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Abstract

We apply multivariate singular spectrum analysis to the study of U.S. business
cycle dynamics. This method provides a robust way to identify and reconstruct
oscillations, whether intermittent or modulated. We show such oscillations to
be associated with comovements across the entire economy. The problem of
spurious cycles generated by the use of detrending filters is addressed and we
present a Monte Carlo test to extract significant oscillations. The behavior of
the U.S. economy is shown to change significantly from one phase of the business
cycle to another: the recession phase is dominated by a five-year mode, while
the expansion phase exhibits more complex dynamics, with higher-frequency
modes coming into play. We show that the variations so identified cannot be
generated by random shocks alone, as assumed in ‘real’ business-cycle models,
and that endogenous, deterministically generated variability has to be involved.

Keywords: Advanced spectral methods, Comovements, Frequency domain,
Monte Carlo testing, Time domain
JEL classification: C15, C60, E32

1. Introduction

Dominated over many decades by a long-term upward drift (Solow, 1956),
macroeconomic time series also exhibit smaller but still important shorter-term
fluctuations often associated with business cycles. The causes and characteris-
tics of these cycles have been extensively studied in modern economic theory
(Burns and Mitchell, 1946; Kydland and Prescott, 1998, and references therein).

A number of approaches have been proposed to separate the shorter-term
fluctuations from the long-term trend (Canova, 1998; Baxter and King, 1999).
Morley and Piger (2012) recently attempted a classification of business cycle
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analyses into (i) those that consider a cyclic sequence of expansions and contrac-
tions; and (ii) an output-gap view, in which business cycles merely correspond
to transitory fluctuations superimposed on a permanent trend level.

The definition of business cycles depends, however, on the knowledge of a
trend component that cannot be observed directly. Several filters have been de-
veloped (Graff, 2011) to extract such a trend component, of which the Hodrick-
Prescott (HP) filter is the most commonly used one (Hodrick and Prescott,
1997). Since there is no fundamental theory—and hence no generally accepted
definition—of the trend, the resulting residuals have to be analyzed very crit-
ically, to avoid spurious results due merely to the detrending procedure it-
self (Nelson and Kang, 1981; Harvey and Jaeger, 1993; Cogley and Nason, 1995).

Business cycles can also be understood as comovements of transitory fluctu-
ations in several distinct macroeconomic variables (Burns and Mitchell, 1946;
Lucas, 1977). It is imperative, therefore, to analyze business cycle properties as
a multivariate process.

The purpose of this paper is to apply multivariate singular spectrum analy-
sis (M-SSA)—the extension of singular spectrum analysis (SSA) to multivari-
ate time series—to the analysis of business cycles. Both SSA and M-SSA
rely on the classical Karhunen–Loève spectral decomposition of random pro-
cesses (Karhunen, 1946; Loève, 1945, 1978). Broomhead and King (1986a,b)
proposed to use both in the context of nonlinear dynamics as a more robust ap-
plication of the Mañé–Takens idea of reconstructing dynamics from measured
time series (Mañé, 1981; Takens, 1981; Sauer et al., 1991). Ghil, Vautard and
associates (Vautard and Ghil, 1989; Ghil and Vautard, 1991; Vautard et al.,
1992) noticed that SSA can be used as a time-and-frequency domain method
for the analysis of time series, whether they are generated by a linear stochastic
process, a nonlinear deterministic one or a superposition of the two.

We propose to use M-SSA for the analysis of business cycles in a completely
multivariate fashion. This method combines two useful approaches of statisti-
cal analysis: (1) it determines—with the help of principal component analysis
(PCA)—major directions in the system’s phase space that are populated by the
multivariate time series; and (2) it extracts major spectral components by using
data-adaptive filters. To get reliable information about significant oscillatory
modes, we perform exhaustive statistical tests by means of Monte Carlo SSA
(MC-SSA, Allen and Smith, 1996), which allow us to deal with the problem of
spurious oscillations (Nelson and Kang, 1981; Cogley and Nason, 1995).

SSA and M-SSA have already proven their advantages in a variety of appli-
cations, such as climate dynamics, meteorology and oceanography, as well as the
biomedical sciences. Ghil et al. (2002) provide an overview and a comprehensive
set of references to their theory and applications. In economics, this approach
has received little attention so far. Recent applications to the univariate SSA
analysis of business cycles include de Carvalho et al. (2012), Sella and Marchion-
atti (2012), and Dumas et al. (2013). The present paper introduces the M-SSA
methodology into the economic literature and demonstrates its advantages for
the multivariate analysis of economic activity.

The paper is organized as follows. In Section 2, we introduce the method-
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ology and summarize its properties in terms of spectral decomposition, as well
as of time-domain reconstruction. In Section 3, we apply SSA to the U.S. gross
domestic product (GDP) and M-SSA to the full data set. The reliability of
the results is then discussed via Monte Carlo testing. Section 4 analyzes the
cycle-to-cycle variability of the U.S. business cycles, and we draw conclusions
about the underlying dynamics in Section 5.

