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Abstract

When put in contact with a large liquid drop, dry foams wick owing to surface-tension-driven

flows until reaching equilibrium. This work is devoted to the dynamics of this imbibition process.

We both consider imbibition of wetting or non-wetting liquid, either by putting the dry foam into

contact with the foaming solution that constitutes the foam or with organic oils. Indeed, with

the appropriate choice of surfactants, oil spontaneously invades the liquid network of the foam

without damaging it. Our experiments show an early-time dynamics in t1/2 followed by a late-time

dynamics in t1/4. These features, which differ from theoretical works predicting a late-time t1/3

dynamics, are rationalized considering the influence of the initial liquid fraction of the foam in the

driving capillary force and the impact of gravity through the capillary-gravity equilibrium.
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INTRODUCTION

The earliest studies on impregnation of a single vertical capillary tube from an infinite

reservoir date back to the 1700’s with the pioneer works of Jurin, Newton and later on,

Laplace. Subsequent studies have shown that capillary rise exhibits several dy-

namical regimes, such as the famous Lucas-Washburn t1/2 scaling behavior for

early times[1, 2].

In such a model geometry, the radius of the tube is the only length scale of the system

and both sets the amplitude of the capillary pressure drop and the viscous dissipation. In

homogeneous porous media with more complex geometries such as packed beds of granular

beads, dry soils or paper, various dynamics have been experimentally reported. The imbibi-

tion dynamics of porous media characterized by a unique length scale, is logically described

by the t1/2 law [2–5]. Yet, other dynamics also occur in more complex media, such

as deformable or heterogeneous media, where a unique length scale can not

be defined unequivocally. The capillary rise of water in column of glass beads

follows a t1/4 regime for late times due to micronic heterogeneities of the glass

surface [4, 6, 7] and deformable sponges wick with an unexplained t1/4 dynamics

at late times [7]. A similar t1/4 dynamics is also observed in heterogeneous media

with gradients of pore size [8] and the imbibition between flexible boundaries,

which results from an interplay between capillary, gravity and elasticity of the

boundaries, exhibits different regimes [9].

In this context, dry aqueous foams, which provide perfectly smooth boundary conditions

for the liquid, are interesting examples of complex deformable porous media. In those

porous systems, the liquid is distributed between the thin films, the slender liquid-filled

channels, called Plateau borders and the nodes as depicted in Figure 1-b) and c). When a

dry liquid foam is put into contact at its bottom with its constitutive foaming

solution, the liquid spontaneously rises within the liquid network following a t1/2

law as experimentally observed in microgravity conditions[10–12]. On Earth, theoretical

predictions concerning semi-infinite foams with an initial liquid fraction equal to zero report

that the capillary rise continues indefinitely despite gravity, following a t1/3 law [13] that

recalls capillary rise observed in corners [14–16]. However, to the best of our knowledge,

this scaling law has never been observed experimentally.
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In this letter, we therefore consider the imbibition dynamics of dry aqueous foams. We

use both miscible liquid or an immiscible oil. Indeed, the remarkable imbibition ability of a

liquid foam also holds when it is put into contact with an immiscible liquid, provided that

it is not a defoaming agent for the foam, as recently shown at the scale of a single Plateau

border or in confined geometries [17–19].

The foaming solution we use is described in [17, 20, 21] and consists in a mixture of dif-

ferent components (cocoamidopropyl betaine, sodiumlaurylethyl sulfate, myris-

tic acid and glycerol). It provides rigid boundary conditions of the air/foaming

interfaces due to the presence of the fatty myristic acid [20, 21]. The air/foaming

solution surface tension, viscosity and density of this mixture are γaw = 23.7 ± 1 mN/m,

ηF = 1.4 mPa.s and ρF = 1026 kg/m3. The liquids of viscosity and density η and ρ, are

either miscible or immiscible with the foaming solution. Aqueous miscible solutions with

viscosity η ranging from 1.4 to 100 mPa.s, are obtained by adding glycerol to the foaming

solution. To maintain the architecture of the foam unaltered during the imbibition of im-

miscible fluids, we use two different oils which do not exhibit any defoaming activity. This

requires that the oil droplets trapped within the foaming liquid must neither penetrate the

interface nor spontaneously spread at the air/foaming solution interface. In other words,

the oil droplets in the foaming solution do not wet the air/foaming solution interfaces: the

immiscible liquid is non-wetting. Thus, E = γaw + γow − γao and S = γaw − γow − γao,

the entry and spreading coefficients defined using γaw, γow and γao the air/foaming solution,

oil/foaming solution and oil/air surface tensions, must both be negative [20, 22]. With our

foaming solution and organic oils, such as olive oil or sunflower oil, both E and S exhibit

negative values, as shown in Table I. The viscosity η and the density ρ of the two oils are

also displayed in Table I.

