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Abstract 

Data collected during 4 heavy rainfall events that occurred in Ardèche (France) with 

the help of a 2D Video-disdrometer are used to investigate the structure of the rain drops 

distribution in both space and time. A first type of analysis is based on the reconstruction of 

36-m height vertical rainfall columns above the measuring device. This reconstruction is 

obtained with the help of a ballistic hypothesis applied to 1 ms time step series. The 

corresponding snapshots are analysed with the help of Universal Multifractals. For 

comparison, a similar analysis is performed on the time series for 1 ms time step, as well as 

time series of accumulation maps of N consecutive recorded drops (therefore with variable 

time steps).

It turns out that the drop distribution exhibits a good scaling behaviour on the range 

0.5 – 36 m during the heaviest portion of the events, confirming the lack of empirical 

evidence of the widely used homogenous assumption for drop distribution. For smaller scales 
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drop positions seems to be homogeneously distributed. The notion of multifractal singularity 

is well illustrated by the very high resolution time series. 

1) Introduction

Rainfall is extremely variable over wide range of scales both in space and time. It has 

become rather usual to characterize this behaviour with the help of scaling properties, and 

more recently multifractals (see Lovejoy and Schertzer 1995, Schertzer et al. 2010 for   

reviews). This framework is physically based in the sense that it is more than a simple tailored

statistical framework. Indeed it relies on the cascade process concept which was introduced to

reflect the scale  invariance properties of the Navier-Stokes equations that govern atmospheric

dynamics. It is assumed that the unknown equations governing rainfall inherit these properties

of scale invariance (Schertzer and Lovejoy 1987, Hubert et al. 1993). Since the advent of this 

framework in the 1980s, ample empirical evidence have established its relevancy on scales 

ranging from few minutes to decades in time and hundreds of meters to planetary size in 

space (Lovejoy et al. 2008). Some authors reported not a single scaling regime but various 

ones separated by breaks; typically at few minutes and few days in time and few kilometres in

space. Various types of data have been used; rain gauges (de Lima and de Lima 2009, de Lima

and Grasman 1999, Fraedrich and Larnder 1993, Ladoy et al. 1993, Olsson 1995, Tessier et al.

1996), disdrometers (de Montera et al. 2009, Gires et al. 2014), weather radars (Gires et al. 

2011 2012, Nykanen and Harris 2008, Tessier et al. 1993, Verrier et al. 2010), satellite with 

TRMM data (Lovejoy et al. 2008) and even numerical outputs of climate simulations (Royer 

et al. 2008) or meso-scale models (Gires et al. 2011).
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The highest resolutions mentioned before are rather coarse with regards to the mm 

scale down to which atmospheric turbulence - the embedding field of rainfall - is known to 

exhibit scaling behaviour (see Anselmet et al. 2001 for a review). Hence the need to 

investigate more precisely the minimum spatio-temporal scales down to which scaling is 

observed in rainfall fields. Very few studies have analysed this, mainly because of the lack of 

rainfall data at these scales. Mandapaka et al. (2009) observed on lidar data scaling on the 

range 1 - 512 s in time and 2.5 - 320 m in space. Lilley et al. (2006) and Lovejoy and 

Schertzer (2008), using few 3D snapshots of an 8 m3 volume with most of its drops 

(Desaulnier-Soucy et al. 2001), reported a scaling behaviour down to few tens of cm with a 

dependency on the turbulence intensity and drop size. Lovejoy and Schertzer (1990) or 

Gabbella et al. (2001) using large (~ m) sheets of chemically blotted paper also found a 

scaling behaviour down to almost drop scale but these results have been disputed (Jameson 

and Kostinski 1998). In this paper we suggest to investigate more in depth the spatio-temporal

(3 dimensions in space and 1 dimension in time) features of rainfall fields down to drop scale 

using data collected by a 2D video-disdrometer denoted 2DVD hereafter (see Kruger and 

Krajewski 2002, for a precise description of the device’s functioning), deployed in the 

Ardèche region (South-East of France) in the framework of the HyMeX campaign (Ducrocq 

et al. 2014), in an innovative way. Indeed this device has been extensively used as a reference 

in comparison with other rainfall measuring ones (Krajewski et al. 2006, Tokay et al. 2013), 

or to investigate drops and more generally hydrometeor shape (Battaglia et al. 2010, Cao et al.

2008, Thurai and Bringi 2005) and size (Thurai et al. 2011) distribution features, but not to 

address this issue of the spatio-temporal structure of rainfall process at drop scale. More 

precisely vertical, horizontal and temporal cuts of rainfall fields are either obtained or 

reconstructed with the data provided by a 2DVD and investigated with the help of multifractal

techniques.
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A related issue is whether drops are homogeneously distributed in space and time. 