2. Decomposition and reconstruction

2.1. Data and pre-processing

We study here U.S. macroeconomic data from the Bureau of Economic Anal-
ysis (BEA; see http://www.bea.gov). The nine variables analyzed are GDP,
investment, employment rate, consumption, total wage, change in private in-
ventories, price, exports, and imports; all monetary variables are in constant
2005 dollars, while the employment rate is in percentage points. The quarterly
time series cover 52 years, from the first quarter of 1954 to the third quarter of
2005.

Aligning ourselves with the output-gap view of business cycle analysis, we
first remove the trend of each time series separately, by using the HP filter with
the common parameter value λ = 1600. Employment is the only one of the
nine variables that does not exhibit an upward trend; still, we do detrend it to
consistently remove periods longer than 10 years, as done for the other variables.

The restriction to the interval 1954–2005 reduces end-to-end mismatches of
the remaining transitory fluctuations and minimizes spectral leakage effects, i.e.
the presence of spurious oscillations in the spectral analysis. On the macroeco-
nomic side, the years 2007-2008 correspond to a well-known crisis, whose origin
was financial, rather than economical. The time interval since that crisis exhib-
ited several new characteristics, for which we do not yet have sufficiently long
data sets to distinguish this interval from the previous half-a-century of data.

In contrast to our two-step approach—see also Dumas et al. (2013)—de Car-
valho et al. (2012) have chosen to apply a single SSA analysis for the decom-
position of the GDP into trend and fluctuations. Such an approach is indeed
desirable as it appears to provide a more consistent separation into a perma-
nent trend component and transitory fluctuations that are orthogonal to it (cf.
Vautard et al., 1992; Ghil et al., 2002). In the present macroeconomic context,
however, the trend dominates the SSA’s variance-based phase-space decompo-
sition and small fluctuations could be masked in such a single-sweep analysis
(Granger, 1966; Sella and Marchionatti, 2012). We will return to this issue in
the estimation of the covariance matrix in Sec. 2.2.

In line with our two-step decomposition, we next obtain trend residuals that
we divide by the trend—i.e., we concentrate on relative values—and then trans-
form to unit standard deviation. This normalization brings all the indicators to
the same scale and gives equal weight to each of them in the M-SSA analysis.
One could choose to give different weights to each time series to reflect a priori
ideas on their relative importance. Our choice here is one of simplicity, and the
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Figure 1: The nine time series of U.S. macroeconomic data used in this paper; raw data from
the U.S. Bureau of Economic Analysis (BEA), 1954–2005. The figure illustrates the results
of pre-processing and of applying either multivariate singular spectrum analysis (M-SSA) or
principal component analysis (PCA); the shaded vertical bars in the three panels indicate
NBER-defined recessions. (a) Detrended and standardized time series. (b,c) Reconstruction
of the entire data set: (b) with the first 10 M-SSA components, using a window width of
M = 24 quarters; and (c) with the first two PCA components. Both reconstructions capture
75% of the total variance, while the M-SSA reconstruction is smoother.

covariance matrix is transformed into a correlation matrix. Finally, we divide
the normalized time series by (DM)1/2—with D the number of variables and
M the window width—so that the sum of the partial variances equals one.

Figure 1a shows the results of this pre-processing. The U.S. recessions, as
defined by the NBER, are indicated by shaded vertical bars.

2.2. Singular spectrum analysis (SSA)

In this section we discuss the univariate version of SSA and present its main
properties, in particular, its ability to reconstruct cyclical dynamics.

Following Mañé (1981) and Takens (1981), the starting point of SSA is to
embed the time series {x(t) : t = 1, . . . , N} into an M–dimensional phase space
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X, by using M lagged copies

x(t) =
(
x(t), x(t+ 1), . . . , x(t+M − 1)

)
, (1)

with t = 1, . . . , N−M+1. The SSA procedure starts by calculating the principal
directions of the embedded data set x(t).

Reconstructing the entire attractor of a nonlinear dynamical system from
x(t), as originally proposed by Broomhead and King (1986a), may fail, how-
ever, even in relatively simple cases (Mees et al., 1987; Vautard and Ghil, 1989).
Ghil, Vautard and several associates first proposed, instead, to apply the SSA
methodology to describe cyclical behavior in short and noisy time series, for
which standard methods derived from Fourier analysis do not work well (Vau-
tard and Ghil, 1989; Ghil and Vautard, 1991; Vautard et al., 1992). The key
idea in their approach was to reconstruct the ‘skeleton of the attractor,’ i.e. the
most robust, albeit unstable limit cycles embedded in it.

The next step in SSA is to compute the auto-covariance matrix C of x.
Vautard and Ghil (1989) proposed to estimate it by

ci,j =
1

N − |i− j|

N−|i−j|∑
t=1

x(t)x(t+ |i− j|), (2)

imposing a Toeplitz structure with constant diagonals: the entries ci,j of the
matrix depend only on the lag |i− j|.

The eigenvalues λk and eigenvectors ρk of C, k = 1, . . . ,M , are obtained by
solving

Cρk = λkρk. (3)

The eigenvectors, which are pairwise orthonormal, span a new coordinate system
in the M–dimensional embedding space X, and each eigenvalue λk indicates
the variance in the corresponding direction ρk. This computation helps us find,
therefore, the major components of the system’s dynamical behavior.

