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Abstract 

This study deals with the heat conduction within a medium containing cracks that are 

assumed to be perfect insulators. Multi-region boundary element approach is employed 

to obtain a boundary singular integral equation governing the steady state thermal 

transfer within this medium. This equation presents the temperature field within the 

whole cracked body as a function of temperature and rate of heat flow on the domain’s 

boundary and temperature discontinuity across the cracks. For the particular case of an 

infinite domain under far-field condition, the temperature field solution is only a 

function of the cracks temperature’s discontinuity. The basic problem of a single crack 

in an infinite domain is investigated and a closed-form solution is derived for a crack of 

elliptical plane from this analysis. This solution is the key issue to estimate the effective 

thermal conductivity of the whole domain by coupling with the classical homogenization 

schemes. The arbitrary crack form is covered up by using the excluded volume 

definition. Estimations of effective thermal conductivities stemming from diluted, 

differential and self-consistent approaches are compared to numerical solution obtained  

by the finite volume method that is available in literature. This comparison shows that 

the self-consistent scheme is the most appropriate model to estimate the thermal 

conductivity of materials containing cracks. 

Keywords: thermal conductivity, crack, insulator, MR-BEM, self-consistent.  

1 Introduction 

The effects of cracks on the thermal conductivity have been investigated on various 

materials such as optical coatings [1], graphite materials [2], ceramics [3], thermal 

barrier coatings [4,5,6], fibre-reinforced composites [7], clay [8] and among others. 

These studies show that the thermal conductivity of materials decreases with the 

presence of cracks due to the very low thermal conductivity of air void created by cracks. 

The presence of cracks was evidenced by micrograph [3,5], topological sensitivity [9,10] 

and was quantitatively characterized to interpret the results on thermal conductivity [6]. 
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X-ray micro-tomography can be considered as a powerful tool to monitor the 3D spatial 

distribution of cracks in materials [11].  

To model the heat conduction within materials containing cracks of complex geometry 

and to take into account the interaction between the cracks, the numerical method 

imposes naturally. The use of volume discretisation methods, such as finite element 

method [12,13], finite volume method [14,15,16,17] is confronted to a major difficulty 

in mesh generation process when the domain contains a numerous cracks of randomly 

geometries. Contrariwise, boundary element method (BEM) presents an important 

advantage in mesh reduction [18,19,20]. In practice, the classical BEM becomes also 

inefficiently for high crack density by the fact of complicated numerical implementation 

compared to standard BEM for the intact domain. 

Atalay et al [21] employed the multi-region boundary element method (MR-BEM) to 

modeling the steady-state heat conduction in a heterogeneous system constituted by 

several homogeneous piecewise functions. This technique has been also applied for other 

types of heterogeneous media such as materials in the presence of cracks, in particular in 

the linear fracture mechanics [20,22]. However, only a single or a few cracks are treated 

and the crack intersection is not considered in this application field. Recently, Pouya 

[24] and Pouya and Vu [23,25] proposed the closed-form expressions of mass exchange 

between matrix and cracks at crack intersections for fluid flow modeling. Then, Vu [26] 

associated this advanced theoretical formulation with MR-BEM to develop the integral 

boundary equation and its numerical resolution for modeling the fluid flow within a 

porous domain containing numerous intersecting cracks. This method is now employed 

to study heat conduction within the cracked media where the crack filled by air whose 

conductivity is neglected in compared to one of its surrounded material.  Therefore, the 

cracks could be considered as a barrier to the heat flow that is naturally contrary to the 

case of fluid flow where the crack is more conductive than the porous embedding matrix.   

The present work focuses on the steady-state heat flow within a three dimension finite 

domain containing numerous cracks and its effective thermal conductivity. We make 

assumption that crack has zero thickness and an infinitely cross thermal resistance, i.e. it 

acts as a barrier to heat flow. Therefore, the rate of heat flow vanishes on the crack 

surfaces in its normal direction; and there exists a temperature discontinuity across it. 

