j)
1

(
q1

1·q1

)
∂qk

+
(
1 · q1

) ∂ lnT
(1)
2 (1 · q1, q2)

∂qk

+
J2−1∑
j=2

qJ1+j
∂ lnT

(j)
2 (1 · q1, q2)

∂qk

= 1{k≤J1}
(
1 · q1

) J1∑
j=1

rj
J1∑
i=1

∂ lnT
(j)
1 (r)

∂ri

∂ri
∂qk

+ 1

= 1{k≤J1}
(
1 · q1

) J1∑
j=1

[
rj

J1∑
i=1

∂ lnT
(j)
1 (r)

∂ri

(
1{i=k}

1

1 · q1
− ri

1 · q1

)]
+ 1

= 1{k≤J1}
(
1 · q1

) J1∑
i=1

[(
1{i=k}

1

1 · q1
− ri

1 · q1

)
J1∑
j=1

rj
∂ lnT

(j)
1 (r)

∂ri

]
+ 1

= 1{k≤J1}
(
1 · q1

) J1∑
i=1

[(
1{i=k}

1

1 · q1
− ri

1 · q1

)]
+ 1

= 1,

which is Condition 3.

Finally, to show that S is invertible, consider the equation lnS (q1, q2) =

(v1, v2). Let q1 = T−1
1

(
ev

1
)

, r = 1 · q1, and let (rs, q2) = T−1
2

(
r, ev

2
)

. Then
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for j ≤ J1

lnS(j)
(
sq1, q2

)
= lnT

(j)
1

(
q1

r

)
+ lnT

(1)
2

(
rs, q2

)
= lnT

(j)
1

(
q1
)
− ln r + lnT

(1)
2

(
rs, q2

)
= v1

j − ln r + lnT
(1)
2

(
rs, q2

)
= v1

j .

For j > J1 we have

lnS(j)
(
sq1, q2

)
= lnT

(j−J1)
2

(
rs, q2

)
= v2

j .

Then

S−1
(
ev

1

, ev
2
)

=
(
sq1, q2

)
=

(
sT−1

1

(
ev

1
)
, q2
)

and Condition 4 is satisfied. Thus, S is a flexible generator.

A.2 Proofs for Section 4

Proof of Lemma 3. Fosgerau et al. (2013) establishes convexity and finiteness

of G as well as the homogeneity property and the existence of all mixed partial

derivatives up to order J . This also implies that all second order mixed partial

derivatives are continuous, since J ≥ 3.

The existence of derivatives Gii is established from the homogeneity property

that Gj (v + c) = Gj (v) , j = 1, , , ., J . Consider G11 at no loss of generality and

observe that

G1 (v1 + c, v2, ..., vJ)−G1 (v1, v2, ..., vJ)

c

=
G1 (v1, v2 − c, ..., vJ − c)−G1 (v1, v2, ..., vJ)

c
→ c→0+ −

∑
j 6=1

G1j (v) = G11 (v) ,

which means that G11 exists. Furthermore, G1j, j > 1 are continuous and hence

so is G11.
Let χ be the index of the chosen alternative. The last statement of the lemma
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follows using the law of iterated expectations since

G (v) =
∑
j

E

(
max
j
{vj + εj} |χ = j, v

)
Pj (v)

=
∑
j

(vj + E (εχ|χ = j, v))Pj (v)

= P (v) · v + E (εχ|v) .

Proof of Lemma 4. We shall make use of Lemma 1 applied to H . The Jaco-

bian of v → H (ev) is
{
eG(v)Gi (v)Gj (v)

}
+
{
eG(v)Gij (v)

}
. The first matrix

is positive definite since all choice probabilities are positive, the second matrix

is positive semidefinite due to the convexity of G, hence this matrix is every-

where positive definite and then the Jacobian determinant of v → H (ev) never

vanishes. This implies in turn that the Jacobian determinant of the composition

y → ln y → H (y) never vanishes. It remains to show that infy∈∆ ‖H (y)‖ > 0.