The eigenvectors of such a Toeplitz matrix are necessarily either symmetric
or anti-symmetric, and the method’s reliability in extracting oscillations is en-
hanced therewith by using this form of C (Allen and Robertson, 1996). In the
presence of strong non-stationarity, the Toeplitz approach yields a slightly larger
bias in the reconstruction of low-frequency activity than the original trajectory
approach of Broomhead and King (1986a).

The latter approach relies on a singular-value decomposition of the trajectory
matrix x and is more appropriate for the analysis of trends (Ghil et al., 2002).
Our focus here is on the transitory fluctuations and we rely therefore on the
Toeplitz approach for our analysis. de Carvalho et al. (2012) have found the
trajectory approach to be also adequate in their one-step identification of the
permanent trend and superimposed fluctuations in the U.S. business cycles.

By convention, the eigenvalues {λk, k = 1, . . . ,M} are arranged in descend-
ing order, from the largest to the smallest variance, yielding a so-called “scree
diagram” of eigenvalues λk vs. order k. In this diagram, one often looks for
a clear break in the slope to distinguish ‘signal’ from ‘noise.’ Such a break,
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however, occurs mostly when the noise is actually white, with no temporal cor-
relations at all. The signal-to-noise separation test has, therefore, to be modified
in the presence of non-vanishing correlations, as done in Sec. 3 below.

Projecting the embedded time series x onto eigenvectors ρk yields the cor-
responding principal components (PCs),

Ak(t) =

M∑
j=1

x(t+ j − 1)ρk(j), k = 1, . . . ,M. (4)

Note that the sum above is not defined close to the end of the time series, where
N −M ≤ t ≤ N . It is customary, therefore, to consider the PCs as defined for
only N −M + 1 indices, which could start at t = M and end at N , or start
at t = 1 but end at N −M + 1; most commonly they are plotted centered for
M/2 ≤ t ≤ N −M/2, with M even (Ghil et al., 2002).

Finally, we can reconstruct parts of the time series that are associated with
a particular eigenvector by

rk(t) =
1

Mt

Ut∑
j=Lt

Ak(t− j + 1)ρk(j), k = 1, . . . ,M, (5)

cf. Ghil and Vautard (1991) and Vautard et al. (1992). The values of the
triplet of integers (Mt, Lt, Ut) for the central part of the time series, M ≤ t ≤
N −M + 1, are simply (M, 1,M); for either end they are given in Ghil et al.
(2002). Each reconstructed component (RC) rk(t) associated with the variance
λk has a complete set of N indices, but with a reduced confidence in its values
at either end of the time series.

Given any subset k ∈ K of eigenelements, we obtain the corresponding re-
construction rK(t) by summing the RCs,

rK(t) =
∑
k∈K

rk(t). (6)

Typical choices of K are (i) K = {k : 1 ≤ k ≤ S}, where S is the statistical
dimension of the time series, cf. Vautard and Ghil (1989), i.e., the number of
statistically significant components; or (ii) a pair of components (k0, k1) for
which λk0 ≈ λk1 , and which may capture a cyclic mode (see Section 3). The
whole set of RCs, K = {k : 1 ≤ k ≤ M}, gives the complete reconstruction of
the time series.

In the following we refer to the common notation for the reconstructed com-
ponent rk as RC k, and for a sum of several, consecutive RCs in Eq. (6) from
index k to index k′ as RCs k–k′.

From the viewpoint of signal processing, the RCs can be considered as filtered
time series, with the eigenvectors being a set of data adaptive filters. Both
Eqs. (4) and (5) can be interpreted as a finite-impulse response (FIR) filter
(Oppenheim and Schafer, 1989), with ρk being an FIR filter of length M . The
PCs obtained in Eq. (4) are time-reversed in Eq. (5), and the FIR filter is run
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Figure 2: Univariate spectral analysis of U.S. gross domestic product (GDP). (a) Eigenvalue
spectrum of λk (filled circles) vs. dominant frequency of the associated eigenvector ρk, with
window width M = 24 quarters; the error bars indicate the significance levels (cf. Sec. 3.1).
(b) Power spectral density (PSD) estimate (solid line) using Welch’s averaged periodogram
method, with a Hamming window of length 128 quarters and 75% overlap (Priestley, 1991);
the dashed lines indicate the significance levels. Inset: Covariance estimates (solid line) and
their significance levels (dashed lines). The upper and lower significance levels in both panels
and in the inset are derived from the 2.5% and 97.5% percentiles of 1000 surrogate time series
from an AR(1) null hypothesis; see Sec. 3.1.

again through them. After this second filter pass, the correct chronological order
is restored by reversing the filtered result rk(t) once more. This procedure is
called forward-backward filtering, and it is known to preserve the phase relations.
Hence, each RC k and the original time series x(t) are in phase and the filtering
acts only on the amplitude.

In designing an appropriate band-pass filter, Baxter and King (1999) require,
in particular, that this “filter should not introduce phase shifts.” Unlike their
band-pass filter, with its data-independent weights chosen a priori, SSA is data
adaptive. The M filters are the eigenvectors of the auto-covariance matrix and
provide an optimal spectral decomposition of the time series, i.e., a maximum
of the variance is captured by a minimal number of spectral components.