MR-BEM is employed to derive the boundary integral equation that governs heat 

conduction through the whole domain presenting a high crack density. For this end, the 

domain is split into several sub-domains by existing cracks and fictitious surfaces, such 

that a fictitious surface does not intersect cracks and other fictitious surfaces. The 

unknown temperature on the each face of crack is considered as the boundary condition 

for the sub-domains. Boundary integral formulation for fluid flow is written for each 
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sub-region and then assembled to obtain only one potential solution for the whole body. 

In this solution, the temperature field is expressed as function of temperature and heat 

flow on the domain’s boundary and temperature discontinuity across the cracks.  

This theoretical solution is used subsequently to estimate of effective thermal 

conductivity of the material with the presence of void cracks. For this purpose, infinite 

domain is considered. The closed-form solution of temperature discontinuity is derived 

from the singular integral equation writing for the case of a crack with elliptical shape. 

The arbitrary crack shape is covered in this study by having recourse to excluded volume 

definition [27,28,29,30].  The irregular shape of cracks could be also taken into account 

by analysing the strength of the heat flux singularity in vicinity of crack front [31]. The 

analytical solution of temperature discontinuity allows estimating the effective thermal 

conductivity in the framework of various homogenization schemes: dilute, differential 

and self-consistent. The details of these techniques for thermal properties of porous 

geomaterial were synthesized in Do et al. [32,33,34], To et al. [35,36], Nguyen [37] and 

Chen [38]. Effective properties of micro-cracked viscoelastic materials are also 

successfully estimated by coupling the solution of a single crack in infinite domain and 

the homogenization schemes (Nguyen et al. [39,40]). The numerical solution obtained by 

Bogdanov et al. [14], based on the finite volume approach, is finally used to evaluating 

the accuracy of these three schemes for the material that contains insulating cracks.           

Notations 

 :  micro-cracked domain 

 , i:  cracks set and crack number i 

 :  thermal conductivity tensor of matrix without cracks 

 
eff

:  effective thermal conductivity tensor of cracked media 

 :  thermal conductivity of isotropic matrix 

 
eff

:  effective thermal conductivity of isotropic cracked media 

 q(x):  local rate of heat flow at a point x 

 T(x):  local temperature at a point x 

 s(s1,s2): curvilinear abscise of smooth crack surface 

 [[ ( ) ( ) ( )T z T z T z    : temperature discontinuity across crack surface 

 c, ci: boundary factors of whole and sub-domain respectively 

 G: fundamental solution 

 : crack density  
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 : dimensionless crack density 

 Q: average rate of heat flow 

 G: average temperature gradient 

 A: far-field temperature gradient 

 :  gradient operator  

 :  Laplace operator  

 .:  divergence operator 

 :  Dirac distribution 

 sf:  derivation of function f with respect to variable s 

 a.b:  the scalar product of two vectors a and b 

 A:  the determinant of matrix A 

 Aa:  the product operator between matrix A and vector a 

2 Thermal conduction equations 

Let us consider a three-dimensional domain Ω embedding m cracks numbered by j and 

denoted by Γj (j=1,m) (Fig. 1). In the mathematical model, cracks are represented by a 

smooth surface function zj(s) from 
3
 →

2
, where s = (s1,s2) is the curvilinear 

parameters. Γ designates the set of cracks Γ = Γj. The matrix without cracks 

corresponds to Ω-Γ that is assumed to be homogeneous with a conductivity tensor . 

 

Fig. 1: Heat conduction within a medium embedding cracks . 

The heat conduction in the matrix is governed by Fourier’s law: 



 
5 

 

xΩ-Γ ( ) . ( )q x T x    (1) 

where q(x) and T(x) are local rate of heat flow and temperature fields, respectively.  

The conservation of energy in the matrix reads:  

xΩ-Γ . ( ) 0q x   (2) 

Substituting (1) into (2) yields Laplace’s equation for the case of an isotropic matrix, i.e 

= : 

 xΩ-Γ ( ) 0T x   (3) 

Solving this equation gives the solution of steady state heat diffusion in the matrix -. 

This solution must verify the condition on the cracks and the boundary conditions. As 

the cracks are non-conducting and act as barriers to thermal flow, the conditions on the 

crack surfaces are given as: 

xΓ ( ). ( ) 0q x n x   or ( ). ( ) 0T x n x   (4) 

where n(x) is the unit normal vector at point x on cracks. 

