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Abstract

In polycrystals implanted by light ions, a thin layer close to the surface is deformed.

X-ray micro-diffraction in Laue mode is used to measure the induced strain. In the

resulting Laue patterns, the diffraction spots are observed to split forming double

spots, one corresponding to the non-deformed substrate and the other to the deformed

layer. A specific image analysis, using bi-Gaussian shape functions, has been devel-

oped to improve diffraction spots detection. This is used in association with several

numerical tools (conditioning, goodness-of-fit, hat matrix, etc.), based on least squares

techniques and statistics, for detecting incorrect data and estimating the accuracy of

the result. The use of these tools is not restricted to the study of ion implanted

polycrystals but should find a systematic application for strain analysis from Laue

patterns.

PREPRINT: Journal of Applied Crystallography A Journal of the International Union of Crystallography



2

1. Introduction

Light ion implantations in materials has been used for both fundamental studies and

technological purposes. Hence, the behaviour of both the implanted element (diffusion,

precipitation, etc. (Garcia et al., 2012)) and the damaged matrix has been widely

studied. It has been recently shown that Laue diffraction using micro focused X-ray

beams (µ-XRD) could be a powerful technique for probing strains induced by light

ion implantation in polycrystals (Richard et al., 2012). Synchrotron generated X-ray

beam, smaller than the implanted polycrystal grain size, enables the characterisation

of intragranular strains. The X-ray energies are often high enough to probe both

the implanted layer and the non-implanted part of the grain (i.e. substrate). As a

consequence, µ-XRD Laue patterns exhibit the contributions on the same crystal of

both the strained and the strain-free material: each diffraction spot is double. This

type of pattern is used for an accurate strain analysis in the implanted layer, relative

to the substrate.

For about 15 years, Laue micro XRD has been applied for determining grain ori-

entation and local strain in polycrystals (Tamura et al., 2002; Barabash et al., 2009;

Villanova et al., 2012; Marichal et al., 2013; Liu et al., 2014). See Barabash and

Ice (Barabash & Ice, 2014) for a recent review. Software suites (e.g. XMAS (Tamura

et al., 2003), LaueTools (Micha, 2012)) allow the automatic analysis of such Laue pat-

terns. However, these tools cannot be directly used for patterns collected on implanted

polycrystals because of the overlap of the spots coming from the substrate and the

deformed layer. Therefore, image analysis methods need to be adapted to this special

case of Laue patterns. More details about the specificities of Laue patterns measured

on implanted samples are given in section 2.2.

In a previous work (Richard et al., 2012), a digital image analysis methodology has

been proposed for estimating the strain of the implanted layer in UO2 polycrystals
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implanted with Helium ions at 60 keV. Despite its limits, the results were validated

by a mechanical model, which explains the layer deformation by a swelling induced

by the He implantation. The swelling rate estimated from this model has been found

to be approximately the same as the one measured on aged UO2 pellets enriched

with short life α-emitter (Richard et al., 2014). Although these methods have been

validated for measuring the strain field within grains, they still have to be improved

for exploring the intragranular variations which are usually small. The current paper

presents therefore the development of more accurate image analysis procedures and

of new tools for examining the quality of the refined strain tensor.

After describing the implanted polycrystals and the micro-diffraction experimental

setup used here, the main challenges related to this image analysis are listed. The

improved image analysis, and several tools (i.e. filters) for controlling the least square

fitting of the strain tensor are then presented. Finally the efficiency of this methodology

for intragranular strain mapping is evaluated on diffraction data measured on 60 keV

He implanted polycrystals.

2. Laue micro XRD on implanted UO2 polycrystals

The UO2 sample preparation, the strain field induced by He implantation, and the

resulting Laue patterns, obtained by X-ray micro-diffraction, have already been pre-

sented in previous work (Richard, 2012; Richard et al., 2012; Richard et al., 2014).

We recall here some of the main results.

2.1. Strain in the implanted layer

Four discs of 1 mm thickness were cut from a sintered UO2 pellet (diameter 8.2 mm).