Following Vautard et al. (1992), we assign to each pair (λk,ρk) a frequency,
given by the maximum of the Fourier transform of ρk. Plotting each eigenvalue
vs. its dominant frequency provides a complementary perspective on SSA in
terms of an analogy with classical spectral analysis.

This analogy becomes more obvious when analyzing the trend residuals of
GDP (Figure 2). In the SSA analysis of panel (a), we observe a maximum in
the spectrum of eigenvalues at the usually reported mean business cycle length
of 5–6 years, which agrees with the classical estimation of the power spectral
density (PSD) in panel (b). For various PSD estimation algorithms that we have
tested, we observe a maximum around the same period; at this point, though,
the trend residuals are still subject to the Nelson and Kang (1981) criticism
of spurious cycles. Therefore, we have to perform additional significance tests
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before relying on the results, cf. Sec. 3.1.

2.3. Multivariate SSA (M-SSA)

M-SSA provides an extension of SSA to multivariate time series (Broomhead
and King, 1986b; Kimoto et al., 1991; Keppenne and Ghil, 1993; Plaut and
Vautard, 1994). Let x(t) = {xd(t): d = 1, . . . , D; t = 1, . . . , N} be a vector
time series of length N , with D channels. In generalizing (2), we use the D
auto-covariances Cd,d, as well as the D × (D − 1) cross-covariances Cd,d′ to

form a grand covariance matrix C̃:

C̃ =


C1,1 C1,2 . . . C1,D

C2,1 C2,2 . . . C2,D

...
... Cd,d′

...
CD,1 CD,2 . . . CD,D

 . (7)

Here C̃ is a DM ×DM matrix and the entries of the individual matrices Cd,d′

can be estimated as

(ci,j)d,d′ =
1

Ñ

min{N,N+i−j}∑
t=max{1,1+i−j}

xd(t)xd′(t+ i− j). (8)

The denominator Ñ depends on the range of summation, namely Ñ = min{N,N+
i− j} −max{1, 1 + i− j}+ 1.

As before we diagonalize the grand matrix C̃ to yield its eigenvalues λk and
eigenvectors ρ̃k,

C̃ρ̃k = λkρ̃k, k = 1, . . . , DM. (9)

In contrast to SSA, the M-SSA eigenvectors ρ̃k have now length DM , and
are composed of D consecutive segments ρd

k, d = 1, . . . , D of length M . These
segments can be likewise interpreted as frequency-selective FIR filters, combined
here into one multivariate filter ρ̃k.

The associated PCs are single-channel time series that are computed by
projecting the multivariate time series x(t) onto ρ̃k,

Ak(t) =

D∑
d=1

M∑
j=1

xd(t+ j − 1)ρdk(j), k = 1, . . . , DM. (10)

In addition to the summation j over time, as in Eq. (4), we get a second summa-
tion d over the channels. This summation involves a classical PCA. In particular,
setting M = 1 reduces M-SSA to PCA in D variables.

Finally, one can reconstruct parts of each time series xd(t) associated with
its corresponding eigenvector segment ρd

k by (Plaut and Vautard, 1994)

rdk(t) =
1

Mt

Ut∑
j=Lt

Ak(t− j + 1)ρdk(j), k = 1, . . . , DM ; d = 1, . . . , D. (11)
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This formula provides a set of DM RCs for each of the D time series and—
depending on the information contained in the cross-covariances Cd,d′—the RCs
of different time series may or may not be correlated. In this way, M-SSA helps
extract common spectral components from the multivariate data set, along with
comovements of the time series.

In Figure 1, we compare the pre-processed time series in panel (a) with the
M-SSA reconstruction in panel (b), using the ten leading RCs, and with PCA
reconstruction in panel (c), using the two leading RCs of the data set; the latter
results from Eq. (11) with M = 1. Both the M-SSA and PCA reconstructions
capture 75% of the total variance and extract coherent behavior manifest in
the nine economic variables. In contrast to PCA, the M-SSA results are much
smoother, having removed irregular temporal fluctuations. It is especially the
inclusion of temporal correlations that makes M-SSA superior to PCA in the
extraction of dynamical behavior.

3. Oscillatory behavior and its statistical significance

The trend residuals in Figure 1 exhibit obviously more structure than pure
white noise; we need, therefore, a stringent test to decide whether the visu-
ally apparent cyclical behavior can be attributed to random fluctuations or to a
more regular oscillatory behavior, of possibly intrinsic origin. Cogley and Nason
(1995), among others, have discussed in detail the effects of detrending, in par-
ticular the possibility that it might give rise to spurious cycles; their discussion
was placed in the context of the detrending effect on a standard real business
cycle (RBC) model, with no oscillatory dynamics.

We follow Cogley and Nason (1995) and test against a first-order autoregres-
sive process, AR(1), to verify the statistical significance of oscillations; this test
is already well-established in the geosciences (Allen and Smith, 1996; Ghil et al.,
2002). Since AR(1) processes exhibit maximum variance at zero frequency, de-
trending with the HP filter may yield a possibly spurious maximum in the PSD
at other frequencies, e.g. around the commonly reported business cycle length
of 5-6 years.

