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Bounds on the recoverable deformations of polycrystalline SMAs at finite
strain

Michaël Peigney ,a

1Univ Paris-Est, Laboratoire Navier (UMR 8205), CNRS, Ecole des Ponts ParisTech, IFSTTAR, F-77455 Marne la vallée, France

Abstract. This communication is concerned with the theoretical prediction of the recoverable strains (i.e. the

strains that can be recovered by the shape memory effect) in polycrystalline SMAs. The analysis is carried out

in the finite strain setting, considering a nonlinear elasticity model of phase transformation. The main results

are some rigorous upper bounds on the set of recoverable strains. Those bounds depend on the polycrystalline

texture through the volume fractions of the different orientations. A two-orientation polycrystal of tetragonal

martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and

the results are compared with lower bounds obtained by considering laminate textures. The issue of applying

the proposed method to complex polycrystalline textures is commented on.

1 Introduction
A possible route to study the formation of microstruc-

tures in SMAs is to adopt a nonlinear elasticity model of

phase transformation [1]. The general principle is that, un-

der a prescribed loading, the system tends to minimize its

free energy. Assuming the microscopic, mesoscopic and

macroscopic scales to be well separated, the energy mini-

mization principle leads to different expressions of the free

energy at each scale. Denoting the microscopic free en-

ergy by Ψ, the mesoscopic energy Ψ̃ is obtained as the

relaxation (or quasiconvex envelope) of Ψ, which essen-

tially amounts to solve an optimal design problem with

respect to the martensite/austenite geometric arrangement

(see Sect. 2 for a precise definition). Viewing group of

grains with the same orientation as individual homoge-

neous materials (governed by mesoscopic free energies),

the polycrystal can be regarded as a composite material

with a macroscopic energy Ψ̄ obtained by homogenization
of the constitutive free energy functions.

Assuming the microscopic free energy Ψ to be known,

determining its relaxation Ψ̃ largely remains an open prob-

lem. Estimating the macroscopic free energy Ψ̄ is even

more challenging as stress and strain compatibility con-

ditions between the grains need to be taken into account.

Of special interest are the strains that minimize the meso-

scopic (resp. macroscopic) free-energy. Those energy-

minimizing strains can indeed be interpreted as the recov-

erable strains of a monocrystalline (resp. polycrystalline)

shape memory alloy, i.e. the strains that can be recov-

ered by the shape memory effect [2, 3]. Knowing the set

of recoverable strains is crucial for designing SMA sys-

tems. Experiments only give partial insight in the struc-

ture of that set, as they usually only give measurements

a
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along prescribed directions (see e.g. [4]). In this paper,

we propose theoretical bounds on the whole set of recov-

erable strains, i.e. in the space of three-dimensional defor-

mation gradients. Those bounds are expressed in terms of

the lattice parameters and of statistical information on the

polycrystalline texture (namely the orientation distribution

function). Such data can be obtained experimentally us-

ing X-ray diffraction or EBSD (Electron Back Scattering

Diffraction).

Most work related to that topic has been carried out in

the geometrically linear setting, i.e. assuming small de-

formations with respect to a reference configuration [2, 5–

13]. In this paper, we focus on upper bounds of the recov-

erable strains of martensitic polycrystals, in the geomet-

rically non-linear setting. The set of mesoscopic energy-

minimizing strains has been obtained in closed-form for

a double-well energy [1]. Using known restrictions on

Young measures [1, 14], an upper bound on the meso-

scopic energy-minimizing strains has been proposed in the

case of three or more wells [15]. Regarding polycrystals,

a general method has been introduced in [16] for gener-

ating upper bounds on the set of macroscopic recoverable

strains, assuming that the set of recoverable strains of the

constitutive single crystals (or at least an upper bound on

it) is known. The approach used in [16] is based on the

translation method [17–19], which has proved to be a pow-

erful tool in various problems related to homogenization

[20–22]. In this communication, we first present in Sect. 2

the monocrystalline bound [15] and subsequently combine

it with the methodology of [16] to derive explicit upper

bounds for polycrystals (Sect. 3). It turns out, however,

that the obtained bounds may fail to recover the single

crystal bound in the homogeneous limit. Motivated by that

observation, we modify the polycrystalline approach so as
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to take the special structure of the single crystal bound into

account (Sect. 4). This results in new upper bounds for

polycrystals, which improve on the bounds of Sect. 3 and

are consistent with the single crystal bound in the homo-

geneous limit. A two-orientation/three-well polycrystal is

studied as an illustrative example in Sect. 5.

