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Available water filtration systems containing metallic iron (Fe 0 filters) are pragmatically designed. There is a lack of sound design criteria to exploit the full potential of Fe 0 filters. A science-based design relies on valuable information on processes within a Fe 0 filter, including chemical reactions, hydrodynamics and their relation to the performance of the filter. The aim of this study was to establish a simple method to evaluate the initial performance of Fe 0 filters. The differential adsorptive affinity of methylene blue (MB) onto sand and iron oxide is exploited to characterize the evolution of a Fe 0 /sand system using the pure sand system as operational reference. Five systems were investigated for more than 70 days: pure sand, pure Fe 0 , Fe 0 /sand, Fe 0 /PM and Fe 0 /sand/PM. Individual systems were characterized by the extent of changes in pH value, iron breakthrough, MB breakthrough and hydraulic conductivity.

Results showed that for MB discoloration (i) pure sand was the most efficient system, (ii) hybrid systems were more sustainable than the pure Fe 0 system, and (iii) the pores of used pumice are poorly interconnected. Characterizing the initial reactivity of Fe 0 filters using MB discoloration has introduced a powerful tool for the exploration of various aspects of filter design.

Introduction

The water remediation industry has developed a wide range of technologies for the removal of biological, chemical and physical contamination [START_REF] Ali | Water treatment by adsorption columns: Evaluation at ground level[END_REF][START_REF] Ghauch | Iron-based metallic systems: An excellent choice for sustainable water treatment[END_REF]. Relevant treatment approaches include adsorption, chemical and enzymatic degradation, electrocoagulation, membrane filtration, photo-catalysis and oxidation. Adsorption on packed beds has been established as the most popular treatment process for water treatment at small scale [START_REF] Dabrowski | Adsorption -from theory to practice[END_REF][START_REF] Brunazzi | An economical criterion for packed absorption column design[END_REF][START_REF] Ali | Water treatment by adsorption columns: Evaluation at ground level[END_REF]. Activated carbon is the most common adsorbent for this process because of its effectiveness and versatility. However, the use of activated carbon in water treatment is still limited by its high cost and difficulty in regeneration [START_REF] Ali | Water treatment by adsorption columns: Evaluation at ground level[END_REF]. Accordingly a frugal adsorption science [START_REF] Reardon | Frugal science gets DIY diagnostics to world's poorest[END_REF] for safe drinking water is yet to be developed.

During the past two decades, the use of metallic iron (Fe 0 ) based materials (Fe 0 materials) as affordable alternative to commercially available adsorbents has become popular because of their low cost, ready availability and lack of toxicity [START_REF] Ghauch | Iron-based metallic systems: An excellent choice for sustainable water treatment[END_REF][START_REF] Guan | The limitations of applying zerovalent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[END_REF].

Although initially used as reducing agents, the unique remediation property of Fe 0 materials arises from their ability to progressively produce highly reactive, iron hydroxides and oxides (Noubactep, 2010a;Noubactep, 2010b;[START_REF] Noubactep | Metallic iron for water treatment: A critical review[END_REF][START_REF] Ghauch | Iron-based metallic systems: An excellent choice for sustainable water treatment[END_REF][START_REF] Noubactep | Metallic iron for environmental remediation: A review of reviews[END_REF] that are excellent adsorbents for many chemicals (e.g. dyes, metals, nitrates, pesticides, pharmaceuticals, radionuclides) [START_REF] Guan | The limitations of applying zerovalent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[END_REF], pathogens (e.g. bacteria, viruses) [START_REF] Bojic | The inactivation of escherichia coli by microalloyed aluminium based composite[END_REF][START_REF] You | Removal and inactivation of waterborne viruses using zerovalent iron[END_REF]. These iron hydroxides with high specific surface area give Fe 0 materials a broad range of applications as demonstrated in numerous laboratory treatability studies, pilot plant studies and full scale applications over the past two decades (O'Hannesin and Gillham, 1998;[START_REF] Wilkin | Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater[END_REF][START_REF] Ghauch | Iron-based metallic systems: An excellent choice for sustainable water treatment[END_REF][START_REF] Guan | The limitations of applying zerovalent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[END_REF].

Despite two decades of intensive research, there is still conflicting reports as to whether admixing Fe 0 and inert materials (e.g. pumice termed as PM herein or sand) should be beneficial for the efficiency of resulting systems (Bi et al., 2009;Ulsamer, 2011 and refs. cited therein). The rationale for the enhanced efficiency of hybrid Fe 0 systems over pure Fe 0 systems is the volumetric expansive nature of metal corrosion [START_REF] Pilling | The oxidation of metals at high temperatures[END_REF].