3.1. Univariate time series: the GDP

We first focus on GDP alone, the most widely studied macroeconomic indi-
cator. A Monte Carlo–type test consists in first fitting an AR(1) process X(t)
to the scalar time series x(t) of interest,

X(t) = aX(t− 1) + σ0 ε(t), (12)

with ε(t) being Gaussian white noise of variance σ = 1, and then comparing the
spectral properties of many realizations of X(t) with that of x(t).

We estimate the regression coefficient in Eq. (12) to be a = 0.82, and the
variance σ0 = 0.04, with the influence of the HP filter taken into account. That
is, we choose the parameter a to minimize the mean-square distance between
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the GDP covariance function (solid line in the inset of Figure 2b) and the HP-
filtered AR(1) covariance function (dotted line), while to estimate σ0 we use the
unbiased estimator proposed by Allen and Smith (1996) for short time series.
Given the model parameters, we create a set of 1000 surrogate realizations of
length N from the AR(1) model, lowpass filter each with the HP filter, and
normalize it to the same variance as x(t). An additional division by the trend is
not necessary, since the innovations in the AR(1) process have constant variance.

In Figure 2b, we compare the PSD estimate of the GDP residuals (solid line)
with that of the surrogate time series. Frequency-dependent significance levels
at the 2.5% and 97.5% quantiles (dashed lines) also show high power around
five years, and the PSD estimate of the GDP falls entirely between them.

Other PSD estimates, such as the maximum entropy or the multi-taper
method (see Ghil et al., 2002, and references therein), confirm this finding and
yield the conclusion that GDP residuals alone cannot be distinguished from the
null hypothesis of an HP-filtered AR(1) process. The high PSD values around
five years could be due to the detrending of an otherwise stable model with
exogenous excitation, in complete agreement with the findings of Cogley and
Nason (1995) and Nelson and Kang (1981).

The same lack of statistical significance holds for the lag-covariance function,
as expected from the Wiener-Khinchin theorem, according to which the PSD and
the lag-covariance function of a time series are related by the Fourier transform
(Blackman and Tukey, 1958). The swing below zero for the surrogate time
series is thus likewise due to the HP filter’s effect; see the inset in Figure 2b.
The preliminary conclusion is that we cannot falsify the null hypothesis of an
AR(1) process for the GDP residuals, as analyzed separately here.

This conclusion can also be confirmed by MC-SSA, which tests whether an
eigenvalue λk captures more partial variance in the direction of the correspond-
ing eigenvector ρk than present in the null hypothesis. To derive significance
levels, the covariance matrix CS for each surrogate time series xS(t) is projected
onto the set of eigenvectors E of the original time series via

ΛS = EᵀCSE; (13)

here the eigenvectors ρk are the columns of E, and (·)ᵀ denotes the transpose
of a matrix.

Equation (13) is not the eigendecomposition of CS, and ΛS is not necessarily
diagonal, as it would be for C. Instead, ΛS provides a measure of the discrep-
ancy between CS and C, and by computing quantiles of the diagonal elements’
distribution from a set of ΛS, we derive significance levels for each eigenvalue
λk (Allen and Smith, 1996).

The resulting significance levels for the SSA analysis of GDP in Figure 2a
are indicated as vertical bars and we see that all eigenvalues fall within these
error bars. Hence, the observed spectrum of eigenvalues cannot falsify the null
hypothesis either. In the following subsection, we show that additional infor-
mation from other macroeconomic indicators helps reject the null hypothesis.
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Table 1: Null-hypothesis parameters
Variable AR(1) parameters Time lag behind GDP

ad σd ∆d (quarters)
GDP 0.82 0.040 0

Investment 0.92 0.028 1
Employment 0.96 0.021 0

Consumption 0.88 0.034 0
Total wage 0.95 0.024 0

∆(Inventories)∗ 0.61 0.055 0
Price 0.99 0.012 7

Exports 0.95 0.023 1
Imports 0.83 0.039 1

∗ Changes in inventories

3.2. Multivariate time series

To test significance in M-SSA results, comovements should be taken into
account in formulating the null hypothesis. Vector AR models, however, may
support oscillations even for order one; when present, these are referred to as
principal oscillation patterns (von Storch et al., 1995; Penland and Matrosova,
2001). We keep, therefore, the idea of fitting univariate AR(1) processes

Xd(t) = adXd(t− 1) + σd εd(t), (14)

but build characteristics of the cross-correlations into the null hypothesis. The
estimated parameters for each indicator are listed in Table 1.

The cross-correlation information is included by coupling the noise residuals
εd(t) at a certain temporal lag ∆d. Relative to GDP, denoted by x1(t), we chose
∆d so as to maximize the correlations between x1(t) and xd(t+∆d). Doing so is
especially necessary for the price, for which we observe a correlation maximum
at seven quarters (cf. Figure 3g).

