
HAL Id: hal-01240855
https://enpc.hal.science/hal-01240855

Submitted on 10 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing the Data Adaptive Dual Domain Denoising
Algorithm

Nicola Pierazzo, Jean-Michel Morel, Gabriele Facciolo

To cite this version:
Nicola Pierazzo, Jean-Michel Morel, Gabriele Facciolo. Optimizing the Data Adaptive Dual Domain
Denoising Algorithm. CIARP, 2015, Montevideo, Uruguay. �10.1007/978-3-319-25751-8_43�. �hal-
01240855�

https://enpc.hal.science/hal-01240855
https://hal.archives-ouvertes.fr

Optimizing the Data Adaptive Dual Domain
Denoising Algorithm

Nicola Pierazzo1, Jean-Michel Morel1, and Gabriele Facciolo12

1 CMLA, École Normale Supérieure de Cachan, France
2 IMAGINE/LIGM, École Nationale des Ponts et Chaussées, France

Abstract. This paper presents two new strategies that greatly improve
the execution time of the DA3D Algorithm, a new denoising algorithm
with state-of-the-art results. First, the weight map used in DA3D is im-
plemented as a quad-tree. This greatly reduces the time needed to search
the minimum weight, greatly reducing the overall computation time. Sec-
ond, a simple but effective tiling strategy is shown to work in order to
allow the parallel execution of the algorithm. This allows the implemen-
tation of DA3D in a parallel architecture. Both these improvements do
not affect the quality of the output.

Keywords: image denoising, quad-tree, parallel processing

1 Introduction

Image denoising is one of the fundamental image restoration challenges [18]. It
consists in estimating an unknown noiseless image y from a noisy observation
x. We consider the classic image degradation model

y = x+ n, (1)

where the observation x is contaminated by an additive white Gaussian noise
n of variance σ2. All denoising methods assume some underlying image regu-
larity. Depending on this assumption they can be divided, among others, into
transform-domain and spatial-domain methods.

Transform domain methods work by shrinking (or thresholding) the coeffi-
cients of some transform domain [7,14,25]. The Wiener filter [28] is one of the
first such methods operating on the Fourier transform. Donoho et al. [5] extended
it to the wavelet domain.

Space-domain methods traditionally use a local notion of regularity with
edge-preserving algorithms such as total variation [24], anisotropic diffusion [19],
or the bilateral filter [27]. Nowadays however spatial-domain methods achieve re-
markable results by exploiting the self-similarities of the image [1]. These patch-
based methods are non-local as they denoise by averaging similar patches in the
image. Patch-based denoising has developed into attempts to model the patch
space of an image, or of a set of images. These techniques model the patch as

sparse representations on dictionaries [4,6,15,16,29], using Gaussian Scale Mix-
tures models [23,29,30], or with non-parametric approaches by sampling from a
huge database of patches [12,13,17,21].

Current state-of-the-art denoising methods such as BM3D [3] and NL-Bayes
[11] take advantage of both space- and transform-domain approaches. They
group similar image patches and jointly denoise them by collaborative filtering
on a transformed domain. In addition, they proceed by applying two denoising
stages, the second stage using the output of the first one as its guide.

Some recently proposed methods use the result of a different algorithm as
their guide for a new denoising step. Combining for instance, nonlocal principles
with spectral decomposition [26], or BM3D with neural networks [2]. This allows
one to mix different denoising principles, thus yielding high quality results [26,2].

DDID [9] is an iterative algorithm that uses a guide image (from a previous
iteration) to determine spatially uniform regions to which Fourier shrinkage could
be applied without introducing ringing artifacts. Several methods [8,10,20] use
a single step of DDID with a guide image produced by a different algorithm.
This yields much better results than the original DDID. Unfortunately, DDID
has a prohibitive computational cost, as it paradoxically denoises a large patch
to recover a single pixel. Moreover, contrary to other methods, aggregation of
these patches doesn’t improve the results since it introduces blur.

More recently, Data-Adaptive Dual Domain Denoising (DA3D) [22] was pre-
sented to address those issues. By using just a small fraction of the patches, it
avoids unnecessary computations in the uniform areas of the image. Moreover,
DA3D uses a more complex estimation of the image shape to reduce staircasing
artifacts. In order to choose the patches to process, DA3D keeps track of the
partial aggregation weights, and iteratively selects the patch with the smaller
weight. The search for this patch can be expensive, especially on large images.
Moreover, since the choice of a patch depends on the previous ones, there is no
straight-forward method to parallelize this algorithm.