Accordingly, in a pure Fe 0 system, all particles induce volumetric expansion and clogging occurs very soon [START_REF] Hussam | Contending with a development disaster: SONO filters remove arsenic from well water in Bangladesh[END_REF]Noubactep and Caré, 2010;Noubactep et al., 2010). In contrast, in a 1:1 (vol/vol) Fe 0 :sand system, only one half of available particles undergo volumetric expansion and clogging is delayed [START_REF] Caré | Modelling the permeability loss of metallic iron water filtration systems[END_REF][START_REF] Rahman | Optimising the design of Fe 0 -based filtration systems for water treatment: The suitability of porous iron composites[END_REF][START_REF] Domga | Discussing porosity loss of Fe 0 packed water filters at ground level[END_REF]. Recently, methylene blue (MB) was demonstrated an operational non reactive tracer for characterizing processes occurring in a Fe 0 /sand systems in the initial stage of their operation [START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF][START_REF] Miyajima | Impact of Fe 0 amendment on methylene blue discoloration by sand columns[END_REF][START_REF] Olvera-Vargas | Determining the optimum Fe 0 ratio for sustainable granular Fe 0 /sand water filters[END_REF]Tepong-Tsindé et al. 2015).

The suitability of MB as operational non reactive tracer for the characterization of chemical processes occurring in Fe 0 /sand systems arises from the following facts: (i) sand is an excellent adsorbent for cationic MB [START_REF] Mitchell | Adsorption of methylene blue by high-silica sands[END_REF][START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF], (ii) cations (Fe 2+ and Fe 3+ ) from Fe 0 oxidative dissolution compete with MB for the sand surface [START_REF] Olvera-Vargas | Determining the optimum Fe 0 ratio for sustainable granular Fe 0 /sand water filters[END_REF] and (iii) once the surface of sand is (in-situ) coated by iron oxides, it is a poorer adsorbent for MB than virgin sand [START_REF] Mitchell | Adsorption of methylene blue by high-silica sands[END_REF]. In other words, comparing the discoloration of MB in a pure sand column and a Fe 0 /sand column is a tool to assess the reactivity of the used Fe 0 material. Similarly, because of the high SiO2-content of many PM samples [START_REF] Derakhshan | Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies[END_REF], it can be postulated that comparing the efficiency of the three systems pure Fe 0 , Fe 0 /sand and Fe 0 /PM for MB discoloration will enable to assess the suitability of replacing compact sand by porous PM. It is postulated that PM will sustain hydraulic conductivity (permeability) of the filter [START_REF] Rahman | Optimising the design of Fe 0 -based filtration systems for water treatment: The suitability of porous iron composites[END_REF].

The permeability of a system scales with its pore-size, which in turn is related to grain size, sorting, grain shape, grain packing, and the degree of cementation [START_REF] Nur | Critical porosity; a key to relating physical properties to porosity in rocks[END_REF][START_REF] Bland | Why aqueous alteration in asteroids was isochemical: High porosity # high permeability[END_REF]. The present study has used three different materials (Fe 0 , PM and sand) to characterize solely the degree of cementation in Fe 0 -based filters. In such systems, an important inherent cause of porosity loss is in-situ generated gelatinous iron (hydr)oxides ('iron cement'). The porosity loss induced by 'iron cement' progressively occludes the pores between host grains (e.g. Fe 0 and sand, Fe 0 and PM) [START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF]. To extend the knowledge of system permeability, the porosity of involved particles must be considered as well. For simplification Fe 0 and sand are assumed compact (non porous) while PM is porous [START_REF] Derakhshan | Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies[END_REF].

The present work examines the feasibility of using porous PM to lengthen the service life of a Fe 0 /sand system. MB is used as an operational non reactive tracer. Parallel experiments with pure sand, pure Fe 0 , Fe 0 /sand, Fe 0 /PM, and Fe 0 /sand/PM were performed. The evolution of each system was characterized by measuring the time-dependent breakthrough of H + (pH), iron, MB, and changes of the hydraulic conductibility (permeability).

Material and methods

Solutions

Methylene blue

The used methylene blue (MB) (Basic Blue 9 from Merck) was of analytical grade. The working solution was 2.0 mg L -1 . The solutions were prepared by diluting a 1000 mg L -1 stock solution. The stock solution was obtained by dissolving accurately weighted MB in distilled water. MB was chosen in this study because of its known differential adsorption onto iron oxides and sand [START_REF] Mitchell | Adsorption of methylene blue by high-silica sands[END_REF].

Iron

A standard iron solution (1000 mg/L) from Baker JT  was used to calibrate the spectrophotometer used for analysis. All other chemicals used were of analytical grade. In preparation for spectrophotometric analysis, ascorbic acid (Janssen Chimica) was used to reduce Fe III in solution to Fe II . 1,10 orthophenanthroline (ACROS Organics) was used as reagent for Fe II complexation. Other chemicals used in this study included L(+)-ascorbic acid and L-ascorbic acid sodium acetate (sodium ascorbate).

Solid materials

Fe 0 , PM and sand are quantitatively available at many locations around the world and have been individually positively tested as MB discolouring agents [START_REF] Mitchell | Adsorption of methylene blue by high-silica sands[END_REF][START_REF] Noubactep | Characterizing the discoloration of methylene blue in Fe 0 /H2O systems[END_REF][START_REF] Derakhshan | Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies[END_REF]. Tab. 1 summarizes the point of zero charges (pHpzc) of metal oxides relevant for the discussion of the results of this study [START_REF] Kosmulski | Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature[END_REF]. Al2O3 is considered because of its high content in the tested PM (12.33 %). Tab. 1

shows in particular that aluminium and iron hydroxides have the highest pHpzc (> 8.0), making them positively charged over most pH ranges of this study (pH > 7.0) and thus exhibiting repulsion toward positively charged MB [START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF].

