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Abstract: Chrysosporum ovalisporum is a cylindrospermopsin toxin producing 

cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and 

toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was 

reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the 

occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in 

Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and 

August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic 

species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which 

is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel), 

Lisimachia and Trichonis (Greece) and Arcos Reservoir (Spain), Chrysosporum ovalisporum in 

Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak 

stratification. Cylindrospermopsin was detected in almost all water samples even when 

Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes  

and cylindrospermopsin concentrations were not correlated (n = 31, r2 = −0.05). 
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Cylindrospermopsin reached a maximum concentration of 1.7 µg L−1. The vertical  

profiles of toxin concentrations suggested its possible degradation or sedimentation resulting 

in its disappearance from the water column. The field growth conditions of  

Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water 

temperature of 22 °C increasing the risk of its development and expansion in lakes located 

in temperate climate regions. 

Keywords: cyanobacteria; water temperature; Middle East; solar radiation; nutrients 

 

1. Introduction 

Many lakes and reservoirs throughout the world suffer from toxic cyanobacterial blooms e.g., [1–5]. 

Chrysosporum ovalisporum, previously known as Aphanizomenon ovalisporum [6] is a toxic  

bloom-forming cyanobacterium that was reported in several freshwater bodies mainly in Australia and 

around the Mediterranean Sea [7–10]. Chrysosporum ovalisporum is a planktonic nostocalean that can 

colonize freshwater bodies due to different competitive strategies. Its eco-physiological characteristics 

are presented in Table 1. In a stratified water column, its gas vacuoles enable it to migrate between 

surface layers with high light availability and deeper layers with high nutrient availability [11].  

Its colonies are characterized by thick wall cells called heterocysts, dedicated to atmospheric nitrogen 

fixation during nitrogen limitation periods [12]. Moreover, its filamentous morphology and colony size 

offer protection against grazing [13]. 

Table 1. Eco-physiological characteristics of Chrysosporum ovalisporum. 

Parameter Chrysosporum ovalisporum 

Laboratory optimal growth temperature (°C) 

28 ± 2 a 

33 ± 2 b 

32.8 ± 0.9 c 

26 ± 1 d 

Maximum growth rate at optimal temperature (day−1) 
0.3 a 

0.36 c 

Filament flotation rate (m h−1) <0.04 e 

Optimal solar irradiation (W m−2) 80 a 

Source: a [14]; b [15]; c [16]; d [9]; e [17]. 

Chrysosporum ovalisporum produces cylindrospermopsin (CYN), a toxin that poses serious threats 

to human and environmental health. CYN is produced by some cyanobacterial species other than 

Chrysosporum ovalisporum including Chrysosporum (Anabaena) bergii, Cylindrospermopsis raciborskii, 

Raphidiopsis curvata, and Umezakia natans [18,19]. This toxin, produced by Cylindrospermopsis 

raciborskii is believed to be responsible for the severe hepatoenteritis that affected 148 people in 1979 

on Palm Island, Queensland, Australia [20]. CYN is a water soluble alkaloid hepatotoxin that was  

found to cause damage to kidneys, lungs and heart. It was also reported as protein synthesis inhibitor, 

genotoxic [21] and carcinogenic [22]. 
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A large fraction of CYN can be found in extracellular water because it is released from cells under 

physiological stress by temperature and light [23]. CYN persists in many water bodies because of its 

chemical stability and slow degradation; after 10 weeks at 50 °C, cylindrospermopsin had degraded to 

57% of the original concentration [24]. Recently, it was found in high extracellular concentrations in 

many freshwater bodies throughout the world: 18.4 µg L−1 in Lake Albano, Italy [25], 9.4 µg L−1 by 

Chrysosporum ovalisporum in Arcos Reservoir, Spain [9] and 12.1 µg L−1 in German lakes [26]. 

Understanding the mechanisms and processes that control the growth and succession of 

cyanobacterial species is of great concern. Karaoun Reservoir is the largest freshwater body in Lebanon, 

with a maximum capacity of 224 × 106 m3. Before 1996, the reservoir was dominated by diatoms that 

constituted 80% of the total population [27]. After the year 2000, the dinoflagellate Ceratium hirundinella 

and filamentous green algae were the main phytoplankton species documented in the reservoir [28]. 