Two boundary conditions, namely Dirichlet and Neumann conditions are prescribed 

respectively on 1, 2 of the domain boundary  (=1+2): 

1x   0( ) ( )T x T x  (5) 

2x   0- ( ). ( ) ( )T x n x q x   (6) 

3 Potential solution 

3.1  Multi-region boundary elements approach 

This sub-section is devoted to establish a singular integral equation for the temperature 

field in the whole domain  that satisfies the Laplace equation (3), the condition on 

crack surfaces (4) and the boundary conditions (5), (6). For this purpose, the MR-BEM is 

had recourse. As mentioned in the introduction section, this approach exhibits a great 

advantage in mesh generation term for three-dimensional domain in the presence of 

numerous surfaces of discontinuities. 

The domain  is first partitioned into n sub-domains i by the fictitious boundaries that 

pass through the crack parts, as seen in Fig. 2. A crack  of normal n is constituted by 



 
6 

 

two parallel surfaces 
+
 and 

-
 with two normal vectors n

+
, n

- 
 (n

+ 
= -n

- 
= n) (Fig. 3). On 

the crack surface, the temperature is discontinuous between its two faces and the normal 

heat rate vanishes, i.e. q.n = 0. [[ ( ) ( ) ( )T z T z T z     designates the temperature 

discontinuity across the crack surface. A fictitious surface  is assumed to have two 

coincidental faces 
+
 and 

-
 through which the temperature and the heat rate are 

continuous. As showed latterly, the fictitious surfaces appear only in the developed step  

equations but have no contribution in the final boundary integral equation for the whole 

domain. 

The boundary 
i
 of subdomain i could be consisted of a portion of the boundary of 

whole domain denoted by s

i , n1i positive crack surfaces, n2i negative crack surfaces, 

n3i positive fictitious surfaces and n4i negative fictitious surfaces. The subdomains, non-

connected to the boundary , are bounded only by the cracks and or fictitious surfaces. 

(a)   (b) 

Fig. 2: MR-BEM approach to study heat conduction within cracked media 

 

Fig. 3: Temperature discontinuity on the crack surface  

As sub-domain i does not contain the crack, therefore, equation (3) governs the heat 

conduction within it. Applying the BEM procedure [18,19,20] for this Laplace’s 

equation yields: 



 
7 

 

Ωi ( ) ( ) ( ) ( , ). ( , ) ( ).

i i

ic T T x G x nds G x T x nds
 

          (7) 

where n is the normal to the subdomain boundary i;  

ci() a coefficient that depends on the position of  relative to the subdomain i: ci()=1 

if 
i i  ; ci()=0 if 

i  and 0<ci()<1 if 
i . For the latter case when the 

field point on the boundary of subdomain, the coefficient ci depends on the local 

boundary geometry at this point and it takes the value of 1/2 for smooth boundary. In 

general, this coefficient can be determined by the following equation:  

Ωi 
0

( ) lim ( , )i

S

c G x dx




    (8) 

where S is an infinitesimal spherical surface of centre  and radius  enclosed in the 

solid i. 

The fundamental function G(x,) and its derivations for three-dimensional steady-state 

heat transfer are expressed such as [18,19,20]: 

   

1
( , )

4
G x

r
 


 

3

( , ) .1

4

x

x

G x n R

rn

 



 

2

3 5

( , ) . ( . )( . )1
3

4

x x

x

G x n n n R n R

r rn n

 



  
  

    

 

(9) 

with R= - x; r = R =  - x, nx and n the normal to crack surface at x and  

The integrals on the right hand side of equation (7) are the sum of this integral on the 

different parts of boundary of this subdomain, i.e. on the s

i , n1i positive fracture 

surface segments 
k

 , n2i negative fracture surface segments 
k

 , n3i fictitious positive 

lines '

k

  and n4i fictitious negative lines '

k

 .   

