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Abstract. In fatigue design of metals, it is common practice to distinguish between high-cycle fatigue (occur-

ring after 10000-100000 cycles) and low-cycle fatigue. For elastic-plastic materials, there is an established

correlation between fatigue and energy dissipation. In particular, high-cycle fatigue occurs when the energy

dissipation remains bounded in time. Although the physical mechanisms in SMAs differ from plasticity, the

hysteresis observed in the stress-strain response shows that some energy dissipation occurs, and it can be rea-

sonably assumed that situations where the energy dissipation remains bounded is the most favorable for fatigue

design. We present a direct method for determining if the energy dissipation in a SMA structure is bounded or

not. That method relies only on elastic calculations, thus bypassing incremental nonlinear analysis. Moreover,

only a partial knowledge of the loading (namely the extreme values) is needed. Some results related to Nitinol

stents are presented.

1 Introduction

This paper is concerned with the long-time behaviour of

Shape Memory Alloys (SMA) bodies under prescribed

loading histories. For elastic perfectly plastic bodies, a

fundamental result is the Melan’s theorem [1, 2] which

gives a sufficient condition for the energy dissipation to

remain bounded with respect to time. That last situation

is classically referred to as shakedown, and is associated

with the intuitive idea that the body behaves elastically for

time t sufficiently large, i.e. that the plastic strain tends

to a limit as t → ∞. Melan’s theorem has the distinctive

property of being path-independent, i.e. independent on

the initial state of the structure. Regarding fatigue design,

shakedown corresponds to the most beneficial regime of

high-cycle fatigue, as opposed to the regime of low-cycle

fatigue which typically occurs if the plastic strain does not

converge towards a stabilized value [3].

Much effort has been devoted to developing constitu-

tive laws for describing the behaviour of SMAs. The phase

transformation is typically described by an internal vari-

able α which - depending on the complexity of the ma-

terial model - may be scalar or vectorial. A fundamen-

tal observation is that the internal variable α must comply

with some a priori inequalities that result from the mass

conservation in the phase transformation process. As a

consequence, the internal variable α is constrained to take

values in a set K that is not a vectorial space (in most of

SMA models, K is a bounded set). The presence of such

constraints constitutes a crucial difference with plasticity
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models, and calls for special attention when the structural

evolution problem is considered [4–7].

It was recently proved that the Melan’s theorem could

be extended to SMAs [8, 9]. When the shakedown limit

provided by that theorem is exceeded, it was found that

the large-time behaviour is dependent on the initial state:

in the case of cyclic loadings, some initial conditions lead

to shakedown whereas some others lead to alternating

phase transformation. Such a feature is not found in stan-

dard plasticity. The shakedown theorem in [8, 9] is path-

independent - in the spirit of the original Melan theorem

[1, 2] - and applies to a wide range of constitutive models

of phase transformation in SMAs. As explained in this pa-

per, the theorem in [8, 9] can be used to obtain bounds on

the loadings for which shakedown occurs, thus leading to

a general method for the fatigue design of SMA structures.

2 Evolution of a SMA continuum

2.1 Constitutive laws

We consider constitutive SMA models which enter the

framework of standard generalized materials [10]. The lo-

cal state of the material is described by the strain ε and an

internal variable α tracking the phase transformation. The

variable α is constrained to take values in a given bounded

set K . The rate-independent behavior of the material is

determined by the constitutive relations

σ =
∂w

∂ε
(ε,α) , A = −∂w

∂α
(ε,α), (1)

A = Ad + Ar, (2)
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α̇ ∈ ∂IC(Ad), (3)

Ar ∈ ∂IK (α). (4)

where w(ε,α) is the free energy function and C is the elas-

ticity domain of the material. In (3)-(4), ∂ denotes the sub-
differential operator [11] and IK (resp. IC) is the indica-

tor function of the set K (resp. C), i.e. the function that is

equal to 0 in K (resp. C) and infinite outside K (resp. C).
In (2), A can be interpreted as the driving force for phase

transformation. Eq. (3) is the normality flow rule. The

term Ar in (2-4) arises as a consequence of the constraint

α ∈ K . We refer to [12] for a derivation of (1-4) from the

principle of thermodynamics.

