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ABSTRACT

This paper presents DA3D (Data Adaptive Dual Domain De-
noising), a “last step denoising” method that takes as input a noisy
image and as a guide the result of any state-of-the-art denoising algo-
rithm. The method performs frequency domain shrinkage on shape
and data-adaptive patches. Unlike other dual denoising methods,
DA3D doesn’t process all the image samples, which allows it to use
large patches (64 x 64 pixels). The shape and data-adaptive patches
are dynamically selected, effectively concentrating the computations
on areas with more details, thus accelerating the process consider-
ably. DA3D also reduces the staircasing artifacts sometimes present
in smooth parts of the guide images.The effectiveness of DA3D is
confirmed by extensive experimentation. DA3D improves the result
of almost all state-of-the-art methods, and this improvement requires
little additional computation time.

Index Terms— Image denoising, Patch-Based methods, Fourier
shrinkage, Dual Denoising, Data Adaptive

1. INTRODUCTION

Image denoising is one of the fundamental image restoration chal-
lenges [1]. It consists in estimating an unknown noiseless image y
from a noisy observation x. We consider the classic image degrada-
tion model

y=x+n, M
where the observation x is contaminated by an additive white Gaus-
sian noise n of variance 2.

All denoising methods assume some underlying image regular-
ity. Depending on this assumption they can be divided, among oth-
ers, into transform-domain and spatial-domain methods.

Transform domain methods work by shrinking (or thresholding)
the coefficients of some transform domain [2, 3, 4]. The Wiener
filter [5] is one of the first such methods operating on the Fourier
transform. Donoho et al. [6] extended it to the wavelet domain.

Space-domain methods traditionally use a local notion of reg-
ularity with edge-preserving algorithms such as total variation [7],
anisotropic diffusion [8], or the bilateral filter [9].

Nowadays however spatial-domain methods achieve remarkable
results by exploiting the self-similarities of the image [10]. These
patch-based methods are non-local as they denoise by averaging sim-
ilar patches in the image. Patch-based denoising has developed into
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attempts to model the patch space of an image, or of a set of images.
These techniques model the patch as sparse representations on dic-
tionaries [11, 12, 13, 14, 15], using Gaussian Scale Mixtures mod-
els [16, 17], or with non-parametric approaches by sampling from a
huge database of patches [18, 19, 20, 21].

Current state-of-the-art denoising methods such as BM3D [22]
and NL-Bayes [23] take advantage of both space- and transform-
domain approaches. They group similar image patches and jointly
denoise them by collaborative filtering on a transformed domain. In
addition, they proceed by applying two slightly different denoising
stages, the second stage using the output of the first one as its guide.

Some recently proposed methods use the result of a different
algorithm as their guide for a new denoising step. Combining for
instance, nonlocal principles with spectral decomposition [24], or
BM3D with neural networks [25]. This allows one to mix differ-
ent denoising principles, thus yielding high quality results [24, 25].
DDID [26] is an iterative algorithm that uses a guide image (from a
previous iteration) to determine spatially uniform regions to which
Fourier shrinkage could be applied without introducing ringing arti-
facts. Several methods [27, 28, 29] use a single step of DDID with
a guide image produced by a different algorithm. This yields much
better results than the original DDID. The reason for their success is
the use of large (31 x 31) and shape-adaptive patches. Indeed, the
Fourier shrinkage works better on large stationary blocks.

Unfortunately, DDID has a prohibitive computational cost, as it
paradoxically denoises a large patch to recover a single pixel. More-
over, contrary to other methods, aggregation of these patches doesn’t
improve the results since it introduces blur. We show in this paper
that these two problems can be solved by introducing a new patch
selection, accompanied by a weighted aggregation strategy.

Contribution. This paper presents DA3D (Data Adaptive
Dual Domain Denoising), a new “last step” denoising method that
performs frequency domain shrinkage on shape-adaptive and data-
adaptive patches. DA3D consistently improves the results of state-
of-the-art methods such as BM3D or NL-Bayes with little additional
computation time.