 
( ) ( ) ( ) ( , ). ( , ) ( ).

s s
i i

ic T T x G x nds G x T x nds

 

           

 
1 1

( ) ( , ). ( , ) ( ).
i i

k k
n n

T x G x n ds G x T x n ds
 

  

 

          
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2 2

( ) ( , ). ( , ) ( ).
i i

k k
n n

T x G x n ds G x T x n ds
 

  

 

         (10) 

 
' '

3 3

( ) ( , ). ( , ) ( ).
i i

k k
n n

T x G x n ds G x T x n ds
 

 

 

          

 
' '

4 4

( ) ( , ). ( , ) ( ).
i i

k k
n n

T x G x n ds G x T x n ds
 

 

 

          

As a matter of fact, the field point  can be located inside, outside or on the boundary of 

domain i. The relative position of this point relative to the subdomain is represented by 

the factor ci. Therefore, we can repeat the equation (10) for all subdomains but for a 

field point  to obtain n boundary integral equations. The sum of these n equations 

results in: 

 
1

( ) ( ) ( ) ( , ). ( , ) ( ).
n

i

i

c T T x G x nds G x T x nds
  

           

(11) 

                  
1

( ) ( ) ( , ).

k

m

k

T x T x G x nds 

 

        

To show how we obtain the equation (11), we consider a fictitious surface ij that are 

shared by two subdomains i and j. Across the fictitious surface, the temperature and 

its gradient or thermal flux rate are continuous, therefore, the seventh, eighth, ninth, 

tenth terms in the boundary integral equation writing at the field point  for the 

subdomain i will be eliminated by the same terms in the one writing for its adjacent 

subdomain j. Moreover, the rate of heat flow is none on the crack surface, thus the 

fourth and sixth terms in the boundary integral equation for each subdomain are 

vanished. 

By noting 
1

n

i

i

c c


 , it is easy to see that the coefficient c is always equal to 1 when the 

field point is inside the whole cracked domain. Therefore, the factor c of the cracked 

domain  can be represented by one of the un-cracked domain bounded by . 

Introducing the temperature discontinuity across the cracks into equation (11) yields the 

boundary integral equation for temperature field within the cracked media:  

 
( ) ( ) ( ) ( , ). ( , ) ( ).c T T x G x nds G x T x nds

 

          (12) 
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1

[[ ( ) ( , ).

k

m

k

T x G x nds
 

     

Let us consider now the particular case of an infinite medium surrounding cracks  under 

the far-field condition T(x). As the field point  always inside the domain, thus the 

boundary factor c is equal to 1. The equation (12) reduces to: 

 
1

( ) ( ) [[ ( ) ( , ).

k

m

x

k

T T T x G x n ds

 

        (13) 

In heat conduction modelling point of view, numerical resolving equation (12) covers 

equation (13) by making a large domain’s boundary, where the far-field condition T(x) 

is prescribed, compared to cracked zone. The heat conduction solution is used then to 

calculate the effective thermal conductivity of cracked domain. However, the direct 

derivation of equation (13) that reduce the complication of numerical implementation in 

comparison with the one of equation(12), allows also the determination of thermal 

conductivity for a cracked zone [23].  

The heat conduction solution (12) obtained under a singular integral equation form is 

suitable for both numerical simulation and analytical development. This provides an 

interesting material that can be useful for those who performs numerical simulation 

based on boundary element method by beneficing the mesh reduction from 3D to 2D. 

Besides, this solution allows deriving the closed-form solution for heat conduction in 

some particular cases. As showed subsequently, the analytical resolution of equation (13) 

in the case of a single fracture within an infinite medium, coupling with homogenization 

methods affords us another ways to estimate the thermal conductivity of material with 

the presence of cracks.          

3.2  Closed-form solution of temperature discontinuity 

This section is devoted to derive the closed-form solution of temperature discontinuity 

across the a single crack with in an infinite matrix under far -field condition T∞()=A.. 

Deriving equation (13) with respect to  variable reads: 

 

2

1

( ) ( ) ( , )
[[ ( )

k

m

k x

T T G x
T x ds

n n n n



  

     
  

   
   (14) 

Considering the field point  located on the fracture surfaces at curvilinear parameter s, 

the left hand side of equation (14) vanishes according to the condition (4). Thus, the 

equation (14) becomes:  
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   3 5

1 ( ). ( ) ( ( ). ( , ))( ( ). ( , ))
( ) ( ) 3

4 ( , ) ( , )jj

n s n x n s R s x n x R s x
x s ds

r s x r s x


 
     

  
  (15) 

with 

   
( )