Metallic iron

The used Fe 0 was a commercial material from iPutech GmbH (Rheinfelden, Germany). The material was available as fillings with a particle size between 0.30 and 2.0 mm. The material was fractionated by sieving. The fraction 0.4-0.8 mm was used without any further pretreatment. This fraction was close to the particle size (0.50 -1.00 mm) of sand used to build the reactive zone. The average elemental composition of the materials as specified by the supplier was: C: 3.52%; Si: 2.12%; Mn: 0.93%; Cr: 0.66%.

Pumice

The used pumice (PM) originates from Lipari (Aeolian Islands, Sicily -Italy). Its mineralogical composition was determined as follows: SiO2: 71.75 %; Al2O3: 12.33 %; K2O: 4.47 %; Na2O: 3.59 %; Fe2O3: 1.98 %; moreover it contains about 4 % of bound water entrapped in the PM structure during the sudden cooling of magma and traces of other compounds (e.g. CaO, SO3, MgO, TiO2, FeO, MnO, P2O5). The material is characterized by uniform grain size distribution. The coefficient of uniformity U is 1.4. The mean grain size (d50) is about 0.3 mm. This PM type has been chosen since it was the available fraction closest to Fe 0 in dimension. The initial porosity Φ0 of the PM granular medium has been estimated to be Φ0 = 73.3 % and the inner porosity ϕ pp of the PM (intra particular porosity ϕ pp ) to be 41 % [START_REF] Bilardi | Effect of pumice and sand on the sustainability of granular iron beds for the removal of Cu II , Ni II , and Zn II[END_REF].

Sand

The used sand was a natural material from Fontainebleau (France) purchased from Prolabo.

The typical composition of this material is given as: SiO2: > 97.5 %, Fe2O3: < 0.17 %, Al2O3:

< 1.2 %, Na2O + K2O: < 1.0 %, CaO + MgO : < 0.1 %. Its elementary analysis was given by Jada and Akbour (2013) like: Si = 45.03 %, O = 52.18 %, C < 0.3 %, H < 0.3 %, Ca = 100 ppm, Al = 185 ppm, Mg < 10 ppm, Na < 50 ppm, Fe = 150 ppm. Its isoelectric point (IEP) as measured by microelectrophoresis is IEP = 2.44 [START_REF] Jada | Adsorption and removal of organic dye at quartz sand-water interface[END_REF]. Fontainebleau sand was available in two fractions: (i) d ≤ 0.5 mm and (ii) d ≤ 5.0 mm. The first fraction was sieved and particles ranging between 0.250 and 0.300 mm were retained for the first sand layer (fine sand -H3-sand, Fig. 1 and Tab. 2). The second fraction was sieved and particles ranging between 1.6 and 2.0 mm were retained for the second sand layer (coarse sand -H1sand, Fig. 1 and Tab. 2). Another particle range of the second fraction (0.50 -1.00 mm) was mixed to Fe 0 and sand to build the reactive zone (H2).

Experimental configuration

Plexiglas columns of 2.6 cm inner diameter and 50 cm length were used. The columns were intermittently charged with a gravity driven 2.0 mg L -1 MB solution.

MB discoloration

From the bottom to the top, the columns were packed as follows: (i) fine sand (0.250 ≤ d (mm) ≤ 0.300) (H3 = 8.0 cm), (ii) a reactive zone made up of a Fe 0 /sand, Fe 0 /PM or a Fe 0 /sand/PM mixture (H2, variable), and (iii) a layer of coarse sand (1.6 ≤ d (mm) ≤ 2.0) (H1, variable, but H1 + H2 = 24.5 cm). The pure Fe 0 system was tested as negative reference. The sand fraction used in the reactive zone was 0.50 ≤ d (mm) ≤ 1.0. The first 17.5 cm at the top of the column were left free for the resting solution (Fig. 1 and Tab. 2). The total depth of the material was 32.5 cm. The volumetric ratio of Fe 0 in the reactive zone of hybrid systems (H2) was 30 %. The Fe 0 /sand/PM system contents 30 % Fe 0 , 35 % sand and 35 % PM. Sixty-five g of iPutech Fe 0 was used in each column. Its volume was used as unity; the resulting sand and PM masses are documented in Tab. 2.

Five filtration events were performed each week (daily from Monday to Friday). Each filtration event used 500 mL (0.5 L) of the MB solution. This was to mimic the intermittent filtration with household filters for the daily water need in the developing world [START_REF] Chiew | Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended biosand filters[END_REF]. The whole experimental duration was 72 days corresponding to 63 filtration events.