The material is polycrystalline with approximately 18µm grain size. The discs were

implanted with Helium ions at 60 keV energy and fluences varying between 1015 and
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2.1016 ions/cm2. At this energy, Helium is implanted in a surface layer thiner than

0.4µm (see Figure 1). The induced damage, estimated by SRIM software (Ziegler

et al., 1985), reaches its maximum at 0.23µm depth, and induces a swelling in the

implanted layer.

Previous experiments and mechanical modelling have shown that implantation with

low energy light ions induces a specific strain field (Richard et al., 2012). It can be

described in the sample frame, where z denotes the direction normal to the implanted

surface.

• In a first approximation, the displacement gradient ∇ξ in the implanted layer

has only three major components, one normal to the surface ξz,z and two shear

components ξx,z and ξy,z, depending only on the grain orientation. The six other

components (ξx,x, ξx,y, ξy,x, ξy,y, ξz,x, ξz,y) are close to zero. The displacement gra-

dient can thus be approximated by:

∇ξ ≈

0 0 ξx,z
0 0 ξy,z
0 0 ξz,z

 . (1)

• A Finite Element mechanical analysis has shown that with a layer thickness

much smaller than the average grain size, the previous approximation remains

very good: every grain behaves almost independently of the others, with almost

uniform strains inside the implanted layer. However the gradient (1) predicted

by the simplified model is different in two neighbouring grains, because of their

different orientations. This induces a mechanical interaction, particularly impor-

tant near the grain boundaries.

2.2. Laue pattern with double spots

The principles of ion implantation and X-ray micro-diffraction are presented on

Figure 1. The penetration depth of the X-ray beam (about 5µm) is much greater

than the thickness of the implanted layer (lower than 0.4µm). Thus both substrate

IUCr macros version 2.1.6: 2014/01/16



5

and layer in the same grain are probed, with a diffracting volume about ten times

bigger in the substrate. A typical Laue pattern, obtained with an incident beam energy

range of [5-13 keV], is presented on Figure 2. Each spot is double: a spot of higher

intensity (main spot) and a spot of lower intensity (satellite), diffracted respectively

by the substrate and the implanted layer. The zoom on a diffraction spot (Figure 3)

shows an intense spot for the substrate and another spot for the layer, about 8 times

less intense. An accurate examination of the intensity profile shows that the intensity

doesn’t vanish completely between both spots. This is due to swelling variation along

the depth, decreasing between the implanted layer and the substrate.

Since the probed substrate is ten times bigger than the implanted layer, it is almost

unaffected by the surface implantation. The corresponding main spots represent a

reference state: i.e. the crystal before the implantation. The satellite positions will

help to calculate the strain in the implanted layer, relative to the substrate.

2.3. Data collection

Laue X-ray micro-diffraction is used to measure the unit cell strain of a large number

of grains. With a polychromatic X-ray beam size (1µm) much smaller than the UO2

grain size (18µm), raster scans are used for two kinds of studies: probing a large

number of different grains, or studying intragranular strain variation.

• In the first case, the grid has a large step (≈ 15µm), similar to the grain size.

A collection of about 700 Laue patterns, corresponding to a large number of

different grains, has been shown to provide good statistics for evaluating the

influence of grain orientation (Richard et al., 2012). A former image analysis

failed in analysing some difficult Laue patterns, producing outliers, but this had

a low impact on the results due to data redundancy.

• In the second case, the grid has a finer step (≈ 1.5µm), similar to the beam
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size. As the variation of the strain inside a grain is small, it requires higher

precision. Furthermore, the mechanical interaction due to incompatible strains

in neighbouring grains, important close to the grain boundaries, may alter the

spot shapes producing outliers. These outliers must be handled. This implies the

development of an accurate image analysis method.

2.4. Strain determination

In a double spot, the 2D pixels position of both the main and satellite spots (xm

and xs) correspond to two reciprocal lattice vectors, with the same Miller indices:

K for the non deformed substrate, and K′ in the deformed implanted layer. These

vectors are related to each other by the displacement gradient ∇ξ according to:

K′ = (I + ∇ξ)−TK, (2)

where I denotes the identity matrix. Hence, the relationship between the two spots

can be symbolically written as:

xs = f(xm,∇ξ). (3)

The function f depends on all the geometrical parameters of the experimental setup,

which must be determined by a standard calibration procedure.