Scaling laws are incompatible with a homogenous distribution (Poisson statistics), but it 

remains a debated topic. It has mainly been discussed in time by analysing drop counts over 

various time steps. Most authors have reported deviations from Poisson statistics also not 

necessarily attributing them to an underlying scaling behaviour; Kostinski and Jameson 

(1997) used 1 min drop counts by Joss-Waldvogel disdrometer (1967) to most likely 

invalidate a Poisson framework during heavy rainfall periods (more than 27 drops / min), and 

confirmed this with 1 s (corresponding to few meters) counts computed with 15 min of 2DVD

data (Jameson and Kostinski 1999), noticing that larger drops are more correlated over longer 

coherence time. Uijlenhoet et al. (1999) also observed deviations from Poisson statistics with 

35 min of 10 s time step disdrometer data (~ 6500 drops), but found that the discrepancies are 

only due to small drops (with diameter smaller than 1.1 mm) which basically do not influence

rain rates or reflectivity which are related to higher order moments of the drop size 

distribution. At the inter-event scale (4 months of data) Lavergnat and Golé (1998) observed a

power law decrease of the duration between the observations of two consecutive drops with a 

disdrometer, which is incompatible with Poisson statistics. Hence in this paper we suggest to 

also tackle this issue by systematically comparing (when possible!) our results with those that 

would have been obtained with homogeneously distributed drops. Such methodology was 

already employed in Lilley et al. (2006) and Jameson and Kostinski (1998).

The collected data is presented in section 2 along with the basic ideas underlying the 

multifractal framework. Section 3 describes the analysis of snapshots of reconstructed 36 m 

high vertical columns of air above the device with all its drops. The high temporal resolution 

of the measuring device is used in section 4 to study 1 ms time step series (over the 11x11 cm2

sampling area of the device). Drop accumulation maps (therefore with varying time steps, but 

for the same sampling area) are analysed in section 5. 
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2) Data description and multifracal framework 

2.1) Data description

The data used in this paper were collected with the help of a 2DVD (Kruger and 

Krajewski 2002). The 2DVD provides detailed information about the geometry and the fall 

velocity of the particles falling through its sampling area of about 11x11 cm2, by means of two

perpendicular high-speed line cameras (with a pixel size of about 0.2 mm and a time 

resolution of about 1ms). From the two reconstructed side views of each raindrop, the shape 

and equivolume diameter are retrieved (assuming the rain drops are oblate spheroids). The 

two cameras being shifted in the vertical by about 6.5 mm, the fall velocity of each particle is 

directly measured. The same raw data will be used to generate three types of representation 

and analysis in the following sections: vertical reconstructed columns, high resolution time 

series and small scale accumulation maps. Methods used to obtain each cut of the underlying 

spatio-temporal rainfall representation are included in separated, dedicated section to facilitate

the reading of the paper. 

The device was installed in Le Pradel, Ardèche, France (see Fig. 1) during the fall 

2012 and  2013 in the framework of the HyMeX project (Ducroq et al., 2014). The considered

2DVD is the low version (with reduced wind disturbance). A number of rainfall events were 

collected, and the two heaviest ones (in terms of 5-min rain rate) for each fall have been 

selected for the present study. Their main features are summarized in Tab. 1. 

2.2) Multifractal framework

The basic principle of the multifractal framework is briefly reminded. For more details

refer to the recent review by Scherter and Lovejoy (2011). Multifractals are used to 
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characterize and also simulate geophysical fields extremely variable over a wide range of 

spatio-temporal scales which also exhibit long range correlation. It basically relies on the 

concept of multiplicative cascades. Let us denote   such a field at resolution  (=L/l) 

defined as the ratio between the outer scale L of the phenomenon and the observation scale l. 

The field at a given resolution  is obtained from the field at the maximum resolution  by 

averaging it over pixels of resolution .

Let us first introduce in a rather intuitive (but less rigorous mathematically) way the 

notion of multifractal fields with the help of the concept of fractal dimension. A is a 

geometrical set embedded in a space of dimension d (for instance d = 1 for time series and d =

2 for maps) and N  the number of non overlapping d-dimension boxes of size l needed to 

cover A at resolution  (= L/l, where L is the outer scale). If the set is fractal then we have: 

FDN        (1)

where DF is the fractal dimension of A.

The geometrical set corresponding to the portion of a field  above a given threshold 

exhibits fractal features that can be quantified with the help of a fractal dimension. The 

decreasing dependency of this fractal dimension with regards to the considered threshold 

reflects the need of multiple fractal dimensions to characterize the field. In a more rigorous 

mathematical way the threshold is replaced by the scale invariant notion of singularity but the 

underlying idea remains the same.