Similarly to DDID [26], DA3D uses a guide image to extract the
shape-adaptive patches. But unlike it, DA3D processes only a frac-
tion of the patches, which are aggregated instead of just taking their
central pixel. The patches are dynamically selected, saving com-
putations on uniform areas of the image to use them on areas with
more details. This accelerates considerably the process, allowing to
use even larger (64 x 64) patches, which in turn yields improved
results. Some shape adaptive methods [30, 31] collectively denoise
groups of similar small patches (8 x 8 blocks for BM3D-SAPCA
[30]). DA3D does not consider groups, instead it uses much larger
patches to extract more information from the underlying structure.
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Fig. 1: Results of applying different post-processing steps on the same image (with noise o = 25). The guide was produced with Non-Local
Bayes. Figs. (e) and (g) show the centers of the blocks used for denoising (d) and (f) respectively (with 7 = 2). Image (c) was generated with
31 x 31 blocks, while for (d) and (f) 64 x 64 blocks were used. Notice in (d) and (f) the difference on che cheek and the forehead of the girl.

Our second contribution in DA3D further improves the quality
of the results by adapting the processing to the underlying data. The
apparition of the staircasing is well known for non-local methods
[32]. To mitigate the influence of such artifacts present in the guide
image, we use a first order non-linear local kernel regression [33, 34]
to estimate, for each patch, an affine approximation coherent with
the data within the patch. The denoising is then performed with re-
spect to this approximation. This data-adaptive approach is another
innovation enabled by the use of large patches, and it noticeably im-
proves the quality of the results on smooth regions of the image.

Section 2 recalls the DDID postprocess. Sections 3 and 4 present
the DA3D algorithm, first describing the proposed sparse aggrega-
tion, then the data-adaptive patches. The performance of DA3D is
extensively validated in the experiments of section 5.

2. DUAL DOMAIN IMAGE DENOISING STEP

A DDID step is a single iteration of the DDID algorithm [26], but it
can also be used as a last denoising step for other methods [29, 27].
This section, along with the pseudocode in Table 1, summarizes it.

To denoise a pixel p from the noisy image y the DDID step
extracts a 31 x 31 pixel block around it (denoted y) and the corre-
sponding block g from the guide image g.

The blocks are processed to eliminate discontinuities that may
cause artifacts in the subsequent frequency-domain denoising. To
that end, the weight function £ is derived from g. The weights iden-
tify the pixels of the block belonging to the same object as the center
p. This weight function has the form of the bilateral filter [35, 9]

k() = exp (_ lg(q) — g(p)|2> exp (_M) @

2 2
YrO 202

The first term identifies the pixels belonging to the same structure
as p, by selecting the ones with a similar color in the guide, while
the second term removes the periodization discontinuities associated
with the Fourier transform. The parameters o and -y, are specific of
the algorithm, and ¢ is the standard deviation of the noise.

The weights & are then used to modify y and g in order to remove
their discontinuities yielding ¥, and g, (see lines 13-14 of Table 1).
In this way the “relevant” part of the blocks (similar to the central
pixel) is retained by k, and its average value is assigned to the rest.

The modified block yy, is denoised by shrinkage of its Fourier
coefficients using g, as an oracle (lines 15-18 of Table 1). Since

discontinuities have been removed from the blocks, filtering in the
Fourier domain doesn’t introduce ringing, which is a major advance
made by DDID in transform thresholding methods. The value of
vy is a parameter of the algorithm. This shrinkage assumes that the
image y contains additive white Gaussian noise.

Finally, the denoised value of the central pixel is recovered by
reversing the Fourier transform. This process is repeated for every
pixel of the image. For more details about DDID refer to [26, 29].

For color images, k is computed by using the Euclidean distance,
while the shrinkage is done independently on each channel of the
YUYV color space. An example of the result is shown in Fig. 1c.

3. SPARSE DDID STEP

The DDID step explained in section 2 is slow because it has to pro-
cess a block for every pixel. In fact, each pixel is denoised several
times, but the result is discarded every time that it is not in the center
of the current block. Since that the denoising remains valid for all
pixels in the “relevant” part of the block, we propose to aggregate the
processed blocks to form the final result. As a result, not every block
needs to be processed, thus accelerating the algorithm considerably.
Note that since the processing is done with the modified block, line
13 of Table 1 must be reverted to obtain the denoised block (line 20).

In our selection-aggregation process, the image is treated by
color-coherent blocks and the results are aggregated with weights
deduced from the guide image. This weighted average can also be
seen as the interpolation of the denoised image from a subset of pro-
cessed blocks [36, 37, 38]. We found that the best aggregation
weights are the squares of the weights (2).