But y ∈ ∆ implies that

‖H (y)‖ = eG(ln y) ‖∇G (ln y)‖
≥ eEmaxj{ln yj+εj}J−1/2

≥ emaxj{ln yj+Eεj}J−1/2

= max
j

{
yje

Eεj
}
J−1/2

≥
∥∥(y1e

Eε1 , ..., yJe
EεJ
)∥∥ J−1

≥
(

J∑
j=1

e−2Eεj

)−1

J−1 > 0,

where we first used that∇G is on the unit simplex, second that the max operation

is convex, third that the sup-norm bounds the euclidean norm, and fourth that

the minimum of
∥∥(y1e

Eε1 , ..., yJe
EεJ
)∥∥ on the unit simplex is attained at yj =

e−2Eεj

(
J∑
k=1

e−2Eεk

)−1

, j = 1, ..., J .

Proof of Theorem 4. We first evaluate G∗ (q). If 1 · q 6= 1, then

q · (v + γ)−G (v + γ) = q · v −G (v) + (1 · q − 1) γ,

which can be made arbitrarily large by changing γ and hence G∗ (q) = ∞. Next

consider q with some qj < 0. G (v) decreases towards a lower bound denoted

G (−∞, v−j) as vj → −∞. Then q · v −G (v) increases towards +∞ and hence
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G∗ is +∞ outside the unit simplex ∆.

For q ∈ ∆, we solve the maximization problem (16) noting that we may fix

1 · v = 0. Maximize then the Lagrangian q · v −G (v)− λ (1 · v) with first-order

conditions 0 = qj −Gj (v)− λ, which lead to λ = 0. Then

q = ∇vG (v)⇔
qeG(v) = ∇v

(
eG(v)

)
= H (ev)⇔

S (q) eG(v) = ev ⇔
lnS (q) +G (v) = v ⇒

q · lnS (q) +G (v) = q · v.

Inserting this into (16) leads to the desired result.

G is convex and closed and hence G is the convex conjugate of G∗ (Rock-

afellar, 1970, Thm. 12.2), this is the next assertion of the theorem. Finally, for

q = ∇G (v), a fundamental result of convex analysis (Rockafellar, 1970, Thm.

23.5) states that G (v) +G∗ (q) = v · q, which may be combined with (12) to yield

the final statement of the theorem.

Proof of Proposition 6. Note that the maximum is a convex function, such that

Jensen’s inequality applies. Then, for q = ∇G (v),

−G∗ (q) = Emax
j

(vj + εj)− v · q

≥ max
j
E (vj + εj)− v · q ≥ 0.

Proof of Lemma 5. Continuity of S follows from continuity of the partial

derivatives of G, which is immediate from the definition. Homogeneity of S is

equivalent to homogeneity of H . Using the homogeneity property of G,

S−1 (λev) = ∇v

(
eG(v+lnλ)

)
= λ∇v

(
eG(v)

)
= λS−1 (ev) ,

which shows that H and hence S are homogenous of degree 1.

Proof of Lemma 6. The requirement that
∑J

j=1
qj
d lnS(j)(q)

dqk
= 1 on relint (∆)

may be expressed in matrix notation in terms of the Jacobian JlnS (q1, ..., qJ) of

lnS as (q1, ..., qJ) · JlnS (q) = κ (1, ..., 1). We take κ = 1.

With v = lnS (q) and noting that (lnS)−1 (v) = H (ev), the requirement is

equivalent to

(q1, ..., qJ) = (q1, ..., qJ) · JlnS (q) · J(lnS)−1 (v) = (1, ..., 1) · JH(ev) (v) .
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Now,

(1, ..., 1) · JH(ev) (v) = (1, ..., 1) ·
{
eG(v)Gj (v)Gk (v) + eG(v)Gjk (v) 1{j=k}

}
= (q1, ..., qJ)

as required. We have used first that

(q1, ..., qJ) = H (ev) ,

and second that (1, ..., 1) · {Gjk (v)} = 0, where the latter assertion follows since

1 =
∑J

j=1Gj (v).

Proof of Theorem 6. Note that
∑

g µgrg =
∑

j

∑
{g|j∈g} µgrj = 1. We will first

show existence and uniqueness of a fixed point. Note that for r ∈ ∆:

w (r) =

 rie
vi/S(i) (r)∑

j

rjevj/S(j) (r)

 =

 riS
(i) (r) /S(i) (r)∑

j

rjS(j) (r) /S(j) (r)

 = r,

which shows that r is a fixed point. If q ∈ ∆ is a fixed point, potentially different

from r, then qi = qi
(
evi/S(i) (q)

)
e−c, where ec =

∑
j qje

vj/S(j) (q), and then

v = lnS (r) + c. The invertibility of S implies that q = r and then the fixed point

is unique.