( )
x

T x
x

n


 


; ( ) [[ ( )x T x    (16) 

This equation is a hyper--singular integral equation in which the temperature 

discontinuity on the fractures (x) is unknown function and the hypersingular kernel 

behaves as r
-3

 at the singular point (s=x). The hyper-singular kernels in equation (15) are 

also arisen in symmetry Galerkin boundary element approximation for solving two or 

three-dimensional Laplace’s equations. The algorithms based on limit process are 

presented in Sutradhar et al. [41] for evaluating these hyper-singular integrals. In such 

process, the integral involving derivatives of the fundamental solution are defined as 

limits from the interior.  

In order to upscale the effective permeability, a basic problem is considered. This is to 

derive the temperature field around a single insulating crack within an infinite matrix 

under far-field condition. The crack is modelled by an elliptical form D with half-

diameters designated by d1, d2 (d1  d2) and two corresponding principal directions e1, e2 

denote elliptical fracture principal directions and its unit normal  e3. A local coordinate 

system is defined such as the origin located at the centre of the crack and its axes 

parallel to e1, e2 and e3. The equation of ellipse D in this coordinate system reads (Fig. 

4):  

 x.B.x = 1   (17) 

with x.e3 = 0 or x=(x1,x2,0) and 

 1 = 1/d1
2
,    2 = 1/d2

2
,     B = 1e1e1 + 2 e2e2   (18) 
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Fig. 4  A elliptical penny-shaped crack within an infinite matrix 

For a single planar crack, ( ). ( , ) ( ). ( , ) 0n s R s x n x R s x  and n(s).n(x) = 1, thus, equation 

(15) is rewritten as follows: 

xD 
1 2

1 2 1 23/2
2 2

1 1 2 2

( , )1
( , )

4 ( ) ( )D

s s
x x ds ds

s x s x


  

     
  (19) 

This equation is equivalent to: 

xD 
1 2 1 2 1 21/2

2 2

1 1 2 2

1
4 ( , ) ( , )

( ) ( )
s

D

x x s s ds ds
s x s x

    
    

  (20) 

Since the temperature is continuous at the crack border, i.e. (x1,x2) subject to the 

following condition: 

x∂D 1 2( , ) 0x x   (21) 

Integrating by part and the condition (21) lead to: 

xD 1 2 1 2 1 21/2
2 2

1 1 2 2

1
4 ( , ) ( , ).

( ) ( )D

x x s s ds ds
s x s x

   
    

  (22) 

In the case that the far-field condition is a constant pressure gradient A, i.e T(x)=A.x, 

hence, 3( ) .x Ae  , equation (22) is rewritten as:  
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x D 3 3 1 2 1 21/2
2 2

1 1 2 2

1
4 . ( , ).

( ) ( )D

A e s s ds ds
s x s x

   
    

  (23) 

This equation is well-known in fracture mechanic (Bui [42]; Guidera and Lardner [43]) 

and its solution is expressed as follows: 

x D 
2

33

2
( ) . 1 . .

( )

d
x A e x x

E
  


B  (24) 

where 

2

2

1

1
 

    
 

d

d
and E() is the complete elliptic integral of the second kind: 

  
/ 2

2 2

0

1 sin





     E d  (0   1) (25) 

The semi-analytical or iterative numerical expression of the complete elliptic integrals 

can be found in mathematical handbooks of Abramowitz and Stegun [44]. 

Considering the particular case of a circle of radius d1 = d2 = R, equation (24) reads: 

 x D 
2

3

4
( ) . .x A e R x x  


 (26) 

By noting  the integral of discontinuity temperature function over the crack, we obtain:  
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[[ ( ) . ( ).
3

D

T x ndx R n n A      (27) 

This closed-form solution is an important element to evaluate the effective thermal 

conductivity of cracked media by using the homogenization approaches. Three schemes, 

namely dilute, differential and self-consistent, will be considered in the section 4.  

4 Thermal conductivity 

This section presents the homogenisation schemes to estimate the effective thermal 

conductivity of a medium embedding cracks that are non-conducting and acts as barriers 

to the heat flow. For this purpose, a domain , containing several cracks 
j
 prescribed 

on its boundary by a linear temperature T = A.x, i.e. a constant temperature gradient 

T=A, is considered.   