Therefore, the determination of the gradient ∇ξ follows three steps:

1. a usual setup calibration and main spots detection,

2. satellite detection,

3. and gradient ∇ξ determination by solving Equation (3) with a least square

procedure.

Two types of information can be deduced from the displacement gradient ∇ξ: the

strain ε and rotation ω tensors. For small deformations, as in our case, they can be
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obtained as the symmetric and antisymmetric parts of ∇ξ:

∇ξ = ε+ ω, with ε =
1

2
(∇ξ +∇ξT ), ω =

1

2
(∇ξ −∇ξT ).

The two first steps will be described in Section 3, devoted to image analysis methods,

and the last step in Section 4 dealing with least square methods.

3. Digital image processing

3.1. Main spots detection

The first task of a Laue pattern analysis, the main spots detection, has been done

using XMAS software (Tamura et al., 2003).

As shown on Figure 3, the main diffraction spots recorded on UO2 grains can be

accurately modelled by 2D Gaussian functions:

g(xm, am, A) = am exp−(x−xm)T .A.(x−xm), (4)

where xm is the spot centre, am its amplitude and A a quadratic matrix. Main spots

are detected using these Gaussian shape functions. In our Laue patterns, the spot size

is about 6 pixels (FWHM about 2 pixels).

3.2. Satellite search

A satellite xs is then searched in the neighbourhood of each main spot xm. This

detection is done in two steps: a rough search used to initialise a more accurate one.

In the first step, the image is interpolated by a classical bi-cubic interpolation. A

search window is set in the neighbourhood of a main spot xm. The corresponding

satellite xr
s is estimated by the local maximum with the highest intensity (excluding

the main spot).

In the second step, the satellite positions can be refined by fitting a bi-Gaussian

function:

b(xm,xs, am, as, A) = g(xm, am, A) + g(xs, as, A), (5)
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sum of two Gaussian functions (4), for the main xm and satellite xs spots, with respec-

tive amplitudes am and as, and a common quadratic matrix A. The bi-Gaussian fit

is performed by an iterative least square procedure, which needs a parameter initial-

isation. For the satellites, the initial values x0
s could be the spots xr

s found at the

first step. But we prefer first to estimate a gradient ∇ξ0 on these roughly detected

satellites xr
s (see Section 4). Then the initial values are estimated using Equation (3):

x0
s = f(xm,∇ξ0). This increases the number of detected satellites, as will be shown

in Section 5.

3.3. Satellite detection problems

In some cases, the satellite cannot be detected. There are several reasons to explain

this fact:

• The satellite is in average about 8.5 times less intense than the main spot. For

low intensity diffraction spots, the satellite disappears in the image background

and noise.

• Near the pattern centre, satellites lay close to their main spot, as on Figure 4a,

and both spots overlap.

• At grain boundaries, the satellite spot may lose its simple shape, as on Figure 4b:

this is due to the mechanical interaction between two or more neighbouring

grains, as explained above (Paragraph 2.1).

• At high implantation fluences (2.1016 ions/cm2), plasticity phenomena may appear,

transforming the Gaussian shape of the satellite spot, as on Figure 4c, and, in

average, the satellite becomes 17 times less intense than the main spot.

• It can also happen that a satellite is found at a bad location, as on Figure 4d

due to parasitic spots, belonging to other grains.
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3.4. Laue pattern centre

A satellite cannot be detected if it is too close to the main spot: at a distance less

than about 2 pixels. In our implanted samples, where the main strain component is

ξz,z, normal to sample surface, this situation arises in the centre of the image, and

depends slightly on the grain orientation. To illustrate this fact, we have built Fig-

ure 5 as follows: given an arbitrary crystal orientation ([3 1 1]), and its corresponding

displacement gradient ∇ξ, and using Equation (3), we can map the splitting distance

||xm − xs|| between main and satellite spots in Laue pattern. An isoline of 2 pixels,

the white circle on the figure, gives approximately the detection limit. For other orien-

tations, it has been found that the circle varies in the area between the red and green

circles, corresponding respectively to the [0 0 1] and [1 1 1] orientations.