We now describe the greedy approach used for selecting the im-
age blocks to be processed. At each iteration a weight map w with
the sum of the aggregation weights is updated. This weight map
permits to identify the pixel in the image with the lowest aggrega-
tion weight, which will be selected as the center of the next block
to process (line 5 of Table 1). This process iterates until the total
weight for each pixel becomes larger than a threshold 7. The weight
function k is always equal to 1 in the center, so the algorithm al-
ways terminates. The procedure is detailed in Table 1. This variant
is faster to execute than a single DDID step, since only a small num-
ber of blocks are actually processed. This allows bigger patches to
be used, that in turn gives better results in terms of denoising qual-
ity. Experimentally, good results are achieved with patches as large




=] 2 9, Input: y (noisy image), g (guide)
8 ;}& g Output: denoised image
-|e]|e w <0
oo o out +— 0
o| - |- for all pixels p € y do
-| o |e]| 4 while min(w) < 7 do
-le]|e p <+ arg min(w)
oo y < EXTRACTPATCH(y, p)
oo g < EXTRACTPATCH(g, p)
/l regression weight, eq. 4
- . Kreg <+ COMPUTEKREG(g)
/I regression plane, eq. 3
|- e P < argminp Y [y(q) — P(q)]* - Kreg(q)
-l -|e y < y — P // subtract plane from the block
-l -1]e g < g — P // and from guide
o|ole k < CoMPUTEK(g) /leq. 2
oo e ym —k-y+ (1 —k) 725(2)&’)@
oo e gm <~ k-g+(1—k) %
oo e Y < DFT(ym)
. G + DFT(gm)
0% 0> k(q)?
/I shrinkage
1 iff=0
2
‘1 K exp —% otherwise
oo e Zm < IDFT(K -Y)
/l revert line 13
|e]e x<—[xm—(1—k)(%)}/k
-l -]e z < x+ P //add plane back to the block
-|e|e aggw < k - k // aggregation weight
o - |- out(p) < EXTRACTCENTRALPIXEL(Zrm )
/I accumulate patch in the correct position
-le]|e W < ADDPATCHAT(p, w, aggw)
-le]|e out < ADDPATCHAT(p, out, aggw - )
o - |- return out
- | ®| e (27 return out/w

Table 1: Pseudo-code for DDID step, Sparse DDID and DA3D. The
lines used only in the DDID step are highlighted in blue. Bullets
show the operations of each algorithm. Variables in bold denote
whole images, while italics denote single blocks. Multiplication
and division are pixel-wise.

as 64 x 64, which is to be contrasted to patch based methods using
mostly 8 x 8 patches. An example of the result is shown in Fig. 1d.
The total number of processed blocks depends on the image com-
plexity. The centers of the effectively processed blocks are shown in
Fig. le. They concentrate on edges and details.

4. DATA ADAPTIVE DUAL DOMAIN DENOISING

We now address a main drawback of the weight function (2), used
for the bilateral filter and for many bilateral-inspired filters, includ-
ing patch based methods. This weight function selects pixels of the
block with a similar value. As a result, Sparse DDID works by pro-
cessing parts of the image that are piecewise constant, considering
the image as composed by many “flat” layers. This model is not
well adapted for images that contain gradients or shadings, as the
same smooth region may be split in many thin regions. The previous