Contribution. This paper proposes an effective method to accelerate the
search step of DA3D, and an approach to run the algorithm in a multi-processor
environment. With these, DA3D can run in reasonable time even on medium-
large images, making it even more interesting for real-world applications.

In order to accelerate the search step, a quadtree is used to store and update
the minimum value. This decreases the complexity of the search from O(n) to
O(log n), where n is the number of pixels in the image.

To allow the execution of the algorithm on a multi-core architecture, it is
noted that the simple strategy of dividing the images in stripes is effective and
yields the same results than the single-process version of the algorithm.

Section 2 recalls the DA3D algorithm. Section 3 tackles the problems of
tracking the minimum weight and of parallel execution. Section 4 shows some
results and section 5 presents the conclusions.

2 Data-Adaptive Dual Domain Denoising

This section describes the DA3D algorithm, as presented in [22].
To denoise the area around the pixel p from the noisy image y DA3D extracts

a 64×64 pixel block centered in p (denoted y) and the corresponding block g from
the guide image g. An affine model P (q) = 〈α, q〉+ β of the block is estimated
computing a weighted least squares regression

min
P

∑
[y(q)− P (q)]2 ·Kreg(q), (2)

with the constraint P (p) = g(p), where the sum is computed over the domain of
y and Kreg is a bilateral weight function

Kreg(q) = exp

(
−|g(q)− g(p)|

2

γrrσ2
− |q − p|

2

2σ2
sr

)
, (3)

which selects the parts of the block that gets approximated by P . Once es-
timated, the local plane P is subtracted from the patch, effectively removing
shades and gradients.

The blocks are processed to eliminate discontinuities that may cause artifacts
in the subsequent frequency-domain denoising. To that end, a bilateral weight
function k is derived from the guide g, to identify the pixels of the block belonging
to the same object as the center p.

k(q) = exp

(
−|g(q)− g(p)|

2

γrσ2

)
exp

(
−|q − p|

2

2σ2
s

)
. (4)

The first term identifies the pixels belonging to the same structure as p, by
selecting the ones with a similar color in the guide, while the second term removes
the periodization discontinuities associated with the Fourier transform.

The weights in k are then used to modify y and g in order to remove their
discontinuities and to obtain ym and gm (see lines 12-13 of Table 1). In this way
the “relevant” part of the blocks (similar to the central pixel) is retained by k, and
its average value is assigned to the rest. The modified block ym is denoised by
shrinkage of its Fourier coefficients using gm as an oracle (lines 14-18 of Table 1).
Then the "modification" of the patches is reverted and the regression plane P
is added back to the block. The shrinkage assumes that the image y contains
additive white Gaussian noise.

For color images, k is computed by using the Euclidean distance, while the
shrinkage is done independently on each channel of the YUV color space.

Since the denoising remains valid for all pixels in the “relevant” part of the
block, the processed blocks are aggregated to form the final result. The aggre-
gation weights are the squares of the weights (4).

The image blocks to be processed are selected using a greedy approach. At
each iteration a weight map w with the sum of the aggregation weights is up-
dated. This weight map permits to identify the pixel in the image with the

Input: y (noisy image), g (guide)
Output: denoised image
1 w← 0
2 out← 0
3 while min(w) < τ do
4 p← argmin(w)

5 y ← ExtractPatch(y, p)
6 g ← ExtractPatch(g, p)
7 Kreg ← ComputeKreg(g) // regression weight, eq. 3
8 P ← argminP

∑
[y(q)− P (q)]2 ·Kreg(q) // regression plane, eq. 2

9 y ← y − P // subtract plane from the block
10 g ← g − P // and from the guide
11 k ← ComputeK(g) // eq. 4
12 ym ← k · y + (1− k)

(∑
k(l)y(l)∑
k(l)

)
13 gm ← k · g + (1− k)

(∑
k(l)g(l)∑
k(l)

)
14 Y ← DFT(ym)
15 G← DFT(gm)
16 σ2

f ← σ2∑ k(q)2

17 K ←

1 if f = 0

exp

(
− γfσ

2
f

|G(f)|2

)
otherwise

// shrinkage

18 xm ← IDFT(K · Y)

19 x←
[
xm − (1− k)

(∑
k(l)y(l)∑
k(l)

)]
/k // revert line 12

20 x← x+ P // add plane back to the block
21 aggw ← k · k // aggregation weight
22 w← AddPatchAt(p,w, aggw) // accumulate in the correct position
23 out← AddPatchAt(p,out, aggw · x)
24 return out/w

Table 1: Pseudo-code for DA3D. Variables in bold denote whole images, while
italics denote single blocks. Multiplication and division are pixel-wise.

lowest aggregation weight, which will be selected as the center of the next block
to process (line 4 of Table 1). The process iterates until the total weight for each
pixel becomes larger than a threshold τ . The total number of processed blocks
depends on the image complexity. The centers of the effectively processed blocks
are concentrated on edges and details.