4. Displacement gradients using least squares method

After the image analysis, the displacement gradient ∇ξ can be estimated by solving

Equation (3) on all the found double spots with a least squares algorithm. Least

squares techniques (Draper & Smith, 1981) include also interesting tools, based on

statistics, for detecting wrong data and estimating the accuracy of the result. They

are described for crystallography by Prince (Prince, 2006).

Since polychromatic Laue diffraction provides the direction of the reciprocal lattice

vectors, but not their norm, only the deviatoric part of the displacement gradient can

be measured (Chung & Ice, 1999). This leads to a mathematical singularity in the

fitting process. To fix it, the displacement gradient is described with only eight non

zero components:

∇ξ ≈

 0 ξx,y ξx,z
ξy,x ξy,y ξy,z
ξz,x ξz,y ξz,z

 .

This is relevant in implanted samples, because the component ξx,x is close to zero (Richard

IUCr macros version 2.1.6: 2014/01/16



10

et al., 2012).

The least square estimation consists in minimising for each pattern the following

cost function:

J(∇ξ) =
N∑
i=1

||xsi − f(xmi,∇ξ)||2, (6)

built on the N found double spots, with function f from Equation 3.

Strain determination from Laue patterns is usually performed on uniformly deformed

crystals (Chung & Ice, 1999), where diffraction spots are simple (not double) and cover

the entire Laue pattern. In our case, the strain determination is based on the satel-

lite spot positions, and is therefore harder due to the detection difficulties mentioned

above: the satellites are fewer, undetectable in the centre of the Laue pattern, and

some of them are incorrect. The fitting requires thus a special care.

All statistical tools described below are built on the least square matrix:

M = ∇fT .∇f, (7)

where ∇f denotes the matrix of the derivatives of the function f (Equation 3) with

respect to the displacement gradient components. For least squares minimised by a

Gauss-Newton algorithm, this matrix is built at each iteration.

4.1. Uncertainty estimation

Least square statistical tools can assess the accuracy of the estimates. The standard

deviation of the data noise can be estimated by:

σ? =

√
1

N − 8
J(∇ξ), (8)

based on the cost function (6) normalised by the degrees of freedom (N -8). This

standard deviation is also called goodness-of-fit parameter.

The covariance matrix of the estimated displacement gradient components combines

IUCr macros version 2.1.6: 2014/01/16



11

the least squares matrix (7) and the goodness-of-fit (8):

C(∇ξ) = σ?2.M−1.

For each component i, the standard deviation error, measuring the estimate accuracy,

is:

σi(∇ξ) =
√
Cii(∇ξ).

Positioning error The satellite search based on bi-Gaussian fit, described in Para-

graph 3.2, needs to be initialised by a first satellite position. This is done by esti-

mating a first gradient ∇ξ0, and deducing the satellite position using Equation 3:

x0
s = f(xm,∇ξ0). If the initial guess of the satellite position is too far from the real

one, the bi-Gaussian fit will fail to converge to the correct spot.

To avoid this problem, a positioning error can be calculated, based on the covariance

matrix of the simulated satellite coordinates:

C(x0
s) = ∇f.C(∇ξ).∇fT .

It is a 2N0 × 2N0 matrix, for the x and y coordinates of the N0 main spots. The

positioning standard deviation error of the ith estimated satellite is:

σi(x
0
s) =

√
Cx
ii + Cy

ii,

where Cx
ii and Cy

ii represent the respective variances for the x and y coordinates.

With a spot size of about 6 pixels, it is difficult to find a satellite spot if its initial

position lays further than 1 pixel from its real position. After some tests, we decided

to eliminate the satellite estimation if its standard deviation σi(x
0
s) is greater than

1.25 pixels.
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4.2. Conditioning

To fit properly the eight components of the gradient ∇ξ, the couples (xm ,xs) must

cover uniformly the Laue pattern. If an important part of it is empty, the fit may

still be possible, but with a bigger uncertainty. The problem becomes ill conditioned:

a slight uncertainty on the satellite locations will lead to great perturbations on the

displacement gradient.