We assume that the sets C, K are convex and consider

free energy functions w(ε,α) of the form

w(ε,α) =
1

2
(ε − K·α) : L : (ε − K · α) + f (α) (5)

where L is symmetric positive, K is a given matrix, and f
is a positive differentiable function (not necessarily linear

nor convex). In such case, we have from (1)

σ = L : (ε − K · α) , A = Kt : σ − f ′(α)

where Kt is the transpose of K and f ′ is the derivative

of f . The total strain ε is thus the sum of an elastic strain

L−1 : σ (proportional to the stress) and an inelastic strain

K · α (proportional to the internal variable α). The driving

force A depends linearly on the stress σ, but may depend

nonlinearly on the internal variable α.

Many existing models of shape-memory alloys fit in

the format considered. For instance, a three-dimensional

micromechanical model of single crystals used in the lit-

erature [4, 6, 7] is given by

w(ε, ξ) =
1

2
(ε −

n∑
i=1

ξiε i) : L : (ε −
n∑

i=1

ξiε i) +
∑
i=1

miξi,

C = [G−
1 ,G

+
1 ] × · · · × [G−

n ,G
+
n ],

K = {ξ ∈ Rn
+ :

n∑
i=1

ξi ≤ 1},
(6)

where n is the number of martensitic variants and ε i is the
given transformation strain for each variant. The scalars

mi, G+
i , G

−
i in (6) are all constitutive parameters of the

model. The internal variable ξ = (ξ1, · · · , ξn) represents

the set of volume fractions for each martensitic variant.

Because of mass conservation in the phase transformation,

the volume fraction of the austenite is equal to 1 − ∑i ξi,
hence the constraint

∑
i ξi ≤ 1 that is imposed on ξ. For ξ

verifying 0 < ξi (for all i) and
∑

i ξi < 1, the term Ar in (4)

is equal to 0 and the relations (2-3) become

ξ̇i ≥ 0 if σ : ε i − mi = G+
i ,

ξ̇i ≤ 0 if σ : ε i − mi = G−
i ,

ξ̇i = 0 if σ : ε i − mi ∈ (G−
i ,G

+
i ).

Those relations define the evolution of phase-

transformation in a way similar to crystal plasticity.

Phenomenological SMAmodels can also enter the for-

mat considered. An example is the model of [13, 14], de-

fined by

w(ε,αtr) = 1
2
(ε − αtr) : L : (ε − αtr) + a‖αtr‖ + 1

2
h‖αtr‖2,

C = {σ ∈ R3×3
s : ‖ dev(σ)‖ ≤ σY },

K = {αtr ∈ R3×3
s : trαtr = 0; ‖αtr‖ ≤ εL}.

(7)

where dev denotes the deviator. In the model (7), the

internal variable is the macroscopic transformation strain

αtr. The constitutive parameters h, εL and σY are positive.

The constitutive parameter a is positive in the superelastic

regime, i.e. for sufficiently high temperatures. The norm

‖.‖ in (7) is the euclidean norm in the space of 3 × 3 sym-

metric matrices, i.e. ‖τ‖ =
√∑3

i, j=1 τ
2
i j. In order to eluci-

date the meaning of the relations (2-4), consider the sim-

plifying case a = h = 0 in (7). For αtr such that ‖αtr‖ < εL,
the term Ar in (4) is equal to 0 so that (2-3) reduce to

α̇tr = λ dev(σ) with λ ≥ 0, λ(σY − ‖ dev(σ)‖) = 0. (8)

The relation (8) corresponds the Von Mises flow rule for

the internal variable αtr. In particular, when α̇tr � 0

(i.e. phase transformation occurs), (8) can be equivalently

rewritten as

dev(σ) = σY
α̇tr

‖α̇tr‖ . (9)

For αtr such that ‖αtr‖ = εL, the term Ar in (4) takes the

form Ar = μα (with μ ≥ 0). Eqs (8-9) have to be modified

accordingly. In particular, (9) becomes

dev(σ) = σY
α̇tr

‖α̇tr‖ + μα.

2.2 Quasi-static evolutions

In the following we are interested in studying the evolu-

tions of a continuum submitted to a prescribed loading his-

tory. The continuum occupies a domainΩ and is submitted

to body forces f d. Displacements ud are imposed on a part

Γu of the boundary Γ, and tractions Td are prescribed on

ΓT = Γ − Γu. The given functions f d,ud,Td depend on po-

sition x and time t. The stress and state variables (σ, ε,α)
in the continuum are also expected to depend on (x, t). In
order to alleviate the expressions, this dependence will be

omitted in the notations, unless in the case of possible am-

biguities.