The parameters σsr, γrr, σs, γr, γf and τ are specific of the algorithm, and
σ is the standard deviation of the noise.

3 Improvements

3.1 Tracking the minimum weight

In the implementation of DA3D the authors select the position with the lowest
aggregation weight in w with a simple linear search. This approach shows its

limit when the size of the image increases. In fact, for every processed block, the
computation needed to find it is of the order of O(n), with n the number of pixels
of the image. Therefore, under the reasonable assumption that the number of
processed blocks is a fraction of the total (from the original article, between 1%
and 20%), and since the denoising of a block is performed in a bounded time,
the complexity of the algorithm is O(n2). This is peculiar, because the algorithm
appears local in its nature.

We propose to use a quad-tree to keep track of the minimum. The weight
map w is in the leaves of the tree, and every node contains the minimum value
of its four children. This can also be interpreted as a multi-scale version of w,
built using a min filter. The space complexity for this data structure is

logn∑
i=0

n

4i
≤ 4

3
n = O(n) (5)

because every “layer” of the tree is 25% smaller than the previous one.
In order to retrieve the position of the minimum value, one has simply to tra-

verse the tree from the root to the leaf, always choosing one of the children with
the minimum value. This guarantees that the chosen pixel is a global minimum
for w, and has time complexity O(log n).

To update the tree, it suffices to update the appropriate leaves, and then
recompute the minima in the upper nodes until the top. Since the aggregation
is done one patch at a time, it is simple to calculate which nodes need to be
updated, thus avoiding to recompute the values for areas in which w has not
changed. The time complexity for this update is O(k), where k is the number of
pixels of the patch that is aggregated. Since k is constant, the aggregation does
not increase the complexity of the algorithm.

One could be tempted to update the values one by one. Although this could
be simpler to implement, it is slower, having a time complexity of O(k log n).
Using this data structure instead, the total complexity of the algorithm becomes
O(n log n), which allows to denoise bigger images.

3.2 Parallel processing

Since DA3D selects the patches to denoise in a greedy fashion, it is impossible to
know where the next patch will be prior to the aggregation step of the current
one. This makes parallelization more complex than in other denoising algorithms.

In order to denoise a pixel p, the algorithm uses the other pixels inside a
(64× 64) window, all the pixels needed to denoise p are at a distance of at most
32. This makes the algorithm local, and allows to solve the problem of parallelism
by just splitting the image in tiles. Each tile can be denoised separately, and then
the results can be combined together.

It is clear that the patches chosen in this way will not correspond exactly
with the patches chosen without parallelism. The main difference can be an over-
sampling of the areas near the edges, since the weights from a neighboring tile are
not taken into account. This could result in a slight overhead in the processing

Dice (0.3 MP) Trees (0.4 MP) Maggie (1.9 MP)

N
oi
se
le
ss

N
oi
sy
σ
=

4
0

N
L
-B

ay
es
+
D
A
3D

Fig. 1: Sample images, with noisy and denoised version. It is advised to zoom
in on the digital version for more details. The results of the DA3D with the
different improvements are visually identical.

time. However, the experiments show that the overhead is negligible, and the
results of the simple and parallel versions of the algorithm are identical from
a practical standpoint. With bigger images, the overlap area becomes smaller,
therefore the factor of acceleration should become even closer to the number of
processors.

4 Results

We tested the methods of Section 3 on the test images of Figure 1. We selected
this set to be as varied as possible. Dice contains many smooth areas, Trees is
mainly composed of texture and Maggie is a relatively large image, for which
the improvement due to the quad-tree is more noticeable. On those images, we
tested the DA3D algorithm with the suggested improvements, and we timed the
execution on a dual-core laptop. The results are shown in Table 2.

The improvements do not change the output image significantly. The com-
parison of PSNR is shown in Table 3. Notice how the value of PSNR does not
change among the different versions of the algorithm.

Image Baseline Quad-Tree Parallel (2 cpu) Tree + Parallel
Dice 2.12s 1.51s 1.12s 0.92s
Trees 19.10s 12.78s 10.68s 8.56s
Maggie 28.05s 8.26s 15.03 5.36

Table 2: Runtimes for different versions of DA3D. Baseline represents the time
of the original version. Notice how the improvement of the quad-tree is more
prominent on bigger images.