2 Single crystal

In the framework of nonlinear elasticity at finite strains,

the microscopic behavior of a shape-memory alloy is de-

scribed by its free energy density Ψ, which is a function

of the deformation gradient F. The principle of frame in-

difference implies that Ψ(R.F) = Ψ(F) for any rotation R
and deformation gradient F. We denote by K the set of

deformation gradients that minimize Ψ. Without loss of

generality, we can assume that the minimum value of Ψ is

equal to 0, so that Ψ ≥ 0 and

K = {F|Ψ(F) = 0}.
If the temperature T is below the transformation tem-

perature T 0 (which is assumed throughout this paper), the

set K takes the form

K =

m⋃

i=1

SO(3)Ui

where m is the number of martensitic variant and

U1, · · · ,Um are the transformations strains. The sym-

metric positive definite U1, · · · ,Um are all symmetry re-

lated, i.e. for any (i, j) there exists a rotation Ri j such

that U j =
tRi j.Ui.Ri j (here and in the following, the pre-

superscript t denotes the transpose operator). This is im-

plies that U1, · · · ,Um all have the same determinant η. It
is convenient to introduce the set E defined as

E = {F ∈ R3×3 : det F = η}.
Consider a reference configuration where a domain Ω

is occupied by a single crystal of shape memory alloy. The

mesoscopic free energy of the single crystal is given by

Ψ̃(F̃) = inf
F∈A(F̃)

〈Ψ(F)〉 (1)

where 〈.〉 denotes volume average over the domain Ω and

the set A(F̃) of admissible deformation gradient fields is

defined by

A(F̃) = {F|det F > 0,∃u(x) such that

F = ∇u in Ω; u(x) = F̃.x on ∂Ω}. (2)

The function F̃ �→ Ψ̃(F̃) is mathematically referred to as

the quasiconvex envelope (or relaxation) of Ψ. This last

denomination is justified by the fact that Ψ̃ is the largest

function such that: (i) Ψ̃ ≤ Ψ, (ii) Ψ̃ and quasiconvex, i.e.

satisfies

Ψ̃(F̃) ≤ 〈Ψ̃(F)〉 ∀F ∈ A(F̃). (3)

Let K̃ be the set of deformation gradients that minimize

Ψ̃. Since Ψ̃ is positive and vanishes on K, the minimum

value of Ψ̃ is equal to 0 and we have

K̃ = {F̃|Ψ̃(F̃) = 0}.

The set K̃ is also known as the quasiconvex hull of K
[14, 23]. The exact expression K̃ remains generally out

or reach. Therefore, bounds on K̃ (in the sense of inclu-

sion of sets) are of interest. In that regard, it can be proved

[15] that the set K̃+ defined by

K̃+ = {F̃ ∈ E : ∃θ ∈ T such that

0 ≥ sup
(a,b)∈C

{Φ(F̃.a + F̃∗
.b) −

m∑

i=1

θiΦ(Ui.a + U∗
i .b)} }

(4)

is an upper bound on K̃, i.e. satisfies K̃ ⊂ K̃+. In (4), the

set T is defined by

T = {θ = (θ1, · · · , θm) ∈ Rm : θi ≥ 0;

m∑

i=1

θi = 1} (5)

and Φ is the frame indifferent function Φ : R3×3 �→ R

defined by

Φ(M) = max
R∈SO(3)

tr(R.M). (6)

Note that

Φ(M) = λ3 + λ2 + λ1sgn (detM) (7)

where 0 ≤ λ1 ≤ λ2 ≤ λ3 are the eigenvalues of
√

tM.M.

The bound (4) is obtained using known restrictions on

Young measures [1, 14]. The crucial point is that the func-

tion F �→ Φ(F.a + F∗.b) is quasiconvex for all a and b
[24].