Quasi-static evolutions of the continuum are governed

by the following system:

σ ∈ Kσ , ε ∈ K ε , α ∈ K ,
α̇ ∈ ∂IC(Ad) , Ar ∈ ∂IK (α),

σ = L : (ε − K·α),
Kt : σ − f ′(α) = Ad + Ar,

(10)

where Kσ and K ε are respectively the sets of admissible

stress and strain fields, defined by

Kσ = {σ|divσ + f d = 0 in Ω;σ · n = Td on ΓT },
K ε = {ε|ε = (∇u + (∇u)t)/2 in Ω; u = ud on Γu}.

(11)

Starting from a given initial state α(0), (10) determines the

evolution of the stress and strain fields.
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3 A general method for fatigue design

3.1 Shakedown theorem

We examine conditions under which the energy dissipation∫ T
0

∫
Ω

Ad · α̇dxdt remains bounded (with respect to time

T ) for all solutions of the evolution problem (10). Such

a situation is referred to as shakedown. As mentioned in

the introduction, shakedown is related to the fact that the

evolution becomes elastic in the large-time limit [8, 15]

and corresponds to high-cycle fatigue.

Let us introduce the so-called fictitious elastic re-
sponse (σE , εE) of the system, i.e. the response that would

be obtained if the material was purely elastic. More pre-

cisely, (σE , εE) is the solution of

σE ∈ Kσ , εE ∈ K ε ,σE = L : εE . (12)

The central result is the following shakedown theorem

[8, 9]: If there exists m > 1, τ ≥ 0 and a time-independent

field A∗(x) such that

mKt : σE(x, t) − A∗(x) ∈ C ∀x ∈ Ω,∀t > τ (13)

then there is shakedown, irrespective of the initial condi-

tion. A proof of that theorem is presented in 3.2. We refer

to [8, 9] for more details.

There is a simple geometric interpretation of the con-

dition (13): Consider a fixed location x and let Γ(t) be

the curve described by Kt : σE(x, t). The condition (13)

means that, up to a time-independent translation, the curve

Γ remains in the elasticity domain C (for time t large

enough).

As an example, consider the material model (7). Using

the presented theorem, it can easily be seen that shake-

down occurs if ‖msE(x, t) − A∗(x)‖ ≤ σY where sE is

the deviatoric part of σE and A∗(x) is an arbitrary devi-

atoric tensor. The obtained shakedown condition thus re-

duces to a restriction on the diameter of the curve sE(x, t),
as for shakedown in linear kinematic hardening plasticity

[15, 16].

Observe that we did not assume the convexity of f .
This is a welcome feature for the shakedown analysis of

SMA bodies because the function f associated with some

micromechanical SMA models is not necessarily convex

[17–20]. We refer to [9] for a detailed discussion between

the theorem (13) and the analog result in plasticity.

Finally, we note that the above theorem gives a suffi-

cient condition for shakedown to occur, whatever the ini-
tial state is. When the loading is beyond the limit provided

by the theorem, shakedown may still occur for some (but

not all) initial conditions (see [8, 9]) for some examples).

In such case, the asymptotic behavior is strongly depen-

dent on the initial state: For instance, in the case of peri-

odic loading, some initial conditions leads to shakedown

while others lead to alternate phase transformation (i.e. a

periodic but non constant evolution of the phase transfor-

mation). Interesting, such dependence of the asymptotic

regime on the initial state has also been observed in other

nonlinear mechanical problems, such as contact with fric-

tion [21] and plasticity with temperature-dependent elastic

moduli [22].

3.2 Proof of the theorem

Consider a solution (ε,α,σ, Ar, Ad) of the evolution prob-

lem (for some given initial condition) and let

D(t) =
∫
Ω

Ad · α̇dx

be the rate of dissipated energy. Assuming (m, τ, Ar
∗) sat-

isfy (13), we show in the following that the total dissipated

energy
∫ T
0

D(t)dt remains bounded as T → ∞. To that pur-

pose, introduce the positive functional W(t) defined as

W(t) =
∫
Ω

w(ε(t) − εE(t),α(t)) dx.

We have

Ẇ(t) =
∫
Ω

[(σ − σE) : (ε̇ − ε̇E − K · α̇) + f ′(α) · α̇] dx.

Since div(σ − σE) = 0 in Ω, (σ − σE) · n = 0 on ΓT and

u − uE = 0 on Γu, the principle of virtual power gives∫
Ω

(σ − σE) : (ε̇ − ε̇E) dx = 0.

Hence

Ẇ(t) =
∫
Ω

[−Kt : (σ − σE) + f ′(α)] · α̇ dx

which using (10) can be rewritten as

Ẇ(t) = −D(t) +
∫
Ω

[−Ar + Kt : σE] · α̇ dx.