During this time, up to 31.5 L MB solution were filtered through individual columns. The average time needed for the filtration of the first three 50 mL (150 mL in total) was used to calculate the flow velocity at each date. The measurement of the flow velocity was stopped when the time needed for the filtration of 50 mL was larger than 60 min (1 hour). The whole effluent for each filtration event was collected and analysed for MB. At certain time intervals iron and H + concentrations were determined. The temperature of the experiments was 22 ± 2°C, and the initial pH value was 6.8 ± 0.2 for all studies.

Analytical methods

MB and aqueous iron concentrations were determined by a Cary 50 UV-Vis spectrophotometer (Perkin Elmer Lambda 10 UV/Vis) at a wavelength of 664.5 nm and 510.0 nm respectively. Cuvettes with 1.0 cm light path were used. The iron determination followed the 1,10 orthophenanthroline method [START_REF] Fortune | Determination of iron with o-phenanthroline: a spectrophotometric study[END_REF]. The spectrophotometer was calibrated for MB concentrations ≤ 2.5 mg L -1 and iron concentrations ≤ 10.0 mg L -1 . The pH value was measured by combined glass electrodes (WTW Co., Germany).

Expression of experimental results: E values

In order to characterize the magnitude of tested systems for MB discoloration, the discoloration efficiency (E) was calculated (Eq. 1). After the determination of the residual MB concentration (C), the corresponding percent MB discoloration (E value) was calculated as:

E = [1 -(C/C0)] * 100% (1)
where C0 is the initial aqueous MB concentration (2.0 mg L -1 ), while C gives the MB concentration after the experiment.

The residual porosity (Φ/Φ0) is defined as the ratio of the porosity at time t (Φ) to the initial porosity Φ0. Φ/Φ0 acts as an indicator of changes in the hydraulic conductivity and is given for individual systems (in %) as the ratio of measured flow velocities (Eq. 2).

Φ/Φ0 = 100 * v/v0 (2)
where v and v0 are the water flow velocity at time t and t0 = 0 respectively.

Results and discussion

pH value and iron release

Figure 2a summarizes the results of the evolution of the pH value in the five systems. No clear trend in the evolution of pH could be noticed in all the systems. The initial pH value for the reference system (sand) and the Fe 0 /sand system was comparatively low and closed to 7.0.

This could be attributed to acidification due to dissolution of fine particles of sand [START_REF] Kaplan | Zero-valent iron removal rates of aqueous Cr(VI) measured under flow conditions[END_REF]. However, the subsequent pH increase is difficult to rationalize, especially as the pH of the reference system remained one of the highest for the rest of the experiment. All PMcontaining systems exhibited higher initial pH values, this can be rationalized by the K and Na contents (K2O: 4.47 %, Na2O: 3.59 %).

In general, the solution pH affects both aqueous chemistry and surface binding sites of involved adsorbents. The main mechanism of MB discoloration by tested adsorbents is electrostatic interaction [START_REF] Noubactep | Characterizing the discoloration of methylene blue in Fe 0 /H2O systems[END_REF]. With increasing pH values, the concentration of OH -ions increases and the surface of the adsorbent become deprotonated. The result is a more negative charge favoring electrostatic attraction of cationic MB. Considering the point of zero charge of involved adsorbents (Tab. 1), one can argue that the best adsorbent for MB is sand (SiO2). Accordingly tested PM, with about 72 % SiO2 and a higher surface area, should be the best discolouring agent. The validity of this hypothesis (Hypothesis 1: PM is a better MB discolouring agent than sand) will be tested in the next section (MB discoloration).

The other decisive impact of the pH value is on the solubility (and thus the transport) of metallic ions (e.g. Fe II and Fe III species). Fig. 2a shows that the pH value in all systems is larger than 6.5. This is the domain were the solubility of iron is minimal (Noubactep. 2010a;and refs. cited therein). Rationally, if the system was at equilibrium, there should be no difference with regard to the iron concentration (which should be less than 1 mg/L). In other words, observed differences (Fig. 2b) should be rationalized by other arguments, for instance, the flow velocity or the affinity of other materials for adsorbing Fe species. Fig. 2b shows that iron release from the reference system was negligible. This observation is consistent with the mineralogical composition of Fontainebleau sand (Fe2O3: < 0.17 %). The increasing order of the extent of iron release in the three other systems was: Fe 0 /PM = Fe 0 /sand/PM < Fe 0 < Fe 0 /sand.

To be released from a column, iron species from Fe 0 oxidative dissolution in the reactive zone (H2, Fig. 1) have to migrate through the fine sand layer (H3, Fig. 1). Due to the low solubility of iron for the investigated pH range (pH > 6.0), in situ coating of the H3-sand will occur via adsorption or adsorptive precipitation [START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF]. Additionally, iron may precipitate or adsorb onto iron aged oxides within the reactive zone (H2). Fe removal by size-exclusion also occurs. In other words, the released iron is the excess that has not interacted within the H2 and H3 layers. Intuitively, given the inherent PM porosity, it would have been expected that more iron is released in the Fe 0 /sand/PM system and less in the Fe 0 /sand system. The fact that less iron was released in the both PM-containing systems than in the pure Fe 0 system needs explanations. The most plausible explanation is that despite high porosity, the pores are not interconnected such that the residence time is larger in the PM-containing system. A larger residence time means more time for iron precipitation or low iron breakthrough. The validity of this hypothesis (Hypothesis 2: the PM pores are not interconnected) will be tested in the section on permeability loss.