Chrysosporum ovalisporum blooms were first reported in Karaoun Reservoir in May 2009 [29,30]. 

Chrysosporum ovalisporum is not as widely spread as other cyanobacteria species like Microcystis 

aeruginosa. It was documented in some water bodies around the Mediterranean Sea but its growth 

dynamics were not sufficiently studied. As well, cylindrospermopsin toxin profiles were poorly studied 

at field. In this paper, we describe the dynamics and controlling factors of this blooming cyanobacterium 

as well as CYN distribution in the water column of Karaoun Reservoir. 

2. Results 

2.1. Physical-Chemical Conditions 

During 2012 and 2013, subsurface water temperature in Karaoun Reservoir ranged from 13 to 26 °C 

(Figure 1). Comparison between water temperatures at 1 and 10 m in 2012 and 2013 showed that the 

reservoir was stratified from May to August. The water was weakly stratified (less than 1 °C between 

the surface and the lake bottom) or fully mixed in September, October and November 2012. The water 

level ranged from 837 to 859 m above sea level. The reservoir was full at the beginning of May in 2012 

and 2013. Then, the water level decreased by 20 m due to small inflows and regular withdrawals in the 

dry season, between May and October. Subsurface orthophosphate concentration was close to detection 

limit (0.01 mg P L−1) in 2012. In 2013, it decreased from 0.95 mg L−1 in March down to under the 

detection limit in summer. Total phosphorus varied greatly between campaigns and some of its peaks 

were correlated with total phytoplankton biovolume peaks. Nitrate nitrogen did not exceed 0.2 mg L−1 

except on October 16, 2012 (0.47 mg L−1) (Figure 2). TN:TP ratio did not exceed 22:1 during the  

study period.  

2.2. Dynamics of Chrysosporum ovalisporum in Karaoun Reservoir 

Chrysosporum ovalisporum in Karaoun Reservoir was already blooming at the beginning of the 

survey on May 15, 2012 with a biovolume of 8.2 mm3 L−1 in a sample taken at the edge of the reservoir 

(SB, see section 4.1.). At that time, the reservoir was full. This bloom had declined a week after the water 

level had begun to decrease on May 24, 2012. Chrysosporum ovalisporum bloomed again in June but 

disappeared in July. Subsurface nitrate nitrogen concentration was 0.16 mg N L−1 and water temperature 

was 25 °C at that time. Chrysosporum ovalisporum was not detected from August to September 2012 
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when the reservoir was dominated by Microcystis aeruginosa that had a maximum biovolume of  

6.7 mm3 L−1 on September 12, 2012. In mid-October 2012, Microcystis aeruginosa was not detected and 

was replaced by Chrysosporum ovalisporum colonies with trichomes of 150 ± 75 μm without heterocysts 

(Figure 3a). It was a mixing period, orthophosphate concentration was close to detection limit  

(0.01 mg P L−1), nitrate concentration was 0.47 mg N L−1, water level was low (10 m depth at SM,  

841 m above sea level), daily average irradiance was 120 W m−2 and water temperature was 22 °C.  

After 2 weeks, Chrysosporum ovalisporum was not detected anymore and was replaced by dinoflagellate 

Ceratium hirundinella which bloomed in November.  

Figure 1. Daily mean values of physical variables at the sampling dates: water level, solar 

irradiance, water temperature at 1 and 10 m, and biovolumes of total phytoplankton and 

Chrysosporum ovalisporum in 2012 and 2013 at SM in Karaoun Reservoir, except on  

May 15, 2012 where samples were taken at SB. 
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Figure 2. Concentrations of nitrate nitrogen, total nitrogen, total phosphorus, orthophosphate 

phosphorus and TN/TP ratio in 2012 and 2013 at SM in Karaoun Reservoir. 
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Figure 3. Chrysosporum ovalisporum at Karaoun Reservoir (a) colony on October 16, 2012; 

(b) visible heterocyst on March 25, 2013. 