Setting Ad
∗ = mKt : σE(t) − Ar

∗, we obtain

Ẇ(t) = −D(t) +
∫
Ω

[−Ar +
1

m
(Ad

∗ + Ar
∗)].α̇ dx. (14)

The property (13) shows that Ad
∗ ∈ C for t > τ. Since

α̇ ∈ ∂IC(Ad) and C is convex, we have

(Ad − Ad
∗) · α̇ ≥ 0. (15)

This last relation can be interpreted as the principle of

maximum dissipation. Similarly, the relations Ar ∈
∂IK (α) and α ∈ K imply that

0 ≥ Ar(t) · (α(t′) − α(t))
for any t′. Taking the limit t′ −→ t with t′ < t, we obtain

Ar · α̇ ≥ 0 (16)

where α̇ is the left-time derivative. Combining (15)-(16)

with (14) yields

Ẇ(t) ≤ 1 − m
m

D(t) +
1

m

∫
Ω

Ar
∗ · α̇ dx.

Integrating with respect to time on [τ,T ] and noting that

Ar
∗ is time-independent, we find

(m − 1)

∫ T

τ

D(t) dt ≤ mW(τ) +

∫
Ω

Ar
∗ · (α(T ) − α(τ)) dx

(17)
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where the property W(T ) ≥ 0 has been used. Since K
is bounded, there exists a positive constant K such that

‖α‖ ≤ K for any α ∈ K . Therefore

∫
Ω

Ar
∗ · (α(t) − α(τ)) dx ≤ 2K

∫
Ω

‖Ar
∗‖ dx.

Combining that inequality with (17) gives

(m − 1)

∫ T

τ

D(t) dt ≤ mW(τ) + 2K
∫
Ω

‖Ar
∗‖ dx.

The right-hand side of that inequality is independent on

T . Therefore
∫ T
τ

D(t) is bounded as T −→ +∞, which

completes the proof.

3.3 Application to fatigue design

In practice, the shakedown condition (13) can be used to

bound the loadings for which shakedown occurs. To illus-

trate this point, consider the simple situation of a propor-

tional loading history: The functions f d,ud,Td that define

the loading history take the form

f d(x, t) = λ(t) f d0(x),
ud(x, t) = λ(t)ud

0
(x) ,

Td(x, t) = λ(t)Td
0(x)

where λ(t) is a loading parameter, depending on time. The

elastic response σE in (12) can be written as

σE(x, t) = λ(t)σE
0 (x)

where σE
0 (x) is the solution of the elasticity problem (12)

for the loading ( f d0,u
d
0
,Td

0). Therefore, the condition (13)

becomes

mλ(t)Kt : σE
0 (x) − A∗(x) ∈ C ∀x ∈ Ω,∀t > τ. (18)

Assume that λ(t) varies between a minimum value λmin

and a maximum value λmax. In such case, (18) is satisfied

provided that

m(λmax − λmin)Kt : σE
0 (x) − A∗(x) ∈ C (19)

for some A∗(x) and some m > 1. It is necessary at this

point to distinguish between the SMA models considered.

For instance, for the micromechanical model (6) of single

crystals, the condition (19) can be rewritten as

m(λmax − λmin)ε
i : σE

0 (x) ≤ G+
i −G−

i . (20)

where we recall that ε i is the transformation strain for vari-

ant i. For a scalar m > 1 satisfying (20) at all point x to

exist, it is necessary that

(λmax − λmin){sup
x∈Ω
ε i : σE

0 (x)} < G+
i −G−

i .

The conclusion is that shakedown occurs if the loading sat-

isfies

λmax − λmin < MHCF (21)

Figure 1. Geometry of a stent.

where

MHCF = min
i

G+
i −G−

i

supx∈Ω ε i : σE
0
(x)
. (22)

We can observe that the loading history only appears in

(21) through the extreme values λmin and λmax: The de-

tailed knowledge of λ(t) is not required. In particular, λ(t)
does not need to be periodic.

As an other example, consider the case where the elas-

ticity domain C is a ball, such as for the phenomenological

model (7). Then (19) can be satisfied by some A∗(x) pro-
vided that

m(λmax − λmin)‖Kt : σE
0 (x)‖ ≤ diamC ∀x ∈ Ω (23)

where diamC is the diameter of C, i.e.
diamC = sup

τ,τ′∈C
‖τ − τ′‖.