This may be quantified by the condition number κ, calculated as the ratio of the

maximum and minimum eigenvalues of the least square matrix M (Equation 7):

κ(M) =
λmax

λmin
≥ 1.

This ratio is a coefficient, by which uncertainties are multiplied in solving the least

square system. It must be as low as possible. Actually, this coefficient is rarely com-

puted, as it needs to solve a CPU expensive eigenvalues problem. It is instead estimated

by the Cholesky algorithm needed to invert the normal Matrix M , as given in any

mathematical library. We use SLATEC (Dongarra et al., 1979) for this purpose.

The conditioning problem is illustrated on Figure 6: on a Laue pattern, main spots

can be detected everywhere, but the satellite spots can only be detected in the blue

region, excluding the pattern centre as explained above. However the estimation is well

conditioned with a condition number κ of 500. To simulate a lower quality pattern,

with a smaller detection region, we eliminate double spots in the lower part, leaving

them only in the green region. Condition number κ raises to 1.4×104. Adding to this

green region a new satellite in the lower part (red region), reduces it to 2.5×103, hence

stabilises the gradient fit.

In the best patterns, the condition number κ is about 200. For a series of patterns,

the mean condition number is about 600. After a study, we choose κL = 104 as a limit

to detect ill conditioned patterns and to remove them from the set.
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4.3. Influential data points

All data points used in a least square refinement do not have the same weight on

the fitted parameters. It is important to detect cases where the fit is controlled by a

very few number of points (influential data points). If one of these points is an outlier,

it will lead to an incorrect result. Such a case is illustrated in Figure 6, where the

satellite in the red zone is isolated: its position cannot be checked by its neighbours.

Furthermore, it will have a great influence on the fitted gradient. Such a situation can

be identified with the hat matrix:

H = ∇f.M−1.∇fT ,

built on the least square matrix M (Equation (7)) and the model derivatives ∇f . It

is a 2N × 2N matrix, where N is the number of double spots contributing in the fit.

The hat matrix is used to evaluate the influence of a double spot on the gradient

components estimation. In particular, diagonal terms Hx
ii and Hy

ii represent the weight

of the ith spot coordinates x and y in the gradient fitting, and their sum represents

the number of parameters to be fitted:

0 ≤ Hx
ii ≤ 1, 0 ≤ Hy

ii ≤ 1 and
N∑
i=1

Hx
ii +Hy

ii = 8.

A diagonal element Hx
ii or Hy

ii close to 1 means that the corresponding coordinate is

highly influential on the estimate, i.e. has a high leverage score. In the above example

(Figure 6), coordinates x and y of the isolated spot have a leverage effect of respectively

0.42 and 0.94.

In an automatic procedure, such satellite might lead to an unreliable fit, as its

position could potentially be wrong. In our case a spot is considered as influential if

Hx
ii +Hy

ii > 1.6. Removing highly influential spots will of course lead to ill conditioned

fit, hence the pattern will be eliminated.
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4.4. Detecting incorrect data

As mentioned above, image analysis may provide very uncertain satellite positions

if the spots lose their Gaussian shape. In presence of parasitic spots, the location can

be completely wrong. Gradient fitting has to deal with these artefacts, i.e. to detect

and eliminate them. This can be handled by least square statistical tools based on the

data redundancy.

Fitting error After the fit, the fitting error can be calculated for each spot:

ε = ||xs − f(xm,∇ξ)||, (9)

from Equation (3). It represents the distance between the spot measurement and the

model supported by all the other spots. It will reach high values for an outlier: a

satellite which measured position xs lays far from the estimation f obtained by the

other satellites.

The uncertainty positioning is about 0.2 pixel for the main and satellite spots. After

some tests, we choose a limit of 1 pixel, to consider a satellite position as incorrect.