In (4), C is a given arbitrary subset of R3×3 × R3×3:
Each choice of C generates a corresponding bound on K̃.

For a well chosen C, the bound given by (4) coincides with
K̃ for the reference cases where the exact expression of K̃

is available (see [15]).

Finally, for a given F̃ in K̃+, we note that the vector

θ in (4) can be interpreted as the volume fractions of the

different wells in a microstructure realizing F̃.

3 Polycrystal

Now consider a polycrystal occupying a domain Ω. We

can decompose Ω as Ω = ∪n
r=1Ω

r where each sub-domain

Ωr is formed by grains with the same orientation. The

microscopic free energy in Ωr can be written as

Ψr(F) = Ψ(tRr.F.Rr) (8)

where Rr is a rotation describing the orientation in Ωr rel-

ative to a reference single crystal. Defining χr the char-

acteristic function of Ωr (i.e. χr(x) = 1 if x ∈ Ωr, and

χr(x) = 0 otherwise), the macroscopic free energy Ψ̄(F̄)
of the polycrystal is given by

Ψ̄(F̄) = min
F∈A(F̄)

〈
n∑

r=1

χrΨ̃
r
(F)〉 (9)

where Ψ̃
r
is the relaxation of Ψr, as defined in (1) (see

e.g.[3] for a detailed justification). In the following, we

primarily focus on the set K̄ of deformation gradients that

minimize the macroscopic energy, i.e.

K̄ = {F̄|Ψ̄(F̄) = 0}.

MATEC Web of Conferences

02004-p.2



In view of (9), we have

K̄ = {F̄|∃F ∈ A(F̄); F(x) ∈ K̃(x) for all x ∈ Ω}. (10)

where K̃(x) is the quasiconvex hull of

K(x) =
m⋃

i=1

SO(3)Ui(x) (11)

In (11), Ui(x) is defined as Ui(x) =
∑n

r=1 χ
r(x)Ur

i with

Ur
i = Rr.Ui.

tRr. Eq. (10) shows that the distinctive prop-

erties of strains F̄ in K̄ is that they can be realized by a

deformation u(x) whose gradient F = ∇u satisfies the lo-

cal constraint F(x) ∈ K̃(x) at each point.

An upper bound on K̄ that take one-point statistics of

the functions χr has been derived [16]. With the present

notations, that bound is characterized by

sup
(a,b)∈C′

{
Φ(F̄.a+F̄∗

.b)−
n∑

r=1

〈χr〉 sup

F∈K̃
r
{Φ(F.a+F∗.b)}} ≤ 0.

(12)

where C′ denote a given subset of R3×3 × R3×3 and K̃
r
is

the quasi convex hull of

Kr =

m⋃

i=1

SO(3)Ur
i .

The upper bound in (12) has been used in [16] on some

simple examples where the sets K̃
r
are known. In more

general situations, the direct application of the bound (12)

is hampered by the fact that K̃
r
is unknown. Such a diffi-

culty can be overcome by using the results from Sect. 2.

Let indeed K̃r
+ be the upper bound of K̃

r
defined in Eq.

(4). Since K̃
r ⊂ K̃r

+, we have

sup

K̃
r
Φ(F.a + F∗.b) ≤ sup

K̃r
+

Φ(F.a + F∗.b).

Therefore, we obtain from (12) that any F̄ in K̄ necessarily

satisfies

sup
(a,b)∈C′

{Φ(F̄.a+F̄∗
.b)−

n∑

r=1

〈χr〉 sup

F∈K̃r
+

{Φ(F.a+F∗.b)}} ≤ 0.

(13)

The calculation of the right-hand side in (13) can be fur-

ther simplified if C′ = C, i.e. if the bound (13) and the

bound K̃r
+ given by (4) are calculated using the same set

of tensors (a, b). In such case it can be verified that

sup

F∈K̃r
+

{Φ(F.a + F∗.b)} = Φr
i (a, b)

with Φr
i (a, b) = Φ(U

r
i .a + Ur,∗

i .b). We thus arrive at

K̄ ⊂ K̄
0

+ (14)

where

K̄
0

+ =
{
F̄ ∈ E : 0 ≥ sup

(a,b)∈C
{Φ(F̄.a + F̄∗

.b)

−
n∑

r=1

〈χr〉 max
1≤i≤m

Φr
i (a, b)}

}
.