We then need to show that iterations with (17) from any starting point in ∆
converges to the fixed point. Define for convenience

πj =
S(j) (r)

S(j) (q)
=

∏
{g|j∈g}

(
rg
qg

)µg
, wj (q) =

qie
vi/S(i) (q)∑

j

qjevj/S(j) (q)
.

Using that v = lnS (r) + c with c ∈ R we may rewrite (17) as

wj (q) =
qje

vj/S(j) (q)∑
i

qievi/S(i) (q)
=

qj
S(j)(r)

S(j)(q)∑
i

qi
S(i)(r)

S(i)(q)

=
qjπj
q · π .

We will show that dr (w (q)) ≤ dr (q), with strict inequality when q 6= r. This
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will mean that w (q) is closer to r than q. Evaluating dr (w (q)) leads to

dr (w (q)) = r · ln
(

r

w (q)

)

= r · ln

 r{
qjπj
q·π

}


= dr (q) + ln (q · π)− r · ln π

= dr (q) + ln

(∑
j

qj
∏

{g|j∈g}

(
rg
qg

)µg)
−
∑
j

rj ln
∏

{g|j∈g}

(
rg
qg

)µg
.

We thus need to bound the last two terms. Observe first that

ln

(∑
j

qj
∏

{g|j∈g}

(
rg
qg

)µg)
= ln

(∑
j

qj exp
∑
{g|j∈g}

µg ln

(
rg
qg

))

≤ ln

(∑
j

∑
{g|j∈g}

qjµg
rg
qg

)

= ln

(∑
g

∑
{j|j∈g}

qjµg
rg
qg

)

= ln

(∑
g

µgrg

)
= 0,

with strict inequality unless rg = qg for all g. Equality would imply S (r) = S (q),

and further that r = q, so we conclude the inequality is strict unless r = q.
We also need to bound

−
∑
j

rj ln
∏

{g|j∈g}

(
rg
qg

)µg
= −

∑
j

∑
{g|j∈g}

rjµg ln

(
rg
qg

)
= −

∑
g

µgrg ln

(
rg
qg

)
= −

∑
g

µgrg ln

(
µgrg

µgqg

)
≤ 0,

where the last inequality follows since the term is a Kullback-Leibler distance.

We conclude that dr (w (q)) ≤ dr (q) and that the inequality is strict unless r = q.
Now consider a sequence {qn} constructed by iterating (17). Then dr (qn) is

weakly decreasing and hence dr (qn) → ρ for some ρ ≥ 0. If ρ > 0, then a

convergent subsequence can be extracted from {qn} with limit point q̂ satisfying
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dr (q̂) = ρ by continuity ofw. Now dr (w (q̂)) < ρ, while there are points from the

sequence {qn} arbitrarily close to q̂ with dr (qn) > ρ. This contradicts continuity

of w and we conclude that ρ = 0 and hence that qn → r.
If furthermore S has the form (18), then we can improve the bound on dr (w (q)):

dr (w (q))− dr (q) = ln

(∑
j

qj
∏

{g|j∈g}

(
rg
qg

)µg)
−
∑
j

rj ln
∏

{g|j∈g}

(
rg
qg

)µg
≤ −

∑
j

rj ln

[(
rj
qj

)µ0 ∏
{g|j∈g,{j}6=g}

(
rg
qg

)µg]

= −µ0r · ln
(
r

q

)
−
∑
j

rj
∑

{g|j∈g,{j}6=g}
µg ln

(
rg
qg

)
≤ −µ0dr (q) ,

which is the desired result.
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B Notation

Symbol Interpretation

p Price vector

P Probability vector

q, r Consumption vector of the differentiated good, probability vector

S Flexible generator

G Expected maximum utility

G∗ Convex conjugate of G
H Inverse of S
a Vector of intrinsic utilities of the differentiated good

Ω Generalized entropy

v τ (a− p)
α, β Utility parameters

u Utility

µ Nesting parameter

∆ Unit simplex

‖·‖ Euclidian norm

τ Marginal utility of income

χ Index of chosen alternative
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