Image NL-Bayes Baseline Quad-Tree Parallel Tree + Par.
Dice 36.17 dB 37.90 dB 37.90 dB 37.90 dB 37.90 dB
Trees 23.49 dB 23.71 dB 23.71 dB 23.71 dB 23.71 dB
Maggie 33.48 dB 34.54 dB 34.54 dB 34.54 dB 34.54 dB

Table 3: PSNR values for different versions of DA3D, also compared with Non-
Local Bayes[11].

5 Conclusion

This paper presented two new strategies to improve the execution time of the
DA3D Algorithm. First, a quad-tree structure was used as the weight map w.
This greatly reduces the time needed to search for the minimum weight, without
affecting the time needed to update the weight map in a significant way. Then,
a tiling strategy is shown to work to allow the parallelization of the code with
minimum overhead.

Acknowledgments Work partly founded by Centre National d’Etudes Spa-
tiales (MISS Project), European Research Council (advanced grant Twelve Labours),
Office of Naval research (ONR grant N00014-14-1-0023), DGA Stéréo project,
ANR-DGA (project ANR-12-ASTR-0035), FUI (project Plein Phare) and Insti-
tut Universitaire de France.

References

1. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a
new one. SIAM Mult. Model. Simul. 4(2) (2006)

2. Burger, H.C., Schuler, C., Harmeling, S.: Learning how to combine internal and
external denoising methods. In: Pattern Recognition, Lecture Notes in Computer
Science, vol. 8142. Springer Berlin Heidelberg (2013)

3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3d
transform-domain collaborative filtering. IEEE TIP 16(82) (2007)

4. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance esti-
mation: A low-rank approach. IEEE TIP 22(2) (2013)

5. Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage.
Biometrika (1994)

6. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations
over learned dictionaries. IEEE TIP 15(12) (2006)

7. Gnanadurai, D., Sadasivam, V.: Image denoising using double density wavelet
transform based adaptive thresholding technique. IJWMIP 03(01) (2005)

8. Knaus, C.: Dual-domain image denoising. Ph.D. thesis, Diss. Univ. Bern (2013)
9. Knaus, C., Zwicker, M.: Dual-domain image denoising. IEEE ICIP (2013)
10. Knaus, C., Zwicker, M.: Progressive image denoising. IEEE TIP 23(7) (2014)
11. Lebrun, M., Buades, A., Morel, J.M.: Implementation of the "non-local bayes"

(NL-bayes) image denoising algorithm. Image Processing On Line (2013)
12. Levin, A., Nadler, B.: Natural image denoising: Optimality and inherent bounds.

IEEE CVPR (2011)
13. Levin, A., Nadler, B., Durand, F., Freeman, W.T.: Patch complexity, finite pixel

correlations and optimal denoising. IEEE ECCV (2012)
14. Li, H.Q., Wang, S.Q., Deng, C.Z.: New image denoising method based wavelet and

curvelet transform. WASE ICIE 1 (2009)
15. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models

for image restoration. IEEE ICCV (2009)
16. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for

image and video restoration. SIAM Mult. Model. Simul. 7(1) (2008)
17. Mosseri, I., Zontak, M., Irani, M.: Combining the power of internal and external

denoising. IEEE ICCP (2013)
18. Motwani, M.C., Gadiya, M.C., Motwani, R.C., Jr., F.C.H.: Survey of image de-

noising techniques. GSPX (2004)
19. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.

IEEE TPAMI 12(7) (Jul 1990)
20. Pierazzo, N., Lebrun, M., Rais, M., Morel, J.M., Facciolo, G.: Non-local dual image

denoising. IEEE ICIP (2014)
21. Pierazzo, N., Rais, M.: Boosting shotgun denoising by patch normalization. IEEE

ICIP (2013)
22. Pierazzo, N., Rais, M., Morel, J.M., Facciolo, G.: DA3D: Fast and data adaptive

dual domain denoising. IEEE ICIP (2015)
23. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using

scale mixtures of gaussians in the wavelet domain. IEEE TIP (2003)
24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal

algorithms. Phys. D 60 (1992)
25. Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denois-

ing. IEEE TIP 11(6) (2002)
26. Talebi, H., Milanfar, P.: Global image denoising. IEEE TIP 23(2) (2014)
27. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. IEEE ICCV

(1998)
28. Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Se-

ries. The MIT Press (1964)
29. Yu, G., Sapiro, G., Mallat, S.: Image modeling and enhancement via structured

sparse model selection. IEEE ICIP (2010)
30. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole

image restoration. IEEE ICCV (Nov 2011)