(15)

The set K̄
0

+ is an explicit upper bound that depends

on one-point statistics of the texture, i.e. on the volume

fractions 〈χr〉 of the different orientations. The set K̄
0

+ is

defined by a set of nonlinear constraints on F̄.

4 Improved bound for polycrystals

The bound K̄
0

+ in (15) can be improved upon by taking

the special structure of the monocrystalline bound (4) into

account, as is now explained. Consider a given F̄ in K̄. By

(10), there exists a field F ∈ A(F̄) such that F(x) ∈ K̃(x)
for all x ∈ Ω. Using the bound (4) on K̃(x), we know there

exists θ(x) ∈ T such that

0 ≥ Φ(F(x).a + F∗(x).b) −
m∑

i=1

θi(x)Φ(Ui(x).a + U∗
i (x).b)

(16)

for all a and b. Since χr(x) ∈ {0, 1} and ∑r χ
r(x) = 1, Eq.

(16) can be rewritten as

0 ≥ Φ(F(x).a+F∗(x).b)−
n∑

r=1

m∑

i=1

χr(x)θi(x)Φr
i (a, b) (17)

For any r = 1, · · · , n and i = 1, · · · ,m, define
θri (x) = χ

r(x)θi(x). (18)

Taking volume averages in (17) yields

0 ≥ 〈Φ(F.a + F∗.b)〉 −
n∑

r=1

m∑

i=1

〈θri 〉Φr
i (a, b) (19)

for all a and b. The crucial point is that the function

F �→ Φ(F.a + F∗.b) is quasiconvex, which in view of (19)

implies that

0 ≥ Φ(F̄.a + F̄∗
.b) −

n∑

r=1

m∑

i=1

〈θri 〉Φr
i (a, b) (20)

for all a and b. The scalar 〈θri 〉 can be interpreted as the

volume fraction of martensitic variant i with orientation r.
Note from (18) that {〈θri 〉}1≤r≤n1≤i≤m belongs to the set T̄ defined

by

T̄ = {Θ ∈ Rn
m|Θr

i ≥ 0 ;

m∑

i=1

Θr
i = 〈χr〉 ∀r = 1, · · · , n}.

(21)

The developments so far show that for any F̄ in K̄, there

exists Θ ∈ T̄ verifying the inequality (20). This last state-

ment can be rewritten as

K̄ ⊂ K̄+ (22)

where

K̄+ =
{
F̄ ∈ E : ∃Θ ∈ T̄ such that

0 ≥ sup
(a,b)∈C

{Φ(F̄.a + F̄∗
.b) −

n∑

r=1

m∑

i=1

Θr
iΦ

r
i (a, b)}

}
.

(23)
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In a way similar to the bound K̄
0

+ considered in Sect. 3,

K̄+ depends on the texture through the volume fractions

〈χr〉 of the different orientations (the later indeed appear

in the definition (21) of the set T̄).

For a given F̄ in E, let Q(F̄) be the subset ofRn
m defined

by

Q(F̄) =
{
Θ ∈ T̄ :

0 ≥ sup
(a,b)∈C

{Φ(F̄.a + F̄∗
.b) −

∑

r,i

Θr
iΦ

r
i (a, b)}

}

(24)

Observe that Q(F̄) is a convex set defined by a family of

linear constraints. The set Q(F̄) can be interpreted as the

set of volume fractions in the microstructures realizing F̄.
The distinctive propery of strains F̄ in K̄+ is that Q(F̄) is
non empty. In the language of linear programming, check-

ing whether the convex set Q(F̄) is non empty amounts

to check feasibility of the linear constraints in (24) [25],

which is not a direct calculation – even for a discrete C.
In that regard, it can be noted that interior-point methods

[26] offer some efficient algorithms for detecting feasibil-

ity in large-scale linear programming problems. Interest-

ingly, such algorithms, as the self-dual algorithm of Ye

[27], have been used in other problems related to shape-

memory alloys [28] and could possibly be useful for cal-

culating the bound K̄+ in the case of a complex polycrys-

talline texture.