More precisely if a field is scaling then its power spectra E is a power-law with respect

to the wave number k:

 kkE )(       (2)

Where  is the spectral slope. A larger  reflects a weaker correlation.
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Spectral analysis basically corresponds to a statistical analysis of the moment 2 of the 

field. In the multifractal framework all the moments are used to fully characterize the 

variability across scale. The statistical moment of order q at a given resolution scales with the 

resolution:

)(qKq       (3)

Where K(q) is the moment scaling function. In the specific framework of Universal 

Multifractals (UM), which correspond to the stable and attractive limits of nonlinearly 

interacting multifractal processes (i.e. a multiplicative generalization of the central limit 

theorem), K(q) has the following analytical expression :

  Hqqq
C

qK 


 

 1
)( 1     (4)

which  only depends on three parameters having a strong physical meaning (Schertzer and 

Lovejoy 1987 1997):

-  H,  the  degree  of  non-conservation,  which  measures  the  scale  dependency  of  the  mean

field .H=0 for a conservative field, and can be either positive or negative corresponding to a

fractional integration or differentiation respectively of a conserved field;

- C1, the mean intermittency co-dimension, which measures the mean sparseness of the field,

i.e. how concentrated is the mean field. A homogeneous field fills the embedding space and

has  C1=0,  dC  10  where  d is the dimension of the embedding space (a greater  C1 could

theoretically exit but it would correspond to fields almost surely null everywhere)

-  20   , the multifractality index, which measures the variability of the intermittency,

i.e. its dependence with respect to the considered level of activity. When =0, it means that all

activity levels exhibit the same intermittency reflecting a fractal field. 
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The various parameters are related by the following equation from which H is usually 

estimated: 

)2(21 KH        (5)

3) Analysis of reconstructed vertical rainfall columns 

3.1) Ballistic reconstruction of a column

As already explained, the 2DVD provides for each drop a direct measurement of the 

fall velocity and of the horizontal position within the 11x11 cm2 sampling area of the device. 

Assuming the validity of the hypothesis of vertical ballistic trajectories, i.e. that both remain 

constant during the last seconds of fall and equal to the ones measured near ground surface, it 

is possible to reconstruct the trajectory of each drop. Achieving this for all the drops enables 

to reconstruct the whole rainfall field drop by drop on a column above the device (Fig 2.a). 

The height of the column studied in this paper is 36 m. 

The ballistic assumption is extremely coarse. Indeed by assuming an underlying 

laminar flow, we neglect all interactions with the turbulent wind field and notably shear 

effects, which have an influence on drops velocity, especially for small ones. Neglecting these

effects tend to worsen the quality of the scaling we can observe with the help of this 

reconstruction.  Drop population dynamics (e.g. coalescence in case of collisions, break-ups) 

is also ignored although wind tunnels studies have shown that raindrop interactions can occur 

on scales below 36 m (Cotton and Gokhale 1967). Possible effects on the small drop tendency

to collide or not, due to small scale turbulence self induced by the aerodynamic forces exerted

on the larger falling raindrop (for large raindrops the Reynolds number is of the order of few 
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thousands) is also not taken into account. However, despite its limitations, this reconstruction 

can yield some preliminary insight before considering more complex reconstruction, e.g. with

randomized trajectories taking into account turbulence effects as well as coalescence and 

breakup

Finally, the column is divided into 8192 boxes of 4.3 mm height, the two horizontal 

dimensions being the horizontal sampling area ones’ i.e. ~ 11 cm (Fig. 2.b). Although the 

minimum inter-drop distance (defined as the drop concentration to the power -1/3) observed 

for the studied events is roughly 4 cm (and usually much larger), the height of the boxes is 

chosen much smaller so that results can be compared in the vertical and in the horizontal 

dimension (see section 5). For each box we consider the sum of the p-th power of the volumes

Vi of the drops (computed with help of the equivolume diameter Di estimated by the 2DVD 

device) contained in this box: 

 p
ip V      (6)

As suggested by Lilley et al (2006) by varying p various physical quantities are represented; 

for instance p for p equal to 0, 1, 7/6 and 2 is respectively proportional to the drop 

concentration, Liquid Water Content (LWC), rain rate (assuming a fall velocity proportional 

to the square root of the drop diameter), and radar reflectivity (which is nearly proportional to 

the 6-th power of the diameter; in the Rayleigh scattering regime). This yields a spatial 1D 

(vertical) field. An example of vertical evolution of the LWC (basically p for p=1) within the 

column during the heaviest portion of the 09-24-2012 event is displayed in Fig 2.c. Such 

reconstructed snapshot of the vertical column above the 2DVD is done every second. Before 

going on, it should be mentioned that small drops are not fully represented with the 2DVD 

since measurements for drops with an equivolume diameter smaller than 0.3 mm are 

unreliable (Tokay et al 2013). It means that small moments are likely to be biased. 

Nevertheless, the quantities of interest studied in this paper are for p>1 (moment of the 
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diameter greater than 3) meaning that this limitation does not have a strong influence on the 

discussed results. 

In order to compare the observed properties of the fields with the ones that would be 

obtained if drops were homogeneously distributed, pseudo-synthetic fields are also generated. 