 

Figure 4. Phycocyanin fluorescence profiles, proxies of Chrysosporum ovalisporum 

concentration in the water column at SM in Karaoun Reservoir in 2012 and 2013. 
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2.3. Cylindrospermopsin Quantification  

Subsurface concentrations of CYN in Karaoun Reservoir ranged from 0.38 to 1.72 µg L−1 in 2012 

and 2013 (Figure 5). The lowest concentration (0.38 µg L−1) was recorded at the beginning of a 

Chrysosporum ovalisporum bloom on May 15, 2012. This concentration showed an increasing trend in 

the first four campaigns (May 15, May 24, June 7 and June 19, 2012). The highest concentration  

(1.7 µg L−1) was recorded both on August 28, 2012 and April 26, 2013, in the absence of  

Chrysosporum ovalisporum in the water column.  

Figure 5. Subsurface cylindrospermopsin (CYN) concentration and biovolumes of 

Chrysosporum ovalisporum in 2012 and 2013 at SM in Karaoun Reservoir, except on  

May 15, 2012 where sample were taken at SB. 
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Figure 6. Vertical profiles of Chrysosporum ovalisporum biovolumes (10−3 mm3 L−1) and 

CYN concentrations (µg L−1) in Karaoun Reservoir during the year 2013. Error-bars are the 

standard deviations on the runned triplicates. 
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Chrysosporum ovalisporum dominated in samples taken at the edge of the reservoir. Its concentration 

greatly decreased within 10 days. Profiles of Chrysosporum ovalisporum on May 24, 2012 showed that it 

was concentrated in the top 5 m. Between May 14 and 24, 2012, the reservoir was full and overflowed. 

Horizontal transport of buoyant Chrysosporum by wind and current may have caused their loss after 

they exit the reservoir through the spillway. Horizontal displacement is considered as the limiting factor 

that causes the loss of floating colonial cyanobacteria through outflow. It was reported to be the main 

reason affecting the horizontal distribution of phytoplankton, especially buoyant cyanobacteria, in Lake 

Taihu [32] and in four Andalusian reservoirs in Spain [33]. 

Nitrogen limitation is a factor that can promote Chrysosporum ovalisporum growth [34]. The bloom 

of Chrysosporum ovalisporum in October 2012 was preceded by a period of very low nitrogen levels 

and N:P ratios that did not exceed 22:1 during the study period. According to Smith et al. (1995),  

lake water TN:TP ratios below 22:1 favour the dominance of N2-fixing cyanobacteria [35]. Similar 

effects of low N:P ratios have been seen in Lake Kinneret where the invasion of the nitrogen-fixing 

cyanobacterium Chrysosporum ovalisporum was consistent with the trend towards increasing  

N-deficiency in the water column [36].  

Chrysosporum ovalisporum occurred at different water temperatures in other freshwater bodies.  

In July 1999, Chrysosporum ovalisporum dominated at subsurface water temperatures between 29 and 

31 °C, in the warm monomictic Lakes Lisimachia and Trichonis in Greece [7]. Laboratory experiments 

showed that Chrysosporum ovalisporum of Lake Kinneret has an optimal temperature of 26–30 °C [14]. 

In Arcos Reservoir, Chrysosporum ovalisporum dominated in October and September at a subsurface 

temperature of 26 °C [9]. Unlike the temperature conditions that were associated with blooms  

of Chrysosporum ovalisporum in Lakes Kinneret, Lisimachia, Trichonis and Arcos Reservoir, 

Chrysosporum ovalisporum in Karaoun Reservoir peaked in October 2012, with a maximum biovolume 

of 9.8 mm3 L−1, when water temperature was 22 °C. Although there is a difference in the water 

temperature at which Chrysosporum ovalisporum blooms in Lake Kinneret and Karaoun Reservoir, 

climate change is thought to be one of the drivers of Chrysosporum ovalisporum blooms. Slim et al. [29] 

revealed that changes in climate regime, increase in air temperature and decrease in precipitation 

between 2000 and 2010 have altered Karaoun Reservoir biodiversity and resulted in low diversity 

dominated by Chrysosporum ovalisporum and Microcystis aeruginosa blooms. In Lake Kinneret,  