5 Illustrative example

5.1 Upper bounds

We consider a polycrystal with two orientations, assuming

without loss of generality that orientation 1 is the reference

orientation. The constitutive single crystals obey a cubic to

tetragonal transformation: We have K1 =
⋃3

i=1 SO(3)U
1
i

where

U1
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η2 0 0

0 η1 0

0 0 η1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , U
1
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η1 0 0

0 η2 0

0 0 η1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

U1
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
η1 0 0

0 η1 0

0 0 η2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

These matrix representations are relative to the reference

orthonormal basis (v1, v2, v3) of the cubic austenitic lattice
in orientation 1. All the results presented next are obtained

with the lattice parameters of MnCu, i.e. η1 = 1.0099,
η2 = 0.9656 [29]. The set K2 of strains that minimize the

microscopic free energy in orientation 2 can be written as

K2 = R2.K1. tR2 where R2 is the rotation taken as

R2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
2

−
√
2
2

0√
2
2

√
2
2

0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

Textures satisfying the assumptions made so far (i.e. n = 2

with R1 = I and R2 given by Eq. (25) ) are observed in

some ribbons of shape memory alloys [30].

Figure 1. Representation of the deformation I + δu(ω) ⊗ v(ω) :
reference (left) and deformed (right) configuration.

Consider deformation gradients F(ω, δ) of the form

F(ω, δ) = (η21η2)
1/3(I + δu(ω) ⊗ v(ω)) (26)

where

u(ω) = cosω v1 + sinω v2 and v(ω) = − sinω v1 + cosω v2.

The deformation gradient F(ω, δ) is a simple shear be-

tween the directions u(ω) and v(ω) (Figure 1), followed

by a uniform dilatation (η21η2)
1/3I. The parameter ω is the

angle made by the shear directions (u(ω), v(ω)) with the di-
rections (v1, v2) of the cubic austenitic lattice in orientation
1.

The results of Sect. 3-4 allow one to bound the values

(ω, δ) for which F(ω, δ) is recoverable. The solid lines in

Fig. 2 shows the boundary of the domain

Δ+ = {(ω, δ) : F(ω, δ) ∈ K̄+}
where the bound K̄+ is calculated using (23) with a well

chosen class C of tensors (a, b) for which closed-form

expressions can be obtained (see [24] for details). The

volume fraction 〈χ1〉 is set equal to 0.7. Any recover-

able deformation gradient F(ω, δ) is necessarily within the
bounded domain Δ+ delimited by the solid lines in Figures

2.

Similarly, the dotted lines in Fig. 2 show the boundary

of the domain

Δ0+ = {(ω, δ) : F(ω, δ) ∈ K̄
0

+}

where K̄
0

+ is calculated using the same tensors (a, b) as for
the bound K̄+. This allows one to appreciate the improve-

ment brought by the consideration of (23) over (15).

5.2 Lower bound

The relations defining K̄+ in (23) are necessary- but not

sufficient - conditions for a deformation gradient to be re-

coverable. The issue is to determine which deformation

gradients in K̄+ are indeed recoverable for some polycrys-

talline texture that is compatible with the prescribed statis-

tics (i.e. with prescribed volume fractions of the different

orientations). Considering the special class of laminated

textures and adapting an argument introduced in [1], a set
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Figure 2. Bounds on the shear δ for MnCu, 〈χ1〉 = 0.7.

of values (ω∗, δ∗) for which F(ω∗, δ∗) is recoverable can be
constructed. That set is denoted by Δ− and shown in green
in Figure 2. The green domain Δ− is found to fill most of

the domain Δ+, meaning that most of the values of (ω, δ) in
Δ+ can be realized by laminate textures. The gap between

Δ− and Δ+ could possibly be reduced by considering more

complex polycrystalline textures.