MB discoloration

Figure 3 summarizes the result of MB discoloration (E values) in the reference system (sand)

and the four Fe 0 -based systems. It is clear from Fig. 3 that the reference system was the most efficient at discolouring MB. The least efficient at discolouring MB is the Fe 0 /sand system;

this corresponds to the system with the highest iron release, confirming that MB removal is coupled with iron precipitation (co-precipitation) [START_REF] Noubactep | Characterizing the discoloration of methylene blue in Fe 0 /H2O systems[END_REF]. As discussed extensively elsewhere [START_REF] Hussam | Contending with a development disaster: SONO filters remove arsenic from well water in Bangladesh[END_REF][START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF][START_REF] Bilardi | Effect of pumice and sand on the sustainability of granular iron beds for the removal of Cu II , Ni II , and Zn II[END_REF], the apparent high efficiency of the pure Fe 0 system (Fig. 3) is coupled to short-term permeability loss as presented below (section 3.3). As concerning the Fe 0 /PM system, Fig. 3 shows clearly that its efficiency was the second poorest; just the Fe 0 /sand system was poorer (Fig. 3). Accordingly, Hypothesis 1 (PM is a better MB discolouring agent than sand) is apparently verified, due to differences in permeability.

Hypothesis 1 was somewhat faulty because the higher available surface area is not available for the same experimental duration and the same hydraulic conductivity (different residence times). In other words, properly discussing the validity of Hypothesis 1 requires both the consideration of the relative permeability of the two systems and the knowledge of the effective surface in both cases. This discussion is over the scope of the present study. It is sufficient to acknowledge that the results herein confirm the fact that designing an efficient filter is concealing (at least) two antagonistic views: (i) increased efficiency (higher surface area with PM), and (i) increased residence time (lower porosity but better drainage with sand)

for the same hydraulic pressure (gravity). An additional essential fact to be considered is that iron corrosion is volumetric expansive in nature such that, for the same additive (e.g. sand), one should find the balance between increased efficiency (more Fe 0 -less sand) and increased permeability (less Fe 0 -more sand). Previous works, partly using gravity driven systems, have demonstrated that the optimal Fe 0 volumetric ratio for sustainable filters is 25 % [START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF][START_REF] Miyajima | Impact of Fe 0 amendment on methylene blue discoloration by sand columns[END_REF][START_REF] Olvera-Vargas | Determining the optimum Fe 0 ratio for sustainable granular Fe 0 /sand water filters[END_REF].

The last important feature from Fig. 3 is the comparison of the Fe 0 /sand and the Fe 0 /sand/PM systems. As pointed out already, Fe 0 /sand is the worst system at discolouring MB. Fig. 4 reveals that this system is more permeable than Fe 0 /sand/PM. The initial v0-values (Eq. 2)

were similar. In other words, the main reason for the low efficiency of the Fe 0 /sand system is the too short residence time for MB/iron corrosion products interactions yielding coprecipitation. Moreover, rapidly migrating Fe II (and Fe III ) species have competed with MB for adsorption on sand in the layers H2 and H3. Once the sand was coated by iron oxides, its adsorptive affinity to MB was considerably weakened [START_REF] Mitchell | Adsorption of methylene blue by high-silica sands[END_REF][START_REF] Olvera-Vargas | Determining the optimum Fe 0 ratio for sustainable granular Fe 0 /sand water filters[END_REF]. In the Fe 0 /sand/PM system, the low interconnectivity of porous PM has favoured a larger residence time and precipitation of iron oxides in the H2 layer. This has resulted in less Fe II /Fe III /MB competitions for adsorption onto H3-sand and less coating of H3-sand with iron oxides. Altogether, these results validate Hypothesis 2 (the PM pores are poorly interconnected) and recall that the relationship between porosity and permeability is not linear [START_REF] Bland | Why aqueous alteration in asteroids was isochemical: High porosity # high permeability[END_REF].

Hydraulic conductivity

The results presented in Fig. 4 clearly demonstrate that the reference system (sand in H2) was the most permeable for the whole duration of the experiment (absence of expansive corroding Fe 0 ). The decreasing order of sustained hydraulic conductivity was: sand > Fe 0 /sand > Fe 0 /PM > Fe 0 /sand/PM > Fe 0 . Thus the least permeable system was the pure Fe 0 system (100 % Fe 0 ).

This behaviour is rationalized by the volumetric expansive nature of all Fe 0 particles in the reactive zone (Fig. 1), which has rapidly filled the initial inter-particular porosity of the system [START_REF] Caré | Modelling the permeability loss of metallic iron water filtration systems[END_REF]Rhaman et al, 2013;[START_REF] Domga | Discussing porosity loss of Fe 0 packed water filters at ground level[END_REF].

The lower permeability of the Fe 0 /PM system relative to the Fe 0 /sand system is an evidence for the low interconnectivity of available pores. This evidence alone validates Hypothesis 2.