Shakedown occurs if (23) is satisfied by some m > 1 and

for all x ∈ Ω, i.e. if

λmax − λmin < MHCF

where MHCF is now defined by

MHCF =
diamC

supx∈Ω ‖Kt : σE
0
(x)‖ . (24)

The conclusion is the following: If the amplitude

λmax − λmin of the loading is smaller than MHCF , then the

structure shakes down and therefore is expected to be in

the high cycle fatigue regime. The scalar MHCF can thus

be interpreted as a limit for high cycle fatigue. In prac-

tice, the calculation of MHCF only requires to solve a sin-

gle problem of linear elasticity (so as to obtain σE
0 ). The

relation (21) can be used as a criterion for the fatigue de-

sign of SMA structures: If the amplitude of the loading

is specified, the geometry of the structures and the choice

of constitutive materials should be adjusted so as to satisfy

(24). The latter indeed have a direct influence of the elastic

response σE
0 .

4 Application to Nitinol stents

In this section we discuss the application of the proposed

method to Nitinol stents, that are used in the biomedical
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Figure 2. Diamond-shape specimen used in unaxial traction

tests: Reference configuration (left), Deformed configuration

(right).

field for treating artery disease [23, 24]. The tubular ge-

ometry of such devices (see Fig. 1) usually consists in the

repetition of an elementary motif (a ’strut V’ in the case

of Fig. 1). In order to study the fatigue of stents, some

extensive testing has been done in [25] on specifically de-

signed diamond-shape specimen (a simplified model of

such specimen is shown in Fig. 2). Those diamond shaped

specimen consists in 2 ’strut Vs’ arranged in a symmetric

fashion, so as to be easily fitted in a fatigue test machine.

The specimen were submitted to displacement-controlled

cyclic loading (along the horizontal direction in Fig. 2),

with prescribed mean and strain amplitudes. The resulting

S-N curves (strain amplitude vs number of cycles to fail-

ure) showed a low- to high-cycle fatigue transition occur-

ring for a strain amplitude approximatively equal to 0.5%,

without any clear influence of the mean strain: for a pre-

scribed strain amplitude larger than 0.5%, failure typically

occurred after a low number of cycles (103−105), whereas

for a prescribed strain amplitude smaller than 0.5%, the

specimen survived after 105 cycles (see [25] for details).

It is interesting to see if the shakedown-based approach

presented in Sect. 3 is consistent with then experimen-

tal results in [25]. To that purpose, linear Finite Element

Analysis (FEA) was used to evaluate the fictitious elastic

response σE
0 . The geometry used in the computations is

represented in Fig. 2(left). The maximum length along

the horizontal direction (which is the direction of loading)

is l =1.35 mm. The length in the vertical direction is equal

to 3.104 mm and the thickness is equal to 0.2 mm. In Fig.

2(right) is shown the deformed configuration obtained by

FEA for a reference value ε0 of the imposed strain (arbi-

trary set equal to 0.055/l = 0.0407%). The corresponding

stress distribution σE
0 is shown in Fig. 3. The elasticity

tensor L was chosen as isotropic with a Young modulus

equal to 50 GPa and a Poisson ration equal to 0.35 [14].

Figure 3. Results of linear FEA (Von Mises distribution).

Using the SMA model (7), the high cycle fatigue limit

(24) becomes

MHCF =
2σY

supx∈Ω ‖sE0 (x)‖
.

Note that ‖sE0 (x)‖ corresponds to the standard Von Mises

stress. FEA shows that sup ‖sE0 (x)‖ is approximatively

equal to 1406 MPa. That value is reached in the knee area

of the specimen (see Fig. 3 ). Using the constitutive value

σY = 50 MPa [14], the shakedown limit is approxima-

tively equal to 0.35% (strain amplitude), which –notably

given the approximation on the geometry as well as on the

constitutive parameters– is in satisfactory agreement with

the experimental results of [25].

5 Concluding remarks

In this communication, we have presented a general

method for the fatigue design of SMA bodies, based on

shakedown theory. That method is direct in the sense

that incremental nonlinear analysis – which is costly and

somewhat tricky to perform for SMAs – is completely by-

passed. Moreover, only a partial knowledge of the load-

ing (namely the knowledge of the extreme values) is re-

quired. That method is very simple to use as it only relies

on elastic calculations and can be implemented in the post-

processing stage. Further work is in progress to carry such

an implementation is the general case of a parametrized

loading history.

On a final note, we observe that all those simplify-

ing features ultimately stem from a distinctive property of

SMAmodels, namely the constraints that are placed on the

internal variable. Compared to plasticity, such constraints

makes solving incremental evolutions more complicated

but they considerably simplify the shakedown analysis.
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