6 Concluding remarks

In this paper, some rigorous upper bounds on the recover-

able strains of martensitic polycrystals have been obtained

in the geometrically nonlinear setting. The main results

are the bounds K̄
0

+ and K̄+ (defined in (15) and (23) re-

spectively) that depend on the texture through the volume

fractions of the different orientations. Those bounds are

expressed in terms of a given family C of tensors (a, b),
which acts as a free parameter in (15)-(23): each choice

of C generates corresponding bounds K̄
0

+ and K̄+. For a

given (say discrete) C, the bound K̄+ is tighter than K̄
0

+

but more difficult to calculate: whereas checking if a given

deformation gradient F̄ is in K̄
0

+ is a direct calculation,

checking if F̄ ∈ K̄+ amounts to detecting feasibility of a

linear programming problem in Rn
m. Those bounds could

be evaluated in closed form for the 2-orientation/3-variant

polycrystal presented as an illustrative example. For more

complex textures, it is clear that numerical calculations of

the bounds will be necessary at some point, which requires

adequate algorithms, as discussed in Sect. 4. A more

theoretical line of investigation consists in deriving upper

bounds taking more information on the texture (such as

2-point statistics) into account.

References

[1] J. Ball, R. James, Phil. Trans. Roy. Soc. London A.

338, 338 (1992)

[2] K. Bhattacharya, R. Kohn, Arch. Rational Mech.

Anal. 139, 99 (1997)

[3] K. Bhattacharya, Microstructure of Martensite (Ox-

ford University Press, 2003)

[4] L. Zhao, P. Willemse, J. Mulder, J. Beyer, W. Wei,

Scripta Mater. 39, 1317 (1998)

[5] R. Kohn, Continuum Mech. Thermodyn. 3, 193

(1991)

[6] A.C. Pipkin, The Quarterly Journal of Mechanics

and Applied Mathematics 44, 1 (1991)

[7] V. Smyshlyaev, J. Willis, Proc. R. Soc. Lond. A 455,
779 (1998)

[8] S. Govindjee, A. Mielke, G.J. Hall, J. Mech. Phys.

Solids 51, I (2003)
[9] S. Govindjee, K. Hackl, R. Heinen, Continuum

Mech. Thermodyn. 18, 443 (2007)

[10] M. Peigney, J. Mech. Phys. Solids 57, 970 (2009)

ESOMAT 2015  

02004-p.5



[11] I.V. Chenchiah, A. Schlömerkemper, Arch. Rational

Mech. Anal. 207, 39 (2013)

[12] M. Peigney, J.Mech.Phys.Solids 61, 1511 (2013)

[13] Y. Shu, K. Bhattacharya, Acta Mater. 15, 5457

(1998)

[14] S. Müller, in Calculus of variations and geometric
evolution problems (Springer, 1999)

[15] M. Peigney, J.Mech.Phys.Solids 61, 1489 (2013)

[16] M. Peigney, J. Mech. Phys. Solids 56, 360 (2008)

[17] K. Lurie, A. Cherkaev, Proc. Royal Soc. Edin A 99,
71 (1984)

[18] F. Murat, L. Tartar, in Les méthodes de
l’homogénéisation: théorie et applications en
physique (1985), Vol. 57, pp. 319–369

[19] G. Milton, The theory of composites (Cambridge

University Press, 2004)

[20] G. Milton, S. Serkov, J. Mech. Phys. Solids 48, 1295
(2000)

[21] D. Talbot, J. Willis, Proc. R. Soc. Lond. A 460, 2705
(2004)

[22] M. Peigney, J. Mech. Phys. Solids 53, 923 (2005)

[23] B. Dacorogna,Direct methods in the calculus of vari-
ations, second edition (Springer, 2008)

[24] M. Peigney, Continuum Mech. Thermodyn. pp. 1–

24,DOI 10.1007/s00161–015–0427–4 (2015)

[25] Y. Ye, Interior point algorithms: theory and analysis,
Wiley Interscience (1997)

[26] S.J. Wright, Primal-dual interior-point methods
(Siam, 1997)

[27] Y. Ye, Mathematical Programming 76, 211 (1997)

[28] M. Peigney, J. Seguin, E. Hervé-Luanco, Int. J. Sol.

Struct. 48, 2791 (2011)

[29] Z. Basinski, J. Christian, Journal of the Institute of

Metals 80, 659 (1952)

[30] S. Eucken, J. Hirsch, The effect of textures on
shape memory behaviour, in Materials Science Fo-
rum (Trans Tech Publ, 1991), Vol. 56, pp. 487–492

MATEC Web of Conferences

02004-p.6