The average rate of heat flow and average temperature gradient over  are formulated 

as: 
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1

( )Q q x dx



 

 ;  
1

( ). ( )G T x n x dx A


 
 

 (28) 

The effective thermal conductivity 
eff

 is given globally by Fourrier’s law: 

   .effQ G   (29) 

The divergence theorems for the temperature function in a domain containing 

discontinuities Γ
j
 reads: 

 
. [[ .

jj

T dx T n dx T n dx

  

       
(30) 

Substituting equations (1) and (30) into the average rate of heat flow Q yields 

    
1

[[ .
jj

Q A T n dx



 
    

  
   (31) 

Equations (29) and (31) implies the reduction of thermal flow rate, by the temperature 

discontinuities across cracks 
1

[[ .
jj

T n dx





 , is a linear function of average gradient of 

temperature G, i.e. there exists a tensor  such as:   

    
1

[[ . .
jj

T n dx G



 

   (32) 

Replacing Q in equation (29) by its expression in equation (31) and (32) gives 

    ( )eff       (33) 

Therefore, the effective thermal conductivity can be determined when the temperature 

discontinuity on cracks are known. For the general case, solving equation (12) by 

numerical methods, such collocation method [20], Symmetry Garlerkin Boundary 

Element method [41], etc, allows obtaining the solution of temperature discontinuity 

field on cracks. Besides, the effective thermal conductivity 
eff

 can be estimated by using 

the theoretical up-scaling scheme based on the analytical solution (27). Three schemes 

are considered in the following and its results are then analyzed and compared with 

numerical solution in the literature.   

4.1 Dilute scheme 

Let us consider m fracture families are embedded in a porous domain . Each family Γ i 

has a density i = Ni/ (i.e Ni fractures within ), orientation ni (unit normal vector) and 
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radius Ri (Fig. 5). In the dilute framework, each crack is supposed to be subjected to the 

same far-field condition, i.e. undisturbed by the presence of other cracks. This approach 

presents a simple and accurate estimation of equivalent properties for material 

containing inhomogeneities when the crack density is small.  

 

Fig. 5: Medium containing a weak crack density.  

By neglecting fracture interaction, the term  in equation (32) is expressed such as: 

     
38
( )

3

m

i ii i

i

R n n    (34) 

The dimensionless crack density is introduced to cover other fracture shapes:  

     0i i iV   (35) 

In this relation, V0i is a reference volume around a fracture of family i. Since the 

effective conductivity resulted in the current work will be compared to one obtained by 

Bogdanov et al. [14], we take thus 2 3

0i iV R   to unify the notation of dimensionless crack 

density between these two work. According to Adler and Thovert [27] and Charlaix et al. 

[28], for an isotropic distribution of fractures having the same circular shape of radius R, 

the volume 2 3

exV R  is the excluded volume that is defined as one around an object of 

the system where other objects do not appear in order not to intersect it.  As the exclusion 

volume characterizes all objects in the system as an ensemble , i.e. it is not given for each 

family independently, the volume V0i does not have sense of excluded volume with the 

presence of several fracture families with different sizes and orientations. A general 

expression of Vex for an anisotropic system could be referred in Mourzenko et al. 

[29,30], where its calculation includes orientations, shapes and sizes of all fractions 
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within the fracture network.             

Substituting (35) into (34) yields: 

     2

8
( )

3

m

i ii

i

n n  


  (36) 

For the case of an isotropic distribution of fractures with density  having identical 

radius R, the average value 
1

3
n n   , the effective conductivity tensor is isotropic 


eff

=
eff
, and: 

      
2

8
1

9

eff
  

 
 (37) 

This formulation is identical to one given by Shafiro and Kachanov [47].  