Using exactly the same PM tested here and different Fe 0 and sand materials, [START_REF] Bilardi | Effect of pumice and sand on the sustainability of granular iron beds for the removal of Cu II , Ni II , and Zn II[END_REF] reported on increased permeability of the Fe 0 /PM relative to the Fe 0 /sand system.

However, their columns were not gravity driven. [START_REF] Olvera-Vargas | Determining the optimum Fe 0 ratio for sustainable granular Fe 0 /sand water filters[END_REF] showed that gravity driven column experiments may resolve open questions from pumped experiments. In particular, they showed that the optimal Fe 0 /sand ratio for sustainable filters was 25/75, while pumped experiments just revealed that it was inferior to 40/60 [START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF][START_REF] Miyajima | Impact of Fe 0 amendment on methylene blue discoloration by sand columns[END_REF]. This result questions the suitability of accelerated conditions used to shorten the experimental duration in treatability tests using Fe 0 [START_REF] Noubactep | Designing metallic iron packed-beds for water treatment: A critical review[END_REF].

Discussion

The major output of this study is that the question whether sand can be replaced by PM is not a no/yes question. Depending on the interconnectivity of a PM, it can be purposefully used to modify water flow velocity and optimized the treatment efficiency.

Significance of results for the design of Fe 0 filtration systems

The technology of treating contaminated water by filtration on Fe 0 packed beds has been largely tested and used during the past two decades [START_REF] O´hannesin | Long-term performance of an in situ "iron wall" for remediation of VOCs[END_REF][START_REF] Wilkin | Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater[END_REF][START_REF] Ghauch | Iron-based metallic systems: An excellent choice for sustainable water treatment[END_REF][START_REF] Guan | The limitations of applying zerovalent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[END_REF]. Properly designing a Fe 0 filter is finding the balance between four interdependent design factors: (i) the Fe 0 intrinsic reactivity, (ii) the Fe 0 longevity, (iii) the filter structure including shape and dimensions, and (iv) the hydraulic conductivity (permeability). However, current design formulas for Fe 0 filters do not properly account for the major physical processes driving remediation: adsorption, co-precipitation and size-exclusion [START_REF] Domga | Discussing porosity loss of Fe 0 packed water filters at ground level[END_REF][START_REF] Ghauch | Iron-based metallic systems: An excellent choice for sustainable water treatment[END_REF][START_REF] Noubactep | Metallic iron for environmental remediation: A review of reviews[END_REF]. All three processes are intimately related to the expansive nature of iron corrosion. The expansive corrosion products (iron oxides and hydroxides) are the primary cause of permeability loss (Noubactep, 2010a;[START_REF] Caré | Modelling the permeability loss of metallic iron water filtration systems[END_REF][START_REF] Rahman | Optimising the design of Fe 0 -based filtration systems for water treatment: The suitability of porous iron composites[END_REF]. This crucial aspect has not been properly considered before. Rather, some models focused on secondary aspects like gas (mostly H2) accumulation or natural attenuation to design Fe 0 -based filtration systems [START_REF] Zhang | Effects of gas generation and precipitates on performance of Fe° PRBs[END_REF][START_REF] Henderson | Impact of solids formation and gas production on the permeability of ZVI PRBs[END_REF]. However, all abiotic processes should first be properly considered before the contributions of biotic processes are properly discussed.

The prevailing paradigm for the design of Fe 0 filters stipulates that the design is speciesdependent, the selective affinity being of redox nature [START_REF] Guan | The limitations of applying zerovalent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994-2014)[END_REF]. Accordingly, relevant chemically degradable pollutants are treated within properly designed Fe 0 filters.