Method o=5 | 0=10 | 0=25 | 0=40 | 0=80
BM3D 38.43 | 34.94 30.58 28.27 24.69
- 38.39 | 34.95 30.67 28.41 25.09
SAPCA [30] | -0.04 | +0.01 +0.10 +0.14 +0.39
38.24 | 34.70 30.37 27.99 24.94
BM3D [22] 38.24 | 34.78 30.54 28.23 25.03
+0.00 | +0.08 +0.16 +0.24 +0.09
3795 | 34.55 30.34 28.05 24.68
DDID [26] 37.90 | 34.52 30.39 28.16 24.84
-0.04 -0.03 +0.05 +0.11 +0.16
37.91 34.29 29.90 27.64 24.46
G-NLM [24] | 35.67 | 33.97 29.77 27.49 24.10
+0.60 | +0.43 +0.58 +0.63 +0.65
38.29 | 34.75 30.35 28.07 24.78
LSSC [13] 38.34 | 34.88 30.61 28.32 24.97
+0.05 | +0.13 +0.27 +0.25 +0.19
MLP 34.63 30.44
+ 34.78 30.61
BM3D [25] +0.15 +0.17
38.19 | 34.62 30.13 27.86 24.45
NLB [23] 38.20 | 34.72 30.38 28.14 24.78
+0.02 | +0.10 +0.25 +0.28 +0.33
38.12 | 34.62 30.30 28.11 24.83
NLDD [29] 38.09 | 34.60 30.29 28.09 24.77
-0.04 -0.02 -0.01 -0.02 -0.05
37.31 33.58 28.97 26.50 22.72
NLM [10] 37.49 | 33.98 29.66 27.45 24.17
+0.18 | +0.40 +0.69 +0.95 +1.44
37.97 | 34.56 30.38 28.18 24.99
PID [28] 37.90 | 34.48 30.28 28.08 24.81
-0.07 -0.08 -0.10 -0.11 -0.18
38.31 | 34.78 30.39 28.16 25.00
SAIST [15] 38.31 34.82 30.53 28.27 25.07
-0.01 +0.04 +0.14 +0.11 +0.07
Average +0.06 | +0.11 +0.22 +0.27 +0.31

Table 2: Average PSNR comparison between state-of-the-art meth-
ods on grayscale images. The first line of each row shows the av-
erage PSNR. The second line shows the average PSNR of DA3D
using the corresponding algorithm to generate the guide. The third
line shows the average improvement due to DA3D. The best result
for each noise level is shown in bold, and the ones within a range
of 0.2 dB are shown in gray. MLP+BM3D only works with some
specific levels of noise, the other levels are left blank.

method can be extended to “normalize” each patch by subtracting an
estimation of the gradient around the patch center. In practice, this
means estimating an affine model of the block, as proposed in [33],
which can be computed using a weighted least squares regression

min Y _[4(q) = P(q)) - Kreg(a), S

where the sum is computed over the domain of y and K4 is a
bilateral weight function

Krey(q) = exp (7 l9(2) —9@)I” g —pl2>’ @
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which selects the parts of the block that gets approximated by P. To
ensure that the central pixel gets denoised, the constraint P(p) =
g(p) is also added. Since the weights K4 should capture the over-
all shape of the block, they are computed using a larger range pa-
rameter than the bilateral weight function in (2). It is worth noting



Image Size | G-NLM | SAPCA | NLB PID | BM3D | SAIST | MLP | EPLL | NLDD | DDID | BM3D+DA3D
256 x 256 357s 639 s 048s | 188s | 1.26s | 37.8s | 16.5s | 71.7s | 1.97s | 5265 2.92s
512x 512 3359 s 2490s | 0.80s | 725s | 4945 140s | 60.7s | 272s | 7.25s | 2045 9.62 s

Table 3: Average running time depending on image size between grayscale denoising methods. The experiments were performed on a 8-core
2.67GHz Xeon CPU. Every algorithm was tested using its official implementation. For DA3D a Python implementation was used.

Fig. 2: Test images used in the experiments. No parameter learning
or fitting was performed on this database.

that although K., uses the guide to select the parts of the block in
which to perform the estimation, the regression is performed directly
on the noisy data y, thus allowing to correct any staircasing effect al-
ready present in the guide. The parameters o, and ;. are specific
of the algorithm. The case of color images is identical, since (3) is
separable and can be computed independently on every channel.
Once estimated, the local plane P is subtracted from the patch,
effectively removing shades and gradients. Then the standard DDID
step is used to denoise the block and at the end the plane is added
back. The whole procedure is detailed in Table 1 (lines 8-11, 21).
An example of the result is shown in Fig. 1f. Observe that the
result present less staircasing effect and is better in terms of PSNR.
In addition, less blocks are treated to denoise the gradients (Fig. 1g).

5. EXPERIMENTS

Our implementation of the DA3D algorithm (available in the support
website [39]) has been tested against the set of images shown in
Fig. 2. For 7, and ~y;, the parameters of DDID [26] were kept (v, =
0.7, v¢ = 0.8), but since DA3D does not need to process all patches,
the size of the patches themselves was chosen as 64 x 64, with o5 =
14. The parameters 7 = 2, 05, = 20 and ~,,» = 7 were chosen
experimentally on images outside the test database.

The DA3D method was applied to the results of several state-
of-the-art algorithms. Each method was tested with noises of ¢ =
5,10, 25,40, 80. The results are summarized in Table 2.