To obtain a realization for a given column, the drop centres are re-assigned with the help of a 

random, uniform distribution, whereas the drop sizes are unchanged. The vertical evolution of

the LWC obtained for a realisation is displayed Fig. 2.c.

3.2) Scaling behaviour

Statistical scaling properties are obtained by ensemble averaging (each field sample is 

first independently upscaled, i.e. its resolution is degraded by averaging over adjacent pixels, 

then raised to various power q, and finally the ensemble average is performed to obtain an 

estimate of the theoretical moments and its scaling behaviour -Eq. 3-) over 60 consecutive 

column snapshots (1 min in physical time). The spectral analysis of the field (Eq. 2 in log-log 

plot) is displayed in Fig. 3.a for the 60 time steps starting on 24 September 2012 at 02:17 

UTC with 1p  (i.e. LWC estimate). This is a very intense period of the storm where there 

are 5573 drops in the column on average (which corresponds to roughly 13 000 drops per m3) 

and the rain rate is approximately 180 mm.h-1. The rain rate is computed as the average rain 

rate measured at the level of the 2DVD device (bottom of the column). It is only an indication

of the current rainfall intensity since some of the drops present in the studied 60 consecutive 

snapshots do not reach the device during this minute, meaning that consistent comparison is 

not possible. We mention it simply because rain rates are much more often used in 

hydrometeorology than drop concentrations. 
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The reconstructed fields exhibit a scaling behaviour from 36 m down to roughly 1 m 

(log k/k0 ~3 with k0=1hz). For smaller scales the spectra is flat as it would be for a white noise

resulting from randomly homogeneously distributed drops. These findings are confirmed by 

the Trace Moment (TM) analysis (Eq. 3 in log-log plot) displayed Fig. 3.b for the whole range

of available scales and on Fig. 3.c with a zoom on larger scales. It appears that the 

reconstructed fields exhibit a scaling behaviour (the coefficients of determination r2 of the 

linear portions are all greater than 0.99) up to approximately 64  which corresponds 

roughly to 0.5 m, a value rather similar to the one found in the spectral analysis. This 

confirms, on an extended range of scales and using more data, the results of Lilley et al. 

(2006) who observed scaling from 0.4 m to 2 m on few snapshots of 8 m3 volume with most 

of its drops. This suggests that drops are distributed in a scaling manner down to 0.5-1 m and 

below they are homogeneously distributed, which is in agreement with the findings of 

Lovejoy and Schertzer (2008). 

Similar analyses are also performed on the synthetic fields with homogeneously 

distributed drop positions. The spectra remains flat on the whole range of scales (Fig 3.d) and 

the TM analysis curves (solid lines on Fig. 3.b – 3.c) do not exhibit any scaling regime (i.e. 

linear portion). More quantitatively, over the scaling regime identified for reconstructed 

fields, the r2 for the homogeneous fields are typically equal to 0.80. The curves for the 

smallest scales (roughly 4 mm - few cm) are very similar between reconstructed and 

homogeneous fields which confirms the results of the spectral analysis for this range of 

scales. For larger scales, deviations between reconstructed and homogeneous fields are visible

with a transition regime before the scaling regime of the reconstructed fields (0.5-36 m). Very 

similar results are found for other realisations of homogeneously distributed fields showing 

that these results are statistically meaningful, i.e the Poisson hypothesis of a homogeneous 
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drop distribution, which is commonly used to model rainfall, is not correct for this minute of 

the storm. Indeed it does not enable to reproduce the observed structure of drop distributions. 

An analysis of the other minutes of this storm and the others lead to qualify this 

statement. Indeed it appears that a scaling behaviour is retrieved only when there are enough 

drops in the column (typically more than 2000). To illustrate this, Fig. 4.a displays TM 

analysis for 60 s starting at 02:23 UTC for the same 09-24-2012 event (415 drops on average 

in the column, approximately 30 mm.h-1). In this case with less numerous drops the linear 

portions on the TM curves tend to disappear and furthermore the spectra for large scales 

flattens with  estimates closer to zero, suggesting a behaviour more in agreement with a 

homogeneous distribution of drops. To get an idea of the number of drops needed in the 

vertical columns to observe scaling Fig 4.b displays a scatter plot of the r2 of the TM curve for

q=1.5, which is taken as an indication of the quality of the scaling, vs. the average number of 

drops in the studied vertical columns for the 09-24-2012 event (60 consecutive snapshots are 

used for each point). Similar plots are obtained for the other events. It appears that scaling is 

visible only when there are more than 2000-3000 drops in the column, which is the case for 

roughly 500 snapshots (8 min) during the studied events. In order to get a similar threshold 

with rain rates, Fig. 4.c displays the rain rate computed vs. the average number of drops in the

studied vertical columns for the same minute. The limitations of the comparison between 

these two quantities are visible on this figure especially for extreme minutes for which the 

relation is not linear. The indicative rain rate threshold to observe scaling in the vertical 

columns would be of roughly 75 mm.h-1.