The covariance matrix R for innovation processes εd(t) has elements

Rd,d′ =
1

Ñd,d′

min{N,N+∆d′−∆d}∑
t=max{1,1+∆d′−∆d}

xd(t)xd′(t+ ∆d′ −∆d) ; (15)

the denominator Ñd,d′ depends on the range of summation, namely Ñd,d′ =
min{N,N + ∆d′ −∆d} −max{1, 1 + ∆d′ −∆d} + 1. Cholesky decomposition
yields R = LᵀL and we derive correlated innovation processes from

(ε1(t), . . . , εd(t+ ∆d), . . . , εD(t+ ∆D))
ᵀ

= Lᵀ(ξ1(t), . . . , ξd(t), . . . , ξD(t))ᵀ,
(16)

with the ξd’s being independent white-noise processes. Finally, we pass the real-
izations through the HP filter and normalize it to the same standard deviation
as the data set.
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Figure 3: Auto- and cross-covariance functions of the nine U.S. economic indicators with
respect to GDP (solid lines). Dashed lines indicate the significance levels 2.5% and 97.5%,
as well as the median from the realization of 1000 surrogate time series. Panels (a)–(i) are
labeled directly in the figure; ∆(Inventories) in the legend of panel (f) indicates changes in
inventories.
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Figure 4: Spectrum of M-SSA eigenvalues (non-dimensional, filled circles) using all nine U.S.
indicators, with M = 24. The error bars indicate the significance levels, derived from the
2.5% and 97.5% percentiles of 1000 multivariate surrogate time series.

Figure 3 compares the covariance of the data with that of the null hypothe-
sis. Lead–lag relations among economic indicators are reproduced by the null-
hypothesis model, and the data covariance function lies almost, but not quite,
within the variability of the null hypothesis. As in the univariate case, the HP
filter introduces a swing below zero and which would lead once again to spurious
cycles.

Projecting the grand covariance matrix C̃S for each of the surrogate realiza-
tions onto the data eigenvectors, Λ̃S = ẼᵀC̃SẼ, yields again a measure of the
discrepancy between C̃S and C̃, which allows us to derive significance levels for
λk from the distribution of the diagonal elements of Λ̃S (Figure 4).

As in the case of GDP alone, we observe higher significance levels near a
five-year period, but this time the data eigenvalues clearly exceed the upper
significance level. Hence the high variance associated with the leading pairs of
eigenvalues can no longer be explained by spurious cycles induced by inappro-
priate detrending.

We have further tested the consistency of the present results by using dif-
ferent values of the window width, namely M = 20, 30, 40 and 50. It turns out
that the leading pair describes a significant oscillation of five-year period. The
three-year oscillation in the second pair is somewhat less robust, but probably
still deserves further examination in future work.

We have performed additional, exhaustive tests—as proposed by Allen and
Smith (1996)—to cope with the problem of overestimating large eigenvalues in
SSA and have found further evidence that the five-year oscillatory pair is indeed
statistically significant at the 95% level. We focus, therefore, in the next section
on this oscillatory mode and investigate its role in business cycle dynamics.

13



4. Business cycle dynamics: phase dependence and evolution

The presence of oscillatory pairs indicates recurrent behavior in the system’s
dynamics. Such more-or-less regular recurrences are typically produced by the
presence of an attracting or only weakly unstable limit cycle in the dynam-
ics (Vautard and Ghil, 1989; Vautard et al., 1992; Ghil et al., 2002). On the
other hand, vector AR(1) processes can possess oscillatory solutions as well, as
mentioned at the beginning of Section 3.2. In practice, however, it might be
hard to distinguish between purely deterministic, but chaotic oscillators and
stochastically driven ones.

From the point of view of economic theory, the distinction is not that im-
portant: in fact, deterministic mechanisms—whether linear or nonlinear—are
the only ones that give rise to cyclic behavior in a vector AR(1) process or
in a vector random process generated by a system of linear (Arnold, 1974) or
nonlinear (Arnold, 1998) stochastic differential equations as well (Schuss, 1980);
for illustration purposes, we discuss the case of a vector AR(1) process in the
Appendix. The stochastic forcing, if present, only contributes truly irregular
fluctuations. It is, therefore, only the deterministic part of the dynamics that is
of genuine interest in discussing cyclicity in macroeconomics, whether stochastic
forcing is present or not.

The first two eigenvalues capture 40% of the total variance, and RCs 1-2 give
already a good approximation of the GDP, cf. Figure 5a. To better understand
the role of this five-year oscillatory mode in the processes of expansion and
recession, we study the temporal evolution of its variance.

Plaut and Vautard (1994) introduced the concept of local variance fraction
VK(t),

VK(t) =

∑
k∈KAk(t)2

DM∑
k=1

Ak(t)2

, (17)

which quantifies the fraction of the total variance that is described by a subset K
of PCs in a window of length M . We consider the PCs as centered, i.e. starting
at M/2, cf. Section 2.2.

Figure 5 shows this index, along with the NBER-defined recessions, for the
leading PCs 1–2 in panel (b) and for PCs 3–150 in panel (c). The sum of
PCs 1–150 capture 99% of the total variance; see dash-dotted line in panel
(b). Starting after 1980, it is quite remarkable that the fraction of the five-year
oscillatory mode in PCs 1–2 is high during recessions and low during expansions.
It shows that during the recessions, the trajectory of the data set stays closer to
a suspected five-year limit cycle—like the one in the Non-Equilibrium Dynamic
Model (NEDyM) of Hallegatte and Ghil (2008) or in other endogenous business
cycle models (Chiarella et al., 2005)—while this trajectory reveals more complex
behavior during expansions.