Hadas et al. [37] proposed that the appearance and establishment of Chrysosporum ovalisporum since 

1994 was linked to increased water temperature and limited nitrogen availability. Using a temperature 

based model, Mehnert et al. [16] hypothesized a future northward expansion of Chrysosporum 

ovalisporum in Europe under the global warming scenario. In Karaoun Reservoir, Chrysosporum 

ovalisporum bloomed at a water temperature of 22 °C. This supports the possibility of Chrysosporum 

ovalisporum blooms in European lakes in which subsurface water temperature can exceed 22 °C like 

Lake Bourget in France [38], Lake Mondsee in Austria [39], and Lake Zurich in Switzerland [40]. 

As in Cobaki Village Lake in Australia [41], Chrysosporum ovalisporum in Karaoun Reservoir was 

present in the epilimnion with the highest cell concentrations occurring at a depth of 1 to 3 m in  

spring 2012 when irradiance was 250 ± 20 W m−2. Its highest filament concentrations then occurred at 

top 1 m when irradiance was 100 ± 20 W m−2. Chrysosporum ovalisporum in Karaoun Reservoir is 

probably also sensitive to photoinhibition as in Lake Kinneret where the rate of photosynthesis of 



Toxins 2014, 6 3050 

 

 

Chrysosporum ovalisporum reaches maximum at about 80 W m−2 and declines at higher irradiance,  

due to photoinhibition [14]. 

3.2. Relation between Cylindrospermopsin Concentrations and Chrysosporum ovalisporum 

CYN can be present in water body as extracellular and intracellular. The extracellular fraction can 

exceed the intracellular fraction [20]. The low correlation between CYN concentrations and 

Chrysosporum ovalisporum biovolumes can be explained by the ability of this cyanobacterium to 

liberate high levels of CYN that remains stable even after the decline of the cyanobacterium. CYN is 

relatively stable under a variety of conditions; it decomposes slowly in temperatures ranging from  

4 to 50 °C at pH 7. After 10 weeks at 50 °C, cylindrospermopsin degraded to 57% of the original 

concentration [24]. According to Preußel et al. [23] several temperature–light combinations which 

constitute physiological stresses seem to trigger CYN production and particularly CYN release  

from cells. Shaw et al. [42] found that the extracellular cylindrospermopsin fraction was at least 85% in 

Ocean Park ponds and Palm Lakes in Australia, indicating that Chrysosporum ovalisporum releases 

cylindrospermopsin to water. For that, analyses based on Chrysosporum ovalisporum cell counts cannot 

decipher cylindrospermopsin concentration because they do not take into account extracellular CYN. 

3.3. Disappearance of CYN from Water Column by Degradation or Sedimentation  

Vertical profiles of CYN in Karaoun Reservoir showed that its concentration decreased at the surface 

and increased at deeper depths during summer. Information about the vertical distribution of CYN and 

its disappearance from the water column in other freshwater bodies are scarce. Settling after adsorption 

to particulate material or degradation may have resulted in the disappearance of CYN from the surface.  

In situ photodegradation of CYN was observed, but rate is affected by both the turbidity of the water 

and the depth of the photic zone [24]. Little information is available regarding the effect of temperature 

on the biodegradation of cyanobacterial toxins [43]. There are conflicting reports regarding the 

efficiency of the biodegradation of these metabolites in water bodies [43]. For example, Smith et al. [44] 

documented biodegradation in water supplies that had a history of toxic Cylindrospermopsis raciborskii 

blooms in North Pine Dam in Queensland, Australia, while Wormer et al. [45] did not observe any 

biodegradation of cylindrospermopsin produced by Chrysosporum ovalisporum in Santillana Reservoir 

in Spain. The profiles presented on Figure 6 represent both intracellular and extracellular CYN. A large 

fraction of CYN was in extracellular form when it started to decrease at 1 m depth because 