For the vertical columns exhibiting a scaling behaviour, we find for scales ranging 

from 35 m to 0.5 m  ~ 1.8-2, C1 ~ 0.005-0.01 and  ~ 1 - 1.4 (slightly smaller than the values

found by Lovejoy and Schertzer, 2008). With the help of Eq. 5 it leads to H ~ 0-0.2. H is 

small enough so that it is relevant to directly implement the TM analysis on the vertical series 
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and not on their fluctuations. It is timely to mention that only a limited portion of the scaling 

regime is observed with this data set since there is only a ratio of 64 between the maximum 

and the minimum resolution of the scaling regime. It means that the reliability of the 

multifractal exponent estimates is not very high and their values should not be over-

interpreted. We will therefore only briefly discuss them. The UM parameter estimates for the 

actual field are slightly different from the ones found by Lilley et al. (2006), with greater  

and smaller C1, and the storm to storm variability is also less pronounced but it could be due 

to the fact that here the estimates are discussed only for the most intense portion of the events,

wheras Lilley et al. performed their analysis only on a limited number of volume snapshots 

from various storms and not necessarily obtained during the peak in rain intensity. 

The UM parameter estimates are slightly different with especially a C1 smaller than the

ones usually reported at coarser resolution ( ~ 1.7-1.9, C1 ~ 0.05-0.2) by authors who studied

rainfall field in space (Mandapaka et al. 2009, Verrier et al. 2010, Gires et al. 2013). Although 

these authors studied rainfall fields horizontally which makes direct comparison harder (due 

to a possible anisotropy between the vertical and horizontal directions), this hints at a possible

break between two scaling regimes, a small scales one and a large scales one, located at few 

tens of meters or few hundreds of meters. Very high resolution data on larger areas would be 

needed to confirm this. 

The UM estimates are also different from those found for wind turbulence with again 

greater values of  and smaller values of C1 (Lazarev et al. 1994, Fitton et al. 2011). It would 

mean that there is no trivial link between the drop distributions and the wind turbulence field 

in which they are embedded and from which they presumably inherit the scaling behaviour up

to a given (high) degree, contrary to the ballistic assumption that was used for the column 

reconstruction and could partially explain the observed differences with wind turbulence 
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parameters. Development of new instruments providing the size and 3D velocity of each rain 

drop over few tens of m3 would be required to properly address this issue. 

With the UM parameter estimates found, one can expect sampling limitation and 

divergence of moment (see Schertzer and Lovejoy 2011 for more details) to affect estimates 

of K(q) only for q greater than 10, meaning that for lower statistical order the observed 

scaling is not spurious.

The same analyses were performed with other values of p or only considering drops 

with an equivolumic diameter D belonging to a given interval. Taking a greater p or only 

larger drops yields similar results as expected since greater moments enhance the influence of 

large drops in Eq. 6. There is no significant difference in the scaling for drops up to 2.5 mm 

(the average number of drops per column remains significant) or p smaller than 3. A tendency 

of  to decrease and C1 to increase with larger drops is noticed. For drops with D> 2.5 mm or 

p>3, the scaling is lost and the discrepancies with the Poisson framework are much less 

pronounced. An explanation (Lilley et al. 2006) is that large drops decouple from atmospheric

turbulence, from which they inherit the scaling behaviour, at a larger scale than small drops. It

means that, although the ballistic assumption on the studied scales is likely to be more valid 

for larger drops, on the limited range of available scales (the maximum range in 35m) it will 

not be possible to observe scaling behaviour. Another limitation to the study of large drops 

with this data set is the very low number of drops in the reconstructed columns (typically less 

than 80 for the period with the heaviest rainfall available) which leads to less reliable 

statistics.

4) Rain rate time series with 1 ms time steps
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4.1) Description of the data

The data provided by the 2DVD enables to compute a rain rate with time steps t  of 

1 ms, given by: 

tS

V
R i

i

ms 



1

       (7)

Where the sum over the volumes Vi of the drops is now preformed over all the drops that 

passed through the sampling area S during t  (1 ms here). Note that we consider a constant 

sampling area (the maximum one) and do not take into account refinements with regards to 

edge effects, which can be assumed of second order. This very high resolution rain rate was 

computed for 35 min (221 time steps) of the 09-24-2012 event and for 140 min (223 time steps) 

of the other events. The portion with the greatest cumulative depth was selected for each 

event. Before going on, we should mention that authors are not advocating for the use of 1 ms

time step series for routine hydrological applications. Unfortunately, these series are likely to 

suffer from strong sampling errors, see Frasson et al. 2011 or Jaffrain and Berne 2011 for an 

illustration of this issue with standard occlusion optical disdrometers having much smaller 

sampling area. Here we use this series to demonstrate that the mulifractal notion of 

singularity, mostly perceived at small scales,  has also consequences at large scales.