DA3D improves the PSNR of every algorithm except NLDD
and PID (which is to be expected, since they are based on a similar
shrinkage strategy). This improvement is more marked with higher
noises, which makes sense since the parameters of DDID were opti-
mized for medium to high noise. It is worth mentioning that DA3D is
even able to improve over BM3D-SAPCA, which is considered the
best denoising algorithm up to date for grayscale images. Similar
results are obtained using SSIM [40] as metric.

In general BM3D+DA3D (DA3D using BM3D as guide) offers
one of the best performances with a reasonable computational cost.
As an example the results of the best two performing methods for
the image “Montage” are shown in Fig. 3, along with the result of
BM3D+DA3D. The latter outperforms the other algorithms in terms
of PSNR and image quality. Despite having a high PSNR value, the
result of the other two algorithms present artifacts close to the edges
and some staircasing (BM3D-SAPCA in particular).

The results for color images are similar to the grayscale case.

Hello Woarld

Hello Waorld Hello World

1qf
32.724 dB 4
(c) PID

(a) Original (b) BM3D-SAPCA (d) BM3D+DA3D

Fig. 3: Denoising results for Montage, o =25. A zoom-in is advised
to see the staircasing effects in (b) and (c) and their removal in (d).
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Fig. 4: Denoising results for Dice, o = 25.

As before, NLDD and PID are not improved (or just marginally im-
proved) by DA3D. The detailed tables with PSNR and SSIM are
available in the support website [39].

Fig. 4 shows the two best denoising results for the image “Dice”,
along with the result of BM3D+DA3D. Most of the artifacts gener-
ated by BM3D disappear with the post-processing, and at the same
time the edges becomes sharper and the gradients smoother.

Running time. The time needed to run the analyzed algorithms
is summarized in Table 3. Using DA3D as a post-processing method
demands little additional time, while the gain is substantial (in PSNR
and in visual quality). Therefore, while BM3D+DA3D is compara-
ble to BM3D-SAPCA in terms of performance, its computation is
more than 200 time faster.

6. CONCLUSIONS AND FUTURE WORK

This paper presented DA3D, a fast Data Adaptive Dual Domain De-
noising algorithm for “last step” processing. It performs frequency
domain shrinkage on shape and data-adaptive patches. The key in-
novations of this method are a sparse processing that allows bigger
blocks to be used and a plane regression that greatly improves the
results on gradients and smooth parts. The experiments show that
DA3D can improve the results of most denoising algorithms with
reasonable computational cost, achieving a performance superior to
the state-of-the-art.

Future work will include optimizing the parameters of the algo-
rithm, especially for low levels of noise, and adapting the shrinkage
function to the algorithm used as guide.



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

[17]

(18]

(19]

(20]

7. REFERENCES

M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Harris
Jr., “Survey of image denoising techniques,” GSPX, 2004.

J. L. Starck, E. J. Candes, and D. L. Donoho, “The curvelet
transform for image denoising,” IEEE TIP, vol. 11, no. 6, 2002.

H. Q. Li, S. Q. Wang, and C. Z. Deng, “New image denoising
method based wavelet and curvelet transform,” WASE ICIE,
vol. 1, 2009.

D. Gnanadurai and V. Sadasivam, “Image denoising using
double density wavelet transform based adaptive thresholding
technique,” IJWMIP, vol. 03, no. 01, 2005.

N. Wiener, Extrapolation, Interpolation, and Smoothing of
Stationary Time Series, The MIT Press, 1964.

D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation
by wavelet shrinkage,” Biometrika, 1994.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Phys. D, vol. 60, 1992.

P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE TPAMI, vol. 12, no. 7, pp. 629—
639, Jul 1990.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” IEEE ICCV, 1998.

A. Buades, B. Coll, and J. M. Morel, “A review of image
denoising algorithms, with a new one,” SIAM Mult. Model.
Simul., vol. 4, no. 2, 2006.

M. Elad and M. Aharon, “Image denoising via sparse and re-
dundant representations over learned dictionaries,” IEEE TIP,
vol. 15, no. 12, 2006.

J. Mairal, G. Sapiro, and M. Elad, “Learning multiscale sparse
representations for image and video restoration,” SIAM Mult.
Model. Simul., vol. 7, no. 1, 2008.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,
“Non-local sparse models for image restoration,” IEEE ICCV,
pp. 2272-2279, Sept 2009.