To generate the foam, a slow flow of gaseous nitrogen is blown through a syringe needle

into a 27 cm-high rectangular column with a 6 cm-wide square base filled with the foaming

solution. We use different syringe needles to obtain monodisperse foams with an average

radius R of 0.5 mm, 1.8 mm or 2.5 mm. Besides, the 5-cm high upper part of the column is

removable. Thus, we can extract at the top of the column a foam sample for which the volume

Ω and the massm are known and measured by using a precise weighing scale. We deduce

ε the liquid fraction of the sample from ε = m/Ωρ and typically 0.7.10−4 < ε < 1.2.10−3.

With this set-up, we can therefore vary independently ε and R and thus obtain curvature
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Organic phase γaw γao γow η ρ E S

Sunflower oil 23.7 32.5 4.5 55 0.92 -4 -13

Olive oil 23.7 30.8 3 61 0.92 -4 -10

TABLE I.

Characteristics of the oils used for imbibition with the foaming solution described in [20]. γaw,

γow and γao are the air-foaming solution, oil-foaming solution and oil-air surface tensions in

mN/m, η is the dynamic oil viscosity in mPa.s, ρ is the density in kg.m−3. E and S are the entry

and spreading coefficient in mN/m.

radii of the Plateau border, noted rF , between 15 and 85 µm (see Figure 1-c)). Indeed, in

the limit where ε < 10−2, most of the liquid is comprised within the Plateau borders and

rF =
√

3
√
εR from volume conservation [23, 24].

Given that the contrast of optical indexes between the foam and the liquid is small or

null, we add a small quantity of fluorescent dyes to the liquid at a concentration of 10−2

g/g (fluorescein from Sigma-Aldrich for aqueous solutions and Yellow Black from Rohm

and Haas for organic oils). Those fluorescent markers, which are trapped in the liquid,

provide a means of visualizing the swollen part of the foam [19]. With this set-up and under

illumination with excitation at 488 nm, the liquid is luminous while the aqueous foam - only

constituted of air and foaming solution - is not visible. The fluorescence intensity is followed

with a camera recording at typically 10 frames per second.

Figure 1-d) illustrates such an experiment where a dry dark foam is put into contact

with a large 20 µL fluorescent oil drop sitting on a solid surface. We first observe a lateral

spreading of the oil drop, squeezed between the solid surface and the foam. Yet, after ten

seconds, oil wicks into the foam, revealing the foam architecture and forming a complex oil-

laden foam structure. After 5 minutes, oil has risen in the foam up to h = 10 mm. The foam

film withstands without any problem the oil invasion: we barely observe any film break-up

during the whole process. This confirms that the imbibition only occurs within the Plateau

borders and the nodes and does not interfere with the fragile structure of the foam films as

previously observed at the scale of a single Plateau border [17]. Yet, the structure of this

oil-laden foam is not frozen: elementary topological changes known as T1 are frequently

observed due to liquid redistribution[19].
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FIG. 1. a) Experimental set-up. b) Geometrical elements of foams: Nodes, Plateau borders and foam films.

c) Slender Plateau border with a radius of curvature rF . d) Capillary rise of oil in a dry aqueous foam. The

olive oil drop appears white thanks to a fluorescent dye and invades the network of Plateau borders. Time

interval between each frame is 67 s. The scale bar is 3 mm.

Our fluorescent set-up allows us to follow h, the upper boundary of the imbibition front in

the foam as defined in the fifth frame of Figure 1-d). Figure 2 shows h as a function of time

t, when a 20 µL olive oil drop is put into contact with foams at various liquid fractions. As

classically observed in porous media, the early times dynamics is fast. Moreover, here, the

drier the foam, the faster the early-time dynamics, a feature which underlines the importance

of the liquid fraction of the foam prior to imbibition. When plotted in log-log scale, those

curves do not exhibit a well-defined power law as can be seen on the inset of Figure 2,

where two straight lines corresponding to the t1/2 early and t1/4 late-time dynamics are

drawn. We also emphasize that for the driest foam, the front velocity is small: typically,

5



FIG. 2. Height of the rising front for olive oil as a function of time for different initial liquid fractions.