Chrysosporum ovalisporum was not detected. Extracellular toxins may adsorb to clays and organic 

material in the water column [46]. The settling velocity of CYN was about 1 m per week which means 

that it might have been adsorbed on organic material rather than clay that needs months to settle. In 

Cobaki Village Lake, Australia, the maximum toxin concentration was present in the hypolimnion 

during a Chrysosporum ovalisporum bloom [41]. This suggests that the decrease of CYN concentration 

at surface in Karaoun Reservoir might de due to CYN settling or degradation.  
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4. Experimental Section  

4.1. Study Site  

Karaoun Reservoir (33°34'N, 35°41'E), located in the southern part of the Bekaa valley, between the 

two Lebanese mountain chains, is the largest freshwater body in Lebanon (Figure 7, Table 2).  

The reservoir was constructed between 1958 and 1965 on the Litani River for power production and 

irrigation. Most of the river inflow (90% of the mean annual inflow) occurs mainly in the wet season, 

from October to May, while the withdrawals are regular throughout the year, which causes a large level 

variation, by about 20 m [47].  

Figure 7. Karaoun Reservoir and sampling sites: SM (33°34'05''N, 35°41'44''E) and  

SB (33°34'37''N, 35°41'20''E). 

 

Table 2. Karaoun Reservoir morphometric and hydrologic characteristics. 

Morphometry and hydrology Values 

Surface area at full capacity 12 km2 

Maximum storage capacity 224 × 106 m3 

Maximum depth 60 m 

Mean depth at full capacity 19 m 

Altitude at maximum level (m) 860 m 

Catchment area 1600 km2 

Mean residence time of water 9 months 
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4.2. Sampling Procedure  

Measurements and samples were taken at the most representative point (SM), located in the middle of 

the lake (33°34'05''N, 35°41'44''E). However, for safety reasons during high water level, the sample of 

May 15, 2012 was taken at the reservoir side, SB (Figure 7). Campaigns were performed bi-weekly 

between 11:00 and 13:00. Water samples were collected at 0.5 m depth from May to November 2012 

and at 0.5, 5 and 10 m depths from March to August 2013 with a vertical Niskin bottle of 2.2 L capacity 

(Wildco 1120-D42, Florida, United States). Samples were stored at 4 °C until further processing in the 

laboratory. Different volumes and bottles were used for phytoplankton identification and counting, 

nutrient analysis and cylindrospermopsin quantification. 

4.3. Water Temperature and Phycocyanin Measurements 

Water temperature was measured with temperature sensors (Starmon mini, Star-Oddi, Gardabaer, 

Iceland) at 1 and 10 m depths to monitor thermal stratification. The sensor measuring temperature range 

is −2 to 40 °C with an accuracy of ±0.05 °C. A submersible fluorometer (TriOS microFlu-blue,  

Rastede, Germany) was used to measure fluorescence profiles of phycocyanin, a pigment specific to 

cyanobacteria. It is equipped with ultra-bright red LEDs, of an excitation wavelength 620 nm, detection 

wavelength 655 nm and band-width 10 nm. It gives a linear response to phycocyanin concentration up 

to 200 µg L−1 with an accuracy of 0.02 µg L−1. Measurements were performed every half meter between 

the surface and the bottom of the reservoir by descending the cable manually at a speed of 5 cm s−1 and 

waiting for 30 s for values to become stable. 

4.4. Microscopic Identification and Counting 

The subsamples used for phytoplankton counting were fixed by formaldehyde and preserved at 4 °C 

(4% of sample volume). The phytoplankton species were determined on the sampling day according to 

taxonomic keys based on cell structure and dimensions, colony morphology, and mucilage 

characteristics [48,49]. Microscopic identification and enumeration were carried out under a phase 

contrast microscope (Nikon TE200, Nikon, Melville, NY, USA), under a ×40 objective and using 

Nageotte chamber that accepts 100 µL on 40 bands. The number of bands counted depended on sample 

concentration. Each subsample was counted on triplicate. 