However, pollutants without any redox properties have been quantitatively removed by Fe 0 filters [START_REF] Lai | Field monitoring of a permeable reactive barrier for removal of chlorinated organics[END_REF][START_REF] Noubactep | Characterizing the discoloration of methylene blue in Fe 0 /H2O systems[END_REF][START_REF] Phukan | Characterizing the ion selective nature of Fe 0 -based systems using azo dyes: batch and column experiments[END_REF][START_REF] Phukan | Characterizing the ion-selective nature of Fe 0based filters using azo dyes[END_REF]. Moreover, although the remediation process has been assumed to be the redox reactivity of Fe 0 , current design formulas are empirical (Ulsamer, (2011) and ref. cited therein). Recent works have recalled that there is no Fe 0 /H2O stability domain under natural conditions [START_REF] Noubactep | Metallic iron for water treatment: A critical review[END_REF][START_REF] Ghauch | Iron-based metallic systems: An excellent choice for sustainable water treatment[END_REF]. Accordingly, all relevant processes coupled to the presence of Fe 0 in water occur either (i) at the Fe 0 /Fe-oxide interface, (ii) within the oxide scale on Fe 0 , or at the interface Fe-oxide/H2O [START_REF] Noubactep | Metallic iron for environmental remediation: A review of reviews[END_REF]. In particular, the oxide scale on Fe 0 is the site of several dynamic processes including: (i) the generation of nascent and very reactive H/H2, (ii) the polymerization and precipitation of iron hydroxides and oxides, (iii) the crystallization of iron oxides [START_REF] Sato | Whitney Award Lecture: Toward a more fundamental understanding of corrosion processes[END_REF][START_REF] Sato | Surface oxides affecting metallic corrosion[END_REF][START_REF] Noubactep | Metallic iron filters for universal access to safe drinking water[END_REF][START_REF] Noubactep | Metallic iron for environmental remediation: A review of reviews[END_REF][START_REF] Noubactep | Designing metallic iron packed-beds for water treatment: A critical review[END_REF]. With regard to contaminant removal, these processes induced adsorption and coprecipitation of contaminants within the oxide scale, creating a chemical gradient for the diffusion of dissolved contaminants [START_REF] Ghauch | Fe 0 -based trimetallic systems for the removal of aqueous diclofenac: Mechanism and kinetics[END_REF][START_REF] Gheju | Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems[END_REF][START_REF] Gheju | Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations[END_REF]. This is the removal mechanism of all contaminants, regardless from their redox properties [START_REF] Ghauch | Iron-based metallic systems: An excellent choice for sustainable water treatment[END_REF][START_REF] Noubactep | Metallic iron for environmental remediation: A review of reviews[END_REF][START_REF] Noubactep | Designing metallic iron packed-beds for water treatment: A critical review[END_REF]. The real specificity of species for the Fe 0 /H2O system is the affinity to iron oxides: the ion-selectivity [START_REF] Sato | Surface oxides affecting metallic corrosion[END_REF].

The present study has exploited the differential adsorptive affinity of methylene blue (MB) for sand and iron oxides to corroborate an experimental protocol for characterizing processes in Fe 0 /H2O systems. The trick is to investigate the time-dependent evolution of the Fe 0 /sand/H2O system. The extent of MB (cationic) discoloration depends on the extent of iron corrosion (intrinsic reactivity of Fe 0 ) which first produces concurrent species (Fe 2+ , Fe 3+ ) for adsorption sites on sand and later in situ coated sand with poorer adsorptive affinity for cationic MB [START_REF] Mitchell | Adsorption of methylene blue by high-silica sands[END_REF][START_REF] Miyajima | Optimizing the design of metallic iron filters for water treatment[END_REF][START_REF] Phukan | Characterizing the ion selective nature of Fe 0 -based systems using azo dyes: batch and column experiments[END_REF]. This tool has already been used to characterize the reactivity of Fe 0 materials, to determine the optimum Fe 0 /sand ratio for sustainable Fe 0 filters (Tepong-Tsindé et al., 2015a and refs. cited therein) and to characterize the ion-selective nature of Fe 0 /H2O systems [START_REF] Phukan | Characterizing the ion selective nature of Fe 0 -based systems using azo dyes: batch and column experiments[END_REF][START_REF] Phukan | Characterizing the ion-selective nature of Fe 0based filters using azo dyes[END_REF]. MB discoloration by Fe 0 /sand/H2O systems can be used to optimize other parameters of filter design including the temperature, the geochemical constituents (e.g. carbonates, chloride, dissolved O2, humic substances, nitrate, silicate, sulphate) (Tepong-Tsindé et al., 2015a), the bed thickness or the number of beds required, the suitability of further additives (e.g. granular activated carbon, MnO2) and the water flow rate (Tepong-Tsindé et al., 2015b).

MB discoloration approach for a frugal innovation

Considering the simplicity of the Fe 0 /sand/MB/H2O system, the reliability of obtained results

and the affordability of the experimental design, it is postulated that Fe 0 /sand/dye/H2O systems will be decisive for a science-based design of Fe 0 filters. MB has been positively tested as a non reactive indicator. Orange II (O-II) and reactive read 120 (RR120) have been positively tested as anionic dyes with more affinity to iron oxides [START_REF] Phukan | Characterizing the ion selective nature of Fe 0 -based systems using azo dyes: batch and column experiments[END_REF][START_REF] Phukan | Characterizing the ion selective nature of Fe 0 -based systems using azo dyes: batch and column experiments[END_REF]. Thereby the differential behavior of both dyes due to steric effects (RR120 significantly larger in size than O-II) was documented [START_REF] Phukan | Characterizing the ion selective nature of Fe 0 -based systems using azo dyes: batch and column experiments[END_REF]. Other dyes with differential adsorptive affinity to iron oxides and different molecular size can be tested in parallel experiments to better assess/discuss the ion-selectivity of the Fe 0 /H2O system. On the other hand by testing congeners of a selected dye [START_REF] Imamura | Adsorption behavior of methylene blue and its congeners on a stainless steel surface[END_REF], the impact for various functional groups on the efficiency of Fe 0 filters can be assessed. This ambitious research program needs only a UV/VIS spectrophotometer to be started. Leupin and Hug (2005) and Leupin et al. (2005) have shown that one can gain reliable and applicable results from column experiments using available commercial water bottles as reaction vessels (columns).