G. Yu, G. Sapiro, and S. Mallat, “Image modeling and en-
hancement via structured sparse model selection,” IEEE ICIP,
2010.

W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with
bilateral variance estimation: A low-rank approach,” [EEE
TIP, vol. 22, no. 2, pp. 700-711, 2013.

D. Zoran and Y. Weiss, “From learning models of natural im-
age patches to whole image restoration,” IEEE ICCV, pp. 479—
486, Nov 2011.

J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli,
“Image denoising using scale mixtures of gaussians in the
wavelet domain,” /EEE TIP, 2003.

A. Levin and B. Nadler, “Natural image denoising: Optimality
and inherent bounds,” IEEE CVPR, 2011.

A. Levin, B. Nadler, F. Durand, and W. T. Freeman, ‘“Patch
complexity, finite pixel correlations and optimal denoising,”
IEEE ECCV, pp. 73-86, 2012.

N. Pierazzo and M. Rais, “Boosting shotgun denoising by
patch normalization,” /EEE ICIP, 2013.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

[36]

[37]

(38]

[39]

[40]

1. Mosseri, M. Zontak, and M. Irani, “Combining the power of
internal and external denoising,” IEEE ICCP, pp. 1-9, April
2013.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image de-
noising by sparse 3d transform-domain collaborative filtering,”
IEEE TIP, vol. 16, no. 82, 2007.

M. Lebrun, A. Buades, and J. M. Morel, “Implementation of
the “non-local bayes” (NL-bayes) image denoising algorithm,”
Image Processing On Line, 2013.

H. Talebi and P. Milanfar, “Global image denoising,” [EEE
TIP, vol. 23, no. 2, pp. 755-768, Feb 2014.

H. C. Burger, C. Schuler, and S. Harmeling, “Learning how to
combine internal and external denoising methods,” in Pattern
Recognition, vol. 8142 of Lecture Notes in Computer Science,
pp- 121-130. Springer Berlin Heidelberg, 2013.

C. Knaus and M. Zwicker, “Dual-domain image denoising,”
IEEE ICIP, 2013.

C. Knaus, Dual-domain image denoising, Ph.D. thesis, Diss.
Univ. Bern, 2013, Bern, 2013.

C. Knaus and M. Zwicker, ‘“Progressive image denoising,”
IEEE TIP, vol. 23, no. 7, pp. 3114-3125, July 2014.

N. Pierazzo, M. Lebrun, M. Rais, J. M. Morel, and G. Facciolo,
“Non-local dual image denoising,” IEEE ICIP, 2014.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “BM3D
Image Denoising with Shape-Adaptive Principal Component
Analysis,” SPARS, 2009.

C. A. Deledalle, V. Duval, and J. Salmon, “Non-local methods
with Shape-Adaptive patches (NLM-SAP),” JMIV, vol. 43, no.
2, pp- 103-120, May 2012.

A. Buades, B. Coll, and J. M. Morel, “The staircasing effect in
neighborhood filters and its solution,” IEEE TIP, vol. 15, no.
6, pp. 1499-1505, June 2006.

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for
image processing and reconstruction,” /IEEE TIP, vol. 16, no.
2, pp- 349-366, February 2007.

H. Takeda, S. Farsiu, and P. Milanfar, “Higher order bilateral
filters and their properties,” Electronic Imaging, p. 64980S,
2007.

L. P. Yaroslavsky, “Local adaptive image restoration and en-
hancement with the use of DFT and DCT in a running win-
dow,” Proceedings of SPIE, 1996.

F. Durand and J. Dorsey, “Fast bilateral filtering for the display
of high-dynamic-range images,” ACM SIGGRAPH, pp. 257-
266, 2002.

A. B. Adams, High-dimensional gaussian filtering for compu-
tational photography, Stanford University, 2011.

E. Gastal and M. M. Oliveira, “Adaptive manifolds for real-
time high-dimensional filtering,” ACM Trans. Graph., vol. 31,
no. 4, July 2012.

Authors, “DA3D support website and supplementary mate-
rial,” http://dev.ipol.im/~pierazzo/da3d, 2015.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: From error visibility to structural
similarity,” IEEE TIP, vol. 13, no. 4, 2004.


http://dev.ipol.im/~pierazzo/da3d