The satellite must be removed from the set and the fit done again.

Goodness-of-fit The goodness-of-fit parameter described above (Equation (8)) esti-

mates the standard deviation of the data noise. It can also check if the strain model

(Equation (3)) adequately describes the data. In presence of several artefacts, it will

take abnormally high values. For our data, a parameter σ? greater than 0.5 pixel is

considered to indicate an unreliable fit whose result is rejected.

Last two criteria are based on the fitting error (Equation (9)). The first one is local

(satellite) and allows to remove the outliers, the second one is global (pattern) and

can only eliminate an unreliable fit. These criteria are effective only if other spots lay

in the vicinity of an incorrect one.
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5. Results

The Laue pattern analysis of He implanted UO2 samples presented here is based on two

features: a bi-Gaussian satellite search and statistical tools provided by least squares.

Their efficiency is tested in this section on four samples implanted with Helium at

60 keV with the following fluences: 1015, 5.1015, 1016, and 2.1016 ions/cm2. The X-

ray micro-diffraction experiments are performed on BM32 beamline at the European

Synchrotron Radiation Facility (Grenoble, France), with a polychromatic X-ray beam

of size ≈ 1×2 µm2 (Ulrich et al., 2011). To each sample corresponds a series of 612 or

816 Laue patterns. The above described methods are implemented in a C++ procedure

that can analyse the four series in about 10 minutes.

For these samples, as mentioned in paragraph 2.1, the displacement gradient in the

implanted layer has three major components ξz,z, ξx,z and ξy,z. Their values can reach

1 %, depending on the fluence and the grain orientation. The remaining components

have mean and standard deviation close to zero. Their euclidean norm can serve as

an indicator of the results quality:

||ξ≈0|| =
√
ξ2x,y + ξ2y,x + ξ2y,y + ξ2z,x + ξ2z,y. (10)

The efficiency of the new methods and their precision will be evaluated, by calculating

for each series the number of successfully analysed images, the mean and maximum

values of ||ξ≈0||, denoted respectively by m(||ξ≈0||) and ||ξ≈0||max.

5.1. Improvement using bi-Gaussian shape functions

In Section 3, the spot detection consists of three steps: (1) the main spots detection,

(2) a first satellite spots detection by a rough method, (3) a new satellite detection by

fitting bi-Gaussian functions. The average numbers of detected diffraction spots are

given for each pattern series on Table 1. In each case, the refinement by bi-Gaussian

fitting increases the number of detected satellites, because it handles more efficiently
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the overlap of satellite and main spots.

In a first analysis, we used the classical Gaussian shape function to detect the

satellite spots. Finding the results noisy and wanting to improve their accuracy, we

then introduced the bi-Gaussian shape. In order to show the obtained improvement,

these two methods are compared on Table 2. The bi-Gaussian fit is always better than

the Gaussian fit: the higher number of successful fits indicates a better efficiency, and

the lower values of m(||ξ≈0||) a more accurate gradient fit.

Compared to the Gaussian, bi-Gaussian functions can detect satellites closer to the

main spot. This fact is shown for low fluence (1015 ions/cm2), where the low strain

in the implanted layer induces small main spot-satellite distances. In this case, the

Gaussian fit fails for almost every collected image.

5.2. Improvement using least square statistical filters

Section 4 described several statistical tools related to least squares, which should

improve the gradient fit in presence of badly detected satellites. These tools are filters

which detect bad data, and remove them by two ways: in the better case, only a few

satellites are removed, improving the gradient fit; in the worst case, the Laue pattern

must be removed from the set. The quality of the proposed filters is now tested by

switching them on or off, and comparing statistically the results, which are summarised

on Table 3.

Using filters eliminates the worst outliers, corresponding to the higher values of

||ξ≈0||, as shown by the reduced maximum value on Table 3. The mean value of ||ξ≈0||

is greater in the absence of filters, but this is mainly due to the outliers elimination.

The remaining images have high quality and the results are quite the same with or

without filters.