4.5. Nutrient Analysis 

Subsamples used for the analysis of nutrients (total phosphorus, orthophosphate, nitrate, and 

ammonium) were preserved at 4 °C after addition of 2 mL of 18 M H2SO4 Soluble phosphorus 

(orthophosphate), nitrate, and ammonium subsamples were then filtrated through a 0.45 µm cellulose 

acetate filter (MF-Millipore, HAWP04700, American Fork, UT, USA). 

Nitrate and ammonium concentrations were estimated by colorimetry with a photometer (Palintest 

Photometer 7000se, Gateshead, UK). Total phosphorus and orthophosphate concentrations were 

determined at 880 nm by UV/VIS spectrophotometer (Thermospectronic, LaboTech, Beirut, Lebanon) 

using colorimetric ascorbic acid method (EPA Standard Method 365.3, Washington, DC, USA).  
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The quantification range for nitrate nitrogen is 0.1–30 mg N L−1, ammonium nitrogen 0.1–12 mg N L−1, 

and phosphorus 0.01–1.2 mg P L−1. 

4.6. Cylindrospermopsin Analysis  

Samples for cylindrospermopsin analysis were collected in borosilicate bottles, transported in the 

dark and preserved at 4 °C until analysis date. To measure the concentration of both intracellular and 

extracellular toxin forms, samples were vortexed before analysis but not filtered. According to  

Humpage et al. [50], high amounts of cyanobacterial cell material or a relatively high organic load, even 

in wastewater, do not have a significant effect on the analysis result. ELISA kit (Abraxis, product 

number: 522011, Warminster, UK) was used to evaluate extracellular cylindrospermopsin concentration. 

Each sample was run in triplicate. The absorbance of the coloured product of antibody-conjugated 

enzymes was read at 450 nm using a microplate ELISA photometer (Stat Fax 303 Plus, Palm City, FL, 

USA). The subsequent quantification was based on calibration curves of the semi-logarithmic 

relationship between relative absorbance and toxin concentration using the six standards provided with 

the kit. The quantification range for cylindrospermopsin by ELISA is 0.04–2 µg L−1.  

4.7. Meteorological and Hydrological Data 

Solar radiation, precipitation and wind speed measurements were obtained from Tal-Amara 

meteorological station of the Lebanese Agriculture Research Institute located in the Bekaa valley 

(33°51'50''N, 35°59'06''E), 40 km North of Karaoun Reservoir. Daily water level measurements were 

provided by the Litani River Authority (LRA), responsible for the management of the reservoir.  

5. Conclusions 

Chrysosporum ovalisporum in Karaoun Reservoir was detected in all seasons. It is difficult to  

decide conclusively its relationship with all the environmental factors and nutrient availability  

in particular. Chrysosporum ovalisporum dominated both during periods of high and low water level, 

stratification and mixing in a wide range of light irradiances and water temperatures. Light irradiation 

higher than 250 W m−2 photoinhibited Chrysosporum ovalisporum and resulted in its concentration 

between 1 at 3 m depths. Among the main hypotheses for explaining its decline in Karaoun Reservoir is 

water temperature higher than 25 °C and horizontal transport and withdrawal.  

Unlike high temperature conditions which were associated with blooms of Chrysosporum ovalisporum 

in lakes located in the Middle-East or in Southern Europe, Chrysosporum ovalisporum in Karaoun 

Reservoir bloomed at water temperature of 22 °C. Lakes in which water temperature exceeds 22 °C are 

susceptible to blooms of Chrysosporum ovalisporum. Our results suggest that within a period of a month, 

CYN produced by Chrysosporum ovalisporum disappeared from the water column either by 

sedimentation or degradation. It also shows that CYN concentrations were not correlated with 

Chrysosporum ovalisporum biovolumes and it can be observed at high concentrations even long after 

the end of Chrysosporum ovalisporum blooms.  

On the local level, it shows that Karaoun Reservoir contains cylindrospermopsin. Presence of 

cylindrospermopsin long after blooms of Chrysosporum ovalisporum requires regular monitoring of 
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cylindrospermopsin in the Reservoir, to avoid health problems when using Karaoun water for irrigation 

or for drinking water supply.  
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