The 1 ms rain rate time series is plotted Fig. 5.b for the 09-24-2012 event along with 

the same series with 1 s time steps (Fig. 5.c) and the more classical 1 min time step (Fig. 5.d) 

(i.e. as the average over 60000 consecutive time steps). The temporal evolutions of the 

number of drops recorded (Fig. 5.a) and of the average mass weighed diameter (Fig. 5.e) per 

ms is also displayed. Note that due to the high temporal resolution, the “average” is in fact 

most of the time steps performed over a unique drop. Two striking features should be noted: 

there are 96 % of zeros while the series was taken from what is commonly considered as a 
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extreme rainfall event (this percentage ranges from 97 to 99 % for the other events), and the 

maximum rain rate (over 1ms) is of 60 000 mm/h which is a value much greater than what 

hydro-meteorologists are used to (this maximum ranges from 30 000 to 60 000 mm/h for the 

other events). These extremely high rain rates are due to the passing of several drops during 

the same ms; up to 14 during the 24 September event. Obviously, the diameter of the drops is 

also important, as it can be seen for the second peak (between minutes 7 and 10) of the event 

in Fig. 5.c which is not visible on the drop counts time series. From Fig. 5.e it appears that 

this second peak it is due to larger drops during this period. More standard values of rain rate 

are retrieved when averaging to the 1 min time steps.  

These two features illustrate both the intermittency of the rainfall field and the notion 

of multifractal singularity, i.e. the fact that the rain rate is not point wise defined because it 

depends on the time interval over which it is estimated: it usually diverges when considering 

it for smaller and smaller intervals. Mathematically, it means that the rain accumulation is a 

singular measure with respect to the usual measure of time (i.e. the one dimensional Lebesgue

measure). The need to properly deal with these two complex properties lead to the 

development of the theoretical framework of multifractals (see Schertzer and Lovejoy 2011 

for more details). In this framework the rain rate is expected to behave as: 

R   (8)

When positive, the singularity  is the (algebraic) rate of divergence of the rain rate with the 

resolution. Here the singularity corresponding to the maximum peak occurring at about 5 

min (Fig. 5) is equal to 0.8, 0.8 and 1.5 for time steps of 1 ms (=2.1 106), 1 s (=2.1 103) and 

1 min (=35) respectively. The differences are due to the fact that there are several scaling 

regimes over these scales as will be shown in the next section. In order to emphasize this 

point on the whole time series, they are also displayed in Fig. 5 in a log scale.
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4.2) Temporal multifractal analysis

Figure 6 displays the spectral analysis and the TM analysis for the 10-23-2013 event 

for which the total duration taken into account is 140 min enabling to study a 223 length time 

series (of 1 ms rain rates)! Such duration was chosen because it is the longest one enabling to 

remain in the event and to have a series whose length is a power of 2 as it is needed for the 

simplest TM analysis. Similar curves are obtained for the other events. The spectra does not 

reflect a very good scaling behaviour and it seems that there is a scaling breakdown for the 

frequency k roughly equal to 70 (log(k/k0) ~4.2 with k0=1hz), which corresponds to 2 min-1 

(the breakdown is also at roughly 2 min-1 for the 09-24-2012 event, the series of which is 

shorter). The coefficient of determination of the linear portion for large scales is weak (equal 

to 0.68), hence the estimates of the spectral slope  are not reliable and will therefore not be 

discussed. No spectral slope can be derived for smaller scales. On the TM analysis three 

scaling regimes can be indentified: 140 min – few min (from 2 to 8 min according the event) 

with a rather good scaling (r2 = 0.97-0.9) -blue lines in Fig. 6.b- ; a transition regime in the 

range few min – 32 ms with a rather bad scaling -red lines in Fig. 6.b-; and a very small scales

regime 32 ms – 1 ms with a good scaling (r2 = 0.99) -green lines in Fig. 6.b-. The poor quality

of the scaling observed on the spectral analysis means that the results of the TM analysis 

should not be “over-interpreted”. We observe similar scaling regimes to those reported and 

discussed by Schertzer et al. (2012), i.e.  the multifractal regime for 1 day – 7 min and the 

fractal regime for 2 s – 1 ms, obtained with the help of a multifractal analysis by 

Tchiguirinskaia et al. (2003) of an infrared optical spectro-pluviometer time series (Salles et 

al. 1998).