Another essential feature of the investigated system, making it affordable for not well equipped laboratories worldwide is the usage of gravity driven systems: no peristaltic pump is needed (no constant electricity source). Some solar batteries could be needed just for the spectro-photometrical determination of the dye concentration. This last aspect is essential for appropriate research in the developing world for at least two reasons: (i) it enables good research despite lack of continual electrical current and (ii) it shows that profound understanding of the chemistry of a system may enable the development of reliable but applicable and affordable experimental designs to solve complex problems. The results obtained by MB and summarized herein have resolved a 18-years-lasting discussion, whether admixing sand and Fe 0 is useful for system's efficiency [START_REF] Ulsamer | A model to characterize the kinetics of dechlorination of tetrachloroethylene and trichloroethylene by a zero valent iron permeable reactive barrier[END_REF]. In this effort, a myriad of sophisticated analytical devices and expensive software packages have been used.

The knowledge from Fe 0 /sand/dye/H2O systems could help planning experimental program and optimizing the interpretation of results from sophisticated analytical devices. In other words, the Fe 0 /sand/dye/H2O is complementary to available tools. All these opportunities should be used in a truly multi-disciplinary approach to exploit the huge potential of Fe 0 filters for groundwater remediation, safe drinking water provision and wastewater treatment.

Summarized, the development of the Fe 0 filtration technology is a typical case where frugal science might sustain do-it-yourself devices [START_REF] Reardon | Frugal science gets DIY diagnostics to world's poorest[END_REF] for safe drinking water provision worldwide. Not only less equipped laboratories would produce first rate results for the scientific community but low-income communities would savor the prestige of solving the long lasting issue of safe drinking water provision on a self-reliance basis.

Conclusions

The present study demonstrated the suitability of methylene blue (MB) as an efficient non reactive tracer to characterize the reactivity of Fe 0 /sand systems. The results revealed that MB is an appropriate indicator for describing processes occurring within the Fe 0 /sand system. In particular, the oxidative dissolution of metallic iron (Fe 0 ) yielding expansive corrosion products could be followed as well as the induced extent of permeability loss. These findings for the Fe 0 /sand system could be extended to the Fe 0 /PM and the Fe 0 /sand/PM systems and enabled the characterization of the importance of increased contact time for involved processes. This study delineates the potential of dye discoloration as an appropriate, inexpensive, accessible and low-cost indicator for a science based design of Fe 0 filters (frugal innovation).

The methodology described in the present study can help in (i) selecting Fe 0 , (ii) optimizing operational conditions (e.g. water flow rate), (iii) investigating the impact of solution chemistry (e.g. co-ions, pH, dissolved organic matter), and (iv) optimizing all aspects of bed design (e.g. length, thickness). Once founded knowledge on all these aspects are available, fine-tuning investigations with relevant pollutants will be considered, e.g. on a site-specific basis.
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 1 Figure 1: Experimental set up
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 2 Figure 2: pH value (a) and iron concentration (b) in the effluent of the columns as a function of time. Experimental conditions: Fe 0 : 65 g; [MB] = 2.0 mg L -1 ; filling material: sand; column
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 3 Figure 3: Percent MB discoloration (E value) of the effluent of the columns as a function of time. Experimental conditions: Fe 0 : 65 g; [MB] = 2.0 mg L -1 ; filling material: sand; column

Figure 4 :

 4 Figure 4: Changes of the hydraulic conductivity (Φ/Φ0) in the columns as a function of time.

Table 1 :

 1 Point of zero charge (pHpzc) of minerals used to discuss MB discoloration. Data from[START_REF] Kosmulski | Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature[END_REF].

		Mineral	pHpzc
	Name	Formula	
	Aluminum oxide	Al2O3	8.5 ± 1.5
	Hydrous ferric oxide	Fe2O3.H2O(amorphous)	8.7 ± 0.1
	Goethite	α-FeOOH	6.6 ± 2.6
	Hematite	α-Fe2O3	6.1 ± 1.5
	Sand (amorphous)	SiO2	2.1 ± 1.0

Table 2 :

 2 Experimental design for the characterization of MB discoloration. Each Fe 0 -based system contains 65 g of Fe 0 corresponding to a volumetric ratio of 30 %. The volumetric ratio of each additive in the Fe 0 /sand/PM (PM = pumice) system is 35 %. H1 is the coarse sand layer, H2 the reactive zone (containing Fe 0 ) and H3 the fine sand layer.

	System	Sand	PM	Fe 0	Fe 0	Sand	H1	H2	H3
		(g)	(g)	(g) (wt %) (wt %)	(cm)	(cm)	(cm)
	Sand	63.9	0.0	0.0	0.0	100	21.2	3.3	8.0
	Iron (Fe 0 )	0.0	0.0	65.0	100	0.0	21.2	3.3	8.0
	Fe 0 /sand	63.9	0.0	65.0	50.4	49.6	14.7	9.8	8.0
	Fe 0 /PM	0.0	24.1	65.0	73.0	0.0	13.5	11.0	8.0
	Fe 0 /sand/PM 31.6	11.7	65.0	60.0	29.2	13.5	11.0	8.0
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