Inset: log-log scale of the data corresponding to ε = 0.7.10−4. The plain line corresponds to the t1/2

dynamics with the diffusive coefficient given in [12], while the dashed line illustrates the t1/4

dynamics.

ḣ ∼ 0.2 mm/s at t = 10 s. For a centimeter length scale, the Reynolds number is around

Re = ρḣL/η ∼ 10−8 << 1. Note that the imbibition of glycerol or sunflower oil exhibits the

same trends.

The rigid boundary conditions provided by the foaming solution and the small value

of Re suggest that the fluid motion in the foam network corresponds to a Stokes flow

where the capillary driving force is balanced with the viscous dissipation. In the limit

where γow/γaw < 1, recent experimental works at the scale of a single horizontal Plateau

border have revealed the following features [17, 25]. On one hand, the driving capillary

pressure that sustains the imbibition in the Plateau border is set by γaw/rF , where rF is

the curvature radius of the Plateau border prior to imbibition. On the other hand, the bulk

viscous dissipation only occurs in the oil phase and scales as ηż/r2(z, t), where r2(z, t) is
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FIG. 3. Typical evolution of the fluorescence intensity of a single node during sunflower oil imbibition as a

function of the node’s vertical dimension. Initially, the node is located at x = 1 mm and z = 7.9 mm . The

intensity of fluorescence is in arbitrary units and the different curves correspond to fluorescence intensity

measurements taken at different times. The black arrow indicates the evolution of time. Inset: Width

of the peak of intensity (defined at half of the maximum intensity) as a function of time. The red

arrow highlights the time at which the oil front has reached the node.

proportional to the swollen Plateau border cross section. In reference [17], the experiments

were either driven at constant flow rate or constant volume of oil, thus r(z, t) was deduced

from mass conservation [26], while here imbibition occurs from a large reservoir. Thus, to

gain quantitative understanding of the spatial and temporal evolution of r, we take advantage

of the fluorescence intensity of our images. In Figure 3, we report the spatial evolution of

the fluorescence intensity of a single node located at x = 1 mm and z = 7.9 mm for different

times. The oil front reaches the height z = 7.9 mm at t = 270 s, thus the signal prior to

t = 270 s corresponds to noise fluctuation. At t = 274 s, a peak in the fluorescence intensity

is observed. The intensity of this peak grows until reaching a steady shape observed 100 s
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after the front has gone through the node, as can be seen in the inset of Figure 3 where a

saturation of the peak’s width is observed after t = 400 s. This suggests that for the foam

below the oil front, the distribution of oil quickly reaches a steady-state profile. This steady-

state profile must match the equilibrium profile given by a balance between capillarity and

gravity [23, 24] . At late time and for z << h, r does not depend anymore on t and:

r(z, t) = r(z) ∼ R

1 + αz
(1)

where α = ρgR
γaw+γow

∼ ρgR
γaw

, has the dimension of an inversed length. This classic

profile illustrates the complex multi-scale geometry of foam under gravity: for z < 1/α, the

curvature is only set by the bubble size r ∼ R, while for z > 1/α, r ∼ R/αz. To describe the

imbibition dynamics within the aqueous foam, we consider the flow throughout the slender

Plateau borders below the front[23, 24] and use the Hagen-Poiseuille law:

v = −Kcδr(z)2

η

dP

dz
(2)

where r(z) is given by Eq. 1 and v, η, Kc represent the average velocity of the liquid, the

liquid dynamic viscosity and the permeability coefficient for infinite slender channels, Kc

= 1/50. δ = 0.16 is a numerical factor linking r and A, the cross-section of a

Plateau border so that A = δr2 [27–29]. Then, we write mass conservation, which yields

v(z) = v(h)r2(h)/r2(z) = ḣr2(h)/r2(z). Integrating Eq. 2 between 0 < z < h with the

boundary conditions p(z = 0) = po and p(h) = po − γaw/rF and using Eq. 1 gives:

ḣ

(
(1 + αh)3 − 1

(1 + αh)2

)
=
αδγawR

2

10ηrF
(3)

Eq. 3 is then integrated with the condition h(t = 0) = 0:

(1 + αh)4 +
4

1 + αh
− 5 =

2δ

5
√

3

α2Rγaw√
εη

t (4)

At late times or for αh >> 1, Eq. 4 predicts an evolution of the rising front in t1/4,

while for αh << 1, a second-order limited expansion of Eq. 4 gives h2 ∼ Rγawt/
√
εη,

thus suggesting an early time dynamics of imbibition in t1/2. These regimes intersect for

h ∼ 1/α, the typical height for which the curvature radius of the foam changes from R to

R/αh. Moreover, Eq. 4 suggests a collapse of the data using the dimensionless variables αh

and t∗ = α2Rγaw√
εη

t, which is in very good agreement with our experimental results obtained for
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FIG. 4. Normalized imbibition front αh as a function of normalized time t∗ in log-log plot. In the legend,

AS1, AS10 and AS100 respectively stand for Aqueous Solution with η =1.4,10 or 100 mPa.s, while OO and

SO stands for Olive Oil and Sunflower Oil. The black line corresponds to (1 + αh)4 + 4
1+αh − 5 = b 2δ

5
√
3
t∗

with b ∼ 0.1, while the two dashed lines to the power laws: t1/2 at early times and t1/4 at late times.

three different liquids, either organic or aqueous, and foams with various bubble diameters

and initial liquid fractions, as can be seen in Figure 4. Furthermore, the data are well fitted

by (1 + αh)4 + 4
1+αh

− 5 = b 2δ
5
√
3
t∗, with a coefficient b deduced from the experiments of

b ∼ 0.1.

Foam drainage theory provides different scaling laws for foam imbibition,

which can be confronted to our results. In particular, the diffusive regime ob-

served under microgravity conditions [10, 11] is in very good agreement with

our data as can be seen in the inset of figure 2, thus underlining the negligible

role of gravity when the foam is wet at the bottom. At late times, analytical

and numerical calculations for the imbibition of infinitely dry foams on Earth
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gives [13]:

h ∼
(
γ2aw
ηρg

t

)1/3

(5)

The scatter in the data makes it difficult to distinguish between the different

temporal regimes of equations 4 and 5. Yet, contrary to equation 4, equation

5 neither captures the influence of ε nor R that is observed in the experiments.

This can be understood recalling that Equation 5 has been derived i) solving the

Partial Differential Equation (PDE) ruling the evolution of r(z, t) ii) assuming a foam with

an initial liquid fraction equal to zero and iii) seeking for self-similar solutions of the PDE.

This procedure is particularly useful to describe the asymptotic behavior of solutions in

the limit where these no longer depend on the detail of the initial and boundary conditions.

However, in our experiment, the foam sample is only 5-cm high, not infinitely dry and

the time-scale is limited. Thus, the initial and boundary conditions can not be

neglected. We therefore never observe any convergence of the dynamics towards

the t1/3 self-similar regime.

We highlight the ability of dry liquid foams to displace and drive upward

miscible or immiscible liquids on Earth. This remarkable feature is of consider-

able interest in various industries such as soil remediation, detergency, shampoo

industry, enhanced oil recovery and dismantling of nuclear power plants, where

foams are used for their low density, non-newtonian rheology and the low quantity

of liquid waste they generate. Considering steady-state solutions and rigid interfaces

in the framework of porous media, we provide a physical picture for this imbi-

bition dynamics, which captures well our experimental observations concerning

the bubble radius R, the initial liquid fraction ε and the long-term dynamics. Yet,

integrating this physical picture in the framework of the foam drainage equation,

which has proven successful for both mobile and rigid interfaces remains to be

done.
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Jalmes, Foams : Structure and Dynamics (Oxford University Press, 2013).

[24] D. Weaire and S. Hutzler, The Physics of Foams (Oxford University Press, 1999).

[25] A. Cohen, N. Fraysse, J. Rajchenbach, M. Argentina, Y. Bouret, and C. Raufaste, Phys. Rev.

11



Lett. 112, 218303 (2014).

[26] P. Warren, Phys. Rev. E 69, 041601 (2004).

[27] S. Cohen-Addad, R. Hohler, and O. Pitois, Ann. Rev. Fluid Mech. 45, 241 (2013).

[28] A. Nguyen, J. Coll. Int. Sci. 249, 194 (2002).

[29] S. Koehler, S. Hilgenfeldt, and H. Stone, J. Coll. Int. Sci. 276, 420 (2004).

12