The second and third sets, corresponding to the intermediate fluences, have good
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image quality: main spot and satellite are very well separated. Therefore the number

of analysed images is reduced only by 2% by the filters. On the other hand, first and

last sets are problematic: low implantation fluence induces small main spot-satellite

distances, and high implantation fluence deteriorates the Gaussian satellite shape.

Finally, 33% and 12% of the images are excluded for the first and fourth sets.

5.3. Local strain mapping

The methods described in this paper are now used to measure strain variation

within single grains. For this purpose, a region of 60×60µm has been probed with a

1.5×2µm step on UO2 polycrystal implanted with 60 keV Helium ions with a fluence

of 1016 ions/cm2.

Figure 7 shows the mapped region: each pixel is a result of one Laue pattern anal-

ysis. Crystal orientations are first fitted using XMAS software on the main peaks,

corresponding to the substrate unaffected by the implantation. The pixel colour code

on Figure 7 depends on grain orientation according to a convention described in

Appendix A. Grain boundaries are set when orientation difference between two points

is greater than 1◦. One pixel, crossed out on Figure 7, and located at the intersection

of many grains, could not be analysed: the corresponding Laue pattern contains the

contribution of too many grains.

Displacement gradients, in the implanted layer, are then estimated using the proce-

dure explained above. Figure 8a, 8b, and 8c show that the components ξz,z, ξx,z, and

ξy,z depend indeed on the grain orientation. According to the simplified model (1),

the remaining components ξ≈0 should be close to zero, as if the grains were inde-

pendent. Their norm ||ξ≈0|| (Equation 10), displayed on Figure 8d, confirmed their

low values. Their slight increase near the grain boundaries proves the existence of a

mechanical interaction between the grains, where the grains can no longer be sup-
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posed independent. This interaction causes also a variation of the non-zero compo-

nents (ξz,z, ξx,z, ξy,z) near the boundaries, which are otherwise homogeneous inside

the grains. This short range variation can be attributed to the low penetration depth

of 60 keV He ions (0.23µm in UO2). For higher implantation energies, hence for deeper

implanted layers, mechanical models predict a larger interaction, that will be inter-

esting to investigate.

6. Conclusion

X-ray Micro-diffraction in Laue mode is used to measure the displacement gradient in

the deformed layer at the surface of implanted polycrystalline materials. Diffraction

spots on Laue patterns are double. A specific image analysis, based on bi-Gaussian

shape functions, has been developed to detect accurately the satellites position. It

handles better the overlap of main and satellite spots when they are close. This allows

a correct analysis of Laue patterns with double spots slightly separated, and improve

the accuracy of the strain measurement in all cases. The strain is estimated by a least

square procedure, that provides several statistical tools for locating badly detected

satellites, and rejecting them. These tools have been used successfully to eliminate

unreliable displacement gradients, hence to increase the confidence in the results. The

accurate displacement gradient estimation and the reduced number of outliers make

it possible to analyse the slight variations of strain field inside the UO2 grains.

The tools proposed in this paper could also be used to characterise polycrystals

whose surface has been either optimised (for example by nitriding (Stinville et al.,

2014)) or deteriorated (by corrosion (Chao et al., 2012), oxidation (Desgranges et al.,

2010), tribology, polishing or ion beam milling).
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Crystal orientation can be characterised by three Euler angles, named ϕ1, φ, ϕ2

after Bunge convention (Hauk & Behnken, 1997). The last two angles allow to express

the direction n normal to the sample surface in the crystal frame, the first angle ϕ1

corresponds to an additional rotation around this normal n. For a cubic crystal as

UO2, the normal n can be displayed in stereographic projections, in the conventional

inverse pole representation, in the triangle shown on Figure 9.

A unique colour can be attributed to a crystal using the traditional Hue-Saturation-

Value (HSV) colour representation system: Hue, Saturation and Value will correspond

respectively to the angles ϕ1, ϕ2 and φ, as on Figure 9.