For the small scales (32 ms – 1ms) we indeed find an index of multifractality  

roughly equal to zero meaning that the observed behaviour is monofractal. C1 is in the interval
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0.7 – 0.85 and estimates are roughly equal to the fractal co-dimension of the time series which

means that this regime simply reflects the passing of individual drops through the sampling 

area. Given the poor quality of the scaling, UM estimates are not computed for the medium 

scales corresponding to the transition regime. With regards to large scales, the UM parameters

estimates for all the events are reported in Table 2. The values of  are no longer equal to zero

meaning that an actual multifractal behaviour coming from the common influence of several 

drops is retrieved (contrary to what was observed for small scales). The strong variations 

according to the event are much greater, especially for , than those expected if various 

realizations of the same process were analysed. It means that the UM parameters seem to 

depend on the event. The standard drop size distribution (DSD, N(D)) was computed for each 

event on average (not shown here) and it appears that the observed differences in the UM 

parameters are not related to DSD differences (especially to the thickness of the tail). There is 

for now no clear explanation for the physical process to which the UM parameter estimates 

differences could be attributed, and further investigations would be required to clarify this. 

In order to be able to compare these results in time with those obtained on the vertical 

column in the previous section; one has to consider similar time scales. According to its size 

the duration taken by a drop to fall through the 36 m vertical column is between few seconds 

and few tens of seconds (observed drop velocity are between 0.5 and 10 m.s-1). This range of 

scales corresponds to the middle regime for which there is no clear scaling behaviour. It might

be due to the fact that the data is considered for the whole event and not only for the most 

intense portions as it is done for the spatial 1D analysis. In order to test this hypothesis a TM 

analysis was carried out considering only on the one minute long time series of the 09-24- 

2012 event. Successive minutes starting every 15 s (moving window) were considered during 

the event and the scaling was quantified on the range 2 s to 33 s which would corresponds to 

the regime observed in the vertical column. It appears that some minutes exhibit good scaling 
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(with r2 greater than 0.98) and other no (with r2 smaller than 0.90) without any direct link with

the corresponding rainfall intensities. This confirms the bad scaling observed on this range of 

scale with longer time series, and invalidates the tested hypothesis. It means that more 

investigations on the 3+1D structure of rainfall would be needed to properly link the results 

between the two types of analyses which are furthermore affected by the bias associated with 

the coarse ballistic assumption in this paper. 

5) Rain drop accumulation analysis

5.1) 2D rain drop accumulation for a given number of consecutive drops

The aim of this section is to study the spatial distribution of the accumulation of a 

given number N of consecutive drops at ground level (more precisely at the height of the 

2DVD) over the sampling area of the device (11x11 cm2). A 634 x 634 matrix corresponding 

to pixels seen by the 2DVD is created. To compute the pixel by pixel accumulation, the 

volume of a drop passing through the 2DVD is evenly distributed between all the pixels that 

are partially or totally obscured (information provided by the 2DVD), hence the unrealistic 

square shape of drops visible on the related figures. The drop accumulation is obtained by 

summing the contribution of N consecutive drops to yield either a 2D rain accumulation map 

or a 2D drop occurrence map. Various N (from 50 to 2000) were tested and yielded similar 

results. Finally a 512 x 512 pixels portion (a 9x9 cm2 area in the middle of the domain which 

enables to remove potential bias due to instrumental side effects) is extracted to carry out 

fractal and multifractal analysis. Figure 7 displays an example of a rain drop accumulation of 

150 consecutive drops during the 10-23-2013 event. As in section 3, each (natural) drop 
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accumulation map is compared with a homogenised version, i.e. a synthetic drop 

accumulation map. This synthetic map is obtained by keeping the same drops with their size 

and volume, but randomly homogeneously distributing their position over the sampling area 

with the help of a uniform law. A natural drop accumulation and one of its homogeneous 

versions are displayed in Fig. 7. Finally the duration needed to record N consecutive drops is 

also retrieved and will be analysed. 

5.2) Fractal and multifractal analysis

The box-counting technique (i.e. Eq. 1 in log-log plot) was applied to drop occurrence 

accumulation maps to determine their fractal dimension. It is first applied to the drop centres, 

and then to the pixels occluded by drops. Both are displayed in Fig. 8.a and 8.b for the 10-23-

2013 event with 150 drops per maps respectively. The numbers of selected pixels N() were 

averaged over the ensemble of 1179 pictures recorded on a total duration of 12 h for each 

resolution  (Eq. 1). Very similar results are observed for the 4 other events and therefore not 

shown here. Fig. 8 displays a plateau for scales smaller than approximately 12 mm (≥ 8), due

to the fact that the resolution of pixels is too high with respect to the number of drop centres. 

For larger scales (23 – 92 mm, 4 ≥≥1), the box-counting technique yields a fractal dimension

2, meaning that the drop centres are homogeneously distributed and filling the whole 

embedding space. The disagreement with the result of Lovejoy and Schertzer (1990) who 

recorded the position of 452 drops on 128 cm x 128 cm chemically treated blotting paper, 

discussed and finally confirmed by Gabbella et al. (2001) seems to be merely due to the fact 

that the scale of the sampling area is too small to reach one of the inhomogeneous regimes. 