During the 1970s, PCs 1–2 capture roughly 50% of the variance or more over
the full decade, while from 1980 on, PCs 1–2 play a significant role only during
recessions. This result of our analysis suggests a change in the system’s dynamics
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Figure 5: (a) Pre-processed GDP data set (light solid line) and its reconstruction with RCs
1–2 of our M-SSA analysis (heavy solid line). (b,c,d) Local variance fraction V (t): (b) for
M-SSA PCs 1–2 (solid line) and PCs 1–150 (near-total variance, dash-dotted line); (c) for
M-SSA PCs 3–150 (solid line); and (d) for PCs 1–2 of a PCA analysis (light solid line), as
well as after smoothing with a two-year moving average (heavy solid line). The dashed lines
in panels (b) and (c) give the 2.5%, 25%, 50%, 75%, and 97.5% percentiles based on 1000
surrogate time series. The shaded vertical bars indicate NBER-defined recessions.
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in the 1980s, a change that agrees in timing with the “great moderation,” during
which volatility in GDP growth diminished markedly (Kim and Nelson, 1999;
McConnell and Perez-Quiros, 2000; Stock and Watson, 2002; Kim et al., 2004).

There has been considerable debate on the cause of this shift, as well as
on the expected duration of the U.S. economy’s new mode of functioning; in
particular it has been proposed that this moderate behavior terminated in 2007,
i.e. before and during the “great recession” of 2008–2009. In any case, our
results are at least consistent with the hypothesis of structural changes in the
1980s, and our M-SSA methodology can help provide sophisticated analysis tools
to determine whether and when the great moderation ended, once additional
BEA data become available.

To assess the significance of the local variance results, we compare their
variability with that of the null hypothesis in Eq. (14). To wit, we project each
surrogate realization onto the data eigenvectors ρ̃k to obtain surrogate PCs
in the same way as for the data set in Eq. (10). As in the significance test
of the eigenvalues, the resulting surrogate PCs are not orthogonal, since their
covariance matrix Λ̃S is not diagonal.

For each surrogate PC we calculate the local variance fraction in the same
way as for the data set in Eq. (17), and derive time-dependent significance levels
from the distribution of VK(t) (Figs. 5b,c, dashed lines). Since the AR(1) pro-
cesses are stationary, these levels are supposed to be constant; this stationarity
is seen in fact in Figure 5, except near the end of the time series, i.e. starting
at t ' N −M .

In contrast to the approximate constancy of VK(t) in the null hypothesis, the
five-year oscillatory mode in the data set exhibits much greater variance during
the recessions, when it does exceed the 97.5% significance level. The variance in
PCs 3–150 is also larger than can be explained by the null hypothesis, with VK(t)
values that are significantly larger than the 97.5% percentile during expansions
and smaller than the 2.5% percentile during recessions, respectively.

We have further examined the variability of VK(t) during the whole 1954–
2005 interval by using other quantities, such as standard deviation and in-
terquartile range (not shown here). All these estimates confirm that the U.S.
macroeconomic indicators exhibit larger variability than can be explained by
the random fluctuations of the null hypothesis.

It is interesting to note that a similar phenomenon can also be identified
by applying PCA to the data (Figure 5d). Although, at first glance, the local
variance fraction of the leading two PCs of PCA (light solid line) is rather
irregular, with no apparent link to the business cycle, smoothing with a two-
year moving-average filter (heavy solid line) does indeed produce a behavior
comparable to that in Figure 5b. It would, however, be difficult to guess that
from the raw PCA results: the moving-average filtering was only inspired by
the M-SSA results in panels (b) and (c), which did not require any additional
post-processing.
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5. Concluding remarks

In this article, we applied multivariate singular spectrum analysis (M-SSA)
to study business cycles dynamics in a consistent and multivariate way. Our
M-SSA results allowed us to reconcile and combine the NBER definition of re-
cessions with quantitative analysis. This methodology extends, in particular,
the recently proposed SSA business cycle analysis of a single macroeconomic
indicator (de Carvalho et al., 2012; Sella and Marchionatti, 2012; Dumas et al.,
2013). The present M-SSA analysis uses information on nine U.S. macroeco-
nomic indicators from the BEA for 52 years (1954–2005).

This extended business cycle analysis leads to three major conclusions: (i) the
presence of genuine periodicity in macroeconomic behavior and its determinis-
tic causes; (ii) the essential role of comovements of economic aggregates in the
proper definition of business cycles; and (iii) the dependence of economic ‘volatil-
ity’ on the phase of the business cycle. We describe these conclusions in greater
detail below.

Genuine periodicity and its deterministic causes. In their work about the ‘real
facts’ and monetary myths of business cycles, Kydland and Prescott (1998)
discussed the origin of business cycles in terms of the Slutzky (1937) theory
of random shocks. In the simplest RBC models, cyclicity originates exclusively
from productivity shocks that can be modeled by a simple random walk. Cogley
and Nason (1995) have, moreover, argued that the spurious appearance of busi-
ness cycle dynamics can be generated by the HP filter even if none is present,
even in a random walk.