Fig. 1. Schematic representation of a polycrystalline sample implanted in a thin surface
layer, marked out in red. The estimated damage profile, due to Helium implantation
at 60 keV, is represented along the depth. The X-ray incident beam is diffracted by
the damaged layer and the strain free substrate.
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Fig. 2. Laue pattern collected on a Helium implanted UO2 polycrystal. Strain in the
implanted layer causes the splitting of diffraction spots into two components: main
spot and satellite. Their distance is minimal in the image centre (see [202] Bragg
reflection), and maximal near the image borders (see [206],[263] Bragg reflections).
From one Laue pattern, the crystal orientation and the strain in the implanted layer
can be measured.
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Fig. 3. Example of diffracted intensity profile measured between a main spot and its
associated satellite. This profile has been interpolated along the red dashed line
between both spots shown on the zoom. A bi-Gaussian function is fitted on the
experimental values.
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Fig. 4. Four cases of difficult satellite detection in Laue pattern measured on He-
implanted UO2 polycrystals: (a) satellite close to the main spot; (b) complicated
satellite shape near the grain boundaries; (c) elongated satellite for high implanta-
tion fluence; (d) presence of a parasitic spot.

Fig. 5. Map on the CCD detector of the satellite/main spot distance for a [3 1 1]
oriented grain. The white circle indicates a satellite/main peak distance of 2 pixels.
The same isoline has been also drawn in green and red for [0 0 1] and [1 1 1] oriented
grains respectively.
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Fig. 6. Illustration of the conditioning problem on a Laue pattern. Three regions are
marked out: blue and green regions lead respectively to a well and ill-conditioned
case. Adding a point (red circle) to the green region is enough to make the problem
well-conditioned.
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Fig. 7. Grain orientation mapping of the strain-free substrate, calculated on the main
spots for a UO2 polycrystal implanted with 60 keV Helium ions at 1016 ions/cm2.
The corresponding colours follow HSV convention described in Appendix A.
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Fig. 8. Displacement gradient mapping in the implanted layer calculated on the double
spots for a UO2 polycrystal implanted with 60 keV Helium ions at 1016 ions/cm2.
Maps (a), (b), (c) and (d) display respectively the components ξz,z, ξy,z, ξx,z and the
euclidean norm of the remaining components. The corresponding grain orientations
are displayed on Figure 7.
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Fig. 9. Hue-Saturation-Value (HSV) colour coding for cubic crystal orientation: Hue,
Saturation and Value correspond to the traditional Bunge angles ϕ1, ϕ2 and φ.

Table 1. In a Laue pattern, the satellite spots are searched close to main spots, firstly by a

rough method, secondly by fitting bi-Gaussian functions. For each pattern series, the mean

number of detected main spots is given, as well as the mean number of detected satellites by

both methods.
Fluences Mean number of detected spots per Laue pattern

[ions/cm2] Main spots Rough detection bi-Gaussian
1015 23.6 11.6 19.8

5.1015 23.9 17.4 22.4
1016 27.1 18.8 25.5

2.1016 23.8 16.6 22.5

Table 2. Comparison of the satellite fitting methods, using the classical Gaussian or the

bi-Gaussian shapes, on the pattern sets corresponding to the four fluences. Number of

successfully analysed patterns and mean value of ||ξ≈0||.
Fluences Number of Successfully m(||ξ≈0||) [%]

[ions/cm2] patterns analysed patterns
Gaussian bi-Gaussian Gaussian bi-Gaussian

1015 612 14 587 0.069 0.033
5.1015 612 367 594 0.055 0.031
1016 816 647 811 0.052 0.033

2.1016 816 663 808 0.098 0.092

Table 3. Effect of the filters on the series corresponding to the four fluences: number of

successfully analysed patterns, mean and maximum values of ||ξ≈0||.
Fluences Number of Successfully m(||ξ≈0||) [%] ||ξ≈0||max [%]

[ions/cm2] patterns analysed patterns
Filters Filters Filters

OFF ON OFF ON OFF ON
1015 612 587 380 0.033 0.026 0.612 0.114

5.1015 612 594 576 0.031 0.023 2.257 0.214
1016 816 811 801 0.033 0.031 0.574 0.375

2.1016 816 808 716 0.092 0.088 1.741 0.503
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