4.2 Differential scheme 

It is worth noting that the crack density  is a discrete function, however, the 

dimensionless crack density  is a continuous function since the crack size, i.e R varies 

from zero. Therefore, differential scheme can be applied to upscale the  effective thermal 

conductivity of cracked materials. This method consists in estimate the thermal 

conductivity explicitly from an initial material through a series of incremental additions 

[45,46]. Supposing d the adding crack density, the effective thermal conductivity at a 

considered step is determined from one at the previous step by equation (37): 

      1 2

8
1

9
i i d

 
     

 
 (38) 

Furthermore, 

      
1

2

8

9

i i
i

d

 
 

 
   (39) 

and then, 

      2

8

9

d

d


 

 
 (40) 

Integration the later gives:   

      2

8
exp( )

9

eff    


 (41) 

4.3 Self-consistent scheme 
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As seen in equation (31) the average rate of heat flow Q is reduced by Q
*
=A vis-a-vis 

one of un-cracked medium. Regardless the two previous approaches, the self-consistent 

scheme considers the cracks surrounding by matrix having the effective conductivity. In 

other words, Q
*
=

eff
A. Replacing Q

*
 by this expression into (31) and then (29) yields:      

 

      
2

1

8
1

9

eff



 



 
(42) 

For the case  << 1, the first order expansion of equation (42) results the formulation 

(37).The results stemming from differential scheme (equation (41)) and self-consistent 

one (equation (41)) are compared with numerical result obtained by Bogdanov et al. 

[14]. This comparison allows choosing which theoretical approach is better in the case of 

media containing insulating crack.  

Bogdanov et al. [14] investigated the effective property of finite porous media 

embedding an isotropic distribution of hexagonal fracture network based on a three -

dimensional finite volume method. Consider the insulating fracture have a conductivity 

<< 1 and a cross section resistance >>1. A least squares fit of all numerical results 

allows them to introduce an expression of effective property versus  as follows:  

      21.0010 0.0604 0.0014
eff

    


                 (  8)  (43) 

According to equations (37), (41), (42), (43), variations of effective thermal 

conductivities as function of crack density  are presented in Fig. 6. Obviously, two 

approximated curves, namely differential model (41) and self-consistent one (42), are 

tangent to the curve of Shafiro and Kachanov [47] at =0. It can be note that the self-

consistent model (42) is better than differential one (41) and diluted one (37) in 

comparison with numerical model of Bogdanov et al. [14].  
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Fig. 6. Comparison homogenisation models of effective thermal conductivity of cracked 

medium (developed within this paper) with results obtained by using the finite volume 

approach proposed by Bogdanov et al. (2003).  

In practical point of view, the characterization of crack system (size, distribution, 

orientation, connectivity) within a material is not an easy task, even impossible. Besides, 

the measured thermal conductivity on sample in laboratory and particularly in -situ is 

usually supposed to be isotropic, i.e. a randomly crack distribution. Therefore, the 

assumption of simple crack shape, as well as an isotropic cracks distribution is 

habitually made to simulate the experiment measurement and the real engineering 

processes. As a conclusion, although the current work considers a simple case of a 

system of equally sized disc shapes with isotropic distribution for cracks, but the self -

consistent model (42) with the validation against to numerical model [14] seems to be 

very useful in engineering fields. This model could be applied to estimate rapidly the 

thermal conductivity of cracked media or to determine the crack parameters from the 

measurement by inverse analysis.         

5 Conclusion 

Steady state heat transfer within media containing cracks, which act as barrier to heat 

flow, is investigated in this paper. The cracks are mathematically modelled by a two 

dimensional smooth surface of zero thickness. Multi-region boundary element method is 

used to obtain the potential solution that presents the temperature solution in the whole 

domain as function of thermal variables on the boundary, namely temperature and rate of 

heat flow, and temperature discontinuity on the cracks. This boundary integral equation 
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allows reducing the dimension problem from 3D to 2D in numerical analysis. Fast multi -

poles method [48] dealing with this equation is on-going to model accurately the heat 

transfer within this material. 

Applying the boundary integral equation to an infinite medium that contains a crack of 

elliptical shape, allows deriving the closed-form solution of temperature discontinuity 

across this crack surface. Based on this solution, three homogenization schemes  (dilute, 

differential and self-consistent) are employed to estimate the effective thermal 

conductivity. The excluded volume is had recourse to extend the arbitrary form of crack. 

These three models are compared to numerical solution proposed in the literature to 

evaluating the validity of homogenization estimations. This comparison shows that the 

self-consistent model is the most appropriate to estimate the thermal conductivity of 

material containing insulating cracks. 
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