In agreement with the findings of Cogley and Nason (1995), a simple uni-
variate analysis of GDP does not reveal any significant oscillatory modes (see
Figure 2). Our multivariate analysis, however, uses a larger amount of infor-
mation about macroeconomic behavior, and allows us to identify a five-year
oscillatory mode with high statistical confidence (see Figure 4). This mode can-
not be explained by artificial effects due to detrending by the HP filter, and a
random-walk–driven model of business cycles has to be questioned in the light
of the results obtained in our paper.

A major result of our study thus points to the presence of deterministic,
endogenous effects in the business cycles of the U.S. economy and leads to
the conclusion that business cycles cannot be explained by exogenous shocks
alone. This conclusion does not exclude the importance of random effects in the
economy, as discussed at the beginning of Section 4 and in the Appendix: it only
emphasizes the role of the deterministic ones in giving rise to cyclic behavior.

Comovements of macroeconomic aggregates. The role of the additional infor-
mation provided by the M-SSA analysis emphasizes the need to understand
business cycles as a phenomenon that is not limited to GDP variations, but in-
volves all aspects of the economy; it is reflected, therefore, in the comovements
of several macroeconomic aggregates. In the present study, we have performed a
quantitative analysis of the BEA data set that is consistent with the NBER defi-
nition of the business cycle, inasmuch as it is entirely multivariate and takes into
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account the lead-and-lag relationships between the various indicators present in
the data (see Table 1 and Figure 3). These lead-and-lag relationships, in turn,
reflect certain widely acknowledged “stylized facts” of economic cycles (Kydland
and Prescott, 1998; Zarnowitz, 1985).

State-dependent fluctuations. M-SSA also allowed us to provide further insight
into the underlying macroeconomic dynamics, and especially into the crucial
question of the complex interplay between endogenous dynamics and exogenous
shocks. We showed that the U.S. economy changes its behavior from one phase
of the business cycle to another: the recession phase is dominated by the five-
year mode, while the expansion phase exhibits more complex dynamics, with
higher-frequency modes coming into play (see Figure 5). This type of behavior
cannot be explained by the random fluctuations that drive a simple stationary
RBC model, in the absence of endogenous oscillatory dynamics.

It thus appears that the dynamics of the U.S. economy can indeed be de-
composed into a five-year cycle and more complex, higher-frequency behavior
superimposed on this cycle. The amplitude of the latter, irregular component
is higher during expansions, i.e. the business cycle is more volatile during ex-
pansions than during recessions.

This phase-dependent volatility is consistent with the response to natural
disasters predicted by Hallegatte and Ghil (2008) in an endogenous business
cycle (EnBC) model. These authors have shown that exogenous shocks, whether
positive or negative, are likely to have a bigger impact in the presence of EnBCs.

Their modeling framework (Hallegatte et al., 2008), while highly simplified,
has Keynesian features and their EnBC model’s predictions can be interpreted
in terms of production being closer to capacity during expansions. On the other
hand, the lower volatility during recessions in our analysis here is consistent with
the predicted reduction in sensitivity to exogenous shocks, due to underutilized
production capacity in the low phases of an EnBC. This so-called “vulnerability
paradox” was also highlighted by Ghil et al. (2011) and by Dumas et al. (2013).

Such a variable-volatility pattern may seem at odds with the findings of
French and Sichel (1993). But this apparent discrepancy can be explained by
the fact that our analysis and theirs are not defining the fluctuations in the
same manner. French and Sichel (1993) modeled the variance of the residuals
on a long-term trend, without decomposing these residuals into cyclical and
non-cyclical behavior, as we do here, and found higher variance during epochs
of recession. In the present paper, we study the fluctuations superimposed on
the sum of the long-term trend, plus a possible cyclical component. It is the
variance of the fluctuations so defined that is largest during expansions.

The next step in our research program is to investigate whether the change
in the economy’s dynamical behavior between boom and bust also leads to
different types of response to exogenous shocks. This question is fundamental
in attempting to evaluate the efficiency of economic policy in different phases
of the business cycle.
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Appendix. Cyclicity in deterministic and stochastic models

It is well known, as already mentioned at the beginning of Section 3.2, that
vector AR(1) processes can posses oscillatory solutions, due to the presence of

pairs of complex conjugate eigenvalues (λk, λk+1) = (λ
(r)
k ± λ

(i)
k ) in the spectrum

of the matrix A = (aij) that characterizes such a process,

X(t) = A X(t− 1) + Σ ε(t) ; (A.1)

here Σ is a covariance matrix multiplying the noise vector ε. For a stationary

AR(1) process, all the real parts λ
(r)
k of the eigenvalues of A must be negative,

and the damped oscillations are maintained at a statistically constant amplitude
by the noise ε.

In practice, such a stochastically driven oscillator might be hard to distin-
guish from a purely deterministic, possibly chaotic one. But the term A X(t−1)
in the former case, on the right-hand side of Eq. (A.1), still captures the man-
ifestation of a coupled pair of deterministic feedbacks, one positive, the other
negative, whether linear or nonlinear, noise-driven or not, as the ultimate cause

of any complex conjugate pair of eigenvalues (λ
(r)
k ± λ

(i)
k ).
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