This is in agreement with the fact that the rainfall field exhibited a scaling structure down to 

0.5 m and a homogeneous distribution for smaller scales (see Sec. 3)
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When analysing the pixels occluded by drops and not only the distribution of  drop 

centres, similar features are retrieved for large scales, but for small scales two fractal 

dimensions are obtained: respectively 1.1 in the range 23 mm – 1 mm (4≤≤128, red line in 

Fig. 8.b)  and 1.65 for scales smaller than 0.7 mm (128≤, green line in Fig. 8.b). This 

disagreement with the homogeneity of the drop centres might be due to the variability of the 

rain volumes (due the drops’ sizes) that occurs over smaller scales.

A TM analysis was carried out on rain accumulation maps (not shown here). The main 

results are that the observed scaling is very bad, and that the curves obtained by analysing the 

random-position pictures are very similar. This is simply a confirmation that there is no clear 

scaling regime for scales smaller than 9 cm which as already mentioned was expected from 

the results of section 3.

5.3) Analysis of the distribution of duration needed for each picture

In this section, the durations needed to obtain N consecutive drops through the 

sampling area are analysed. Figure 9.a displays the strong fluctuations of the series of theses 

durations for the 10-27-2013 event and N= 350. The event lasted 9.3 hours with a total 

number of series of N drops equal to 302. Figure 9.b displays the exceedance probability 

distribution of the durations in a log-log plot, which exhibits a power-law tail (linear slope in 

the log-log plot). This feature is opposed to Poisson statistics that yield exponential fall-off of 

the probability distributions. For this event the power-law is visible for scales ranging from 30

s to 10 min. Larger scales are not taken into account since they correspond to inter-event 

features rather than the intra-event ones which are accessible with the available data set. For a 

more extensive study on inter-event analysis refer to Lavergnat and Golé (1998) who also 

observed power-law behaviour in a slightly different context since they considered much 

21

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

21



longer time series and N=1. The exponent of the power law is found roughly equal to 0.8-0.9 

for N=350 and similar values are found for other N with a slight tendency to decrease with 

increasing N (N ranging from 50 to 500, with steps of 50, were tested). The same power law 

behaviour is also observed for the 10-23-2012 event. For the 10-26-2013 and 09-24-2012 

events, the range of available durations does not enable to see the power law (especially true 

for the 09-24-2012 event). For the 10-20-2012, the range of available duration is similar to the

one for the 10-27-2013 and 10-23-2013 events but the scaling is not very good as it was 

already noticed while analysing the 1 ms time series.

  

6) Conclusion 

In this paper 2DVD data of 4 rainfall events were analysed to grasp some insights into 

the 3+1D structure of the rainfall field at the drop scale. Firstly, based on a ballistic 

assumption, vertical 36 m high rainfall columns above the measuring device are 

reconstructed. It appears that during the most intense portions of the events a good scaling 

behaviour is retrieved on scales ranging from 0.5 m to 36 m. This inner scale seems to depend

on the drop size distribution and larger scale data would be needed to investigate more in 

depth this dependency. These observations are incompatible with a homogeneous distribution 

of drops. On the other hand for smaller scales the observations are in agreement with the 

hypothesis of a homogeneous distribution of drops. Results show that integrated values (such 

as number of drops or LWC) are well represented by UM simulations for heaviest rainfall 

period on scales ranging from 0.5m to 36m. An interesting future perspective, that would 
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require more investigations which are beyond the scope of this paper, would be to actually 

generate a rainfall simulator at drop scale which enables to reproduce observations. This 

simulator would need to be capable of integrating break-up and coalescence as well as small 

scale turbulence wind effect in order to overcome the limitations of the ballistic assumption 

used here. Results show that using a multifractal framework would be relevant, to design this 

rainfall simulator.  

Secondly, 1 ms rain rate time series are analysed. With such resolution it is possible to 

actually grasp the underlying assumption of the multifractal framework that rainfall is 

extremely concentrated on small portions of time or space. The mathematical interpretation is 

that rain accumulation is actually a measure that is singular with respect to the usual space / 

time measures (Lebesgue measures). Two scaling regimes are confirmed with a transition in 

between. The first one for very small scales (1 ms – few tens of ms) is actually fractal and 

corresponds to rather individual drops. The large scale multifractal regime (few min, few tens 

of min) correspond to a kind of collective regime of drops and UM parameter values depend 

on the event. We found that multifractality index  ranges between 1 and 2 and the 

codimension of the mean intermittency C1 between 0.2 and 0.5. 

Thirdly, N consecutive drop accumulation maps observed by the measuring device are 

analysed. Fractal spatial analyses were carried out on the actual drop accumulation, as well as 

homogeneised versions.  Both yield very similar results and do not exhibit scaling features. 

This is due to the fact that the size of the sampling area (11 cm x 11 cm) is smaller than the 

inner scale of the scaling regime identified with the analysis of the vertical columns. 

Nevertheless, the distribution of the durations needed to record N drops, exhibits a power law 

tail, which invalidates the usual hypothesis of a Poisson distribution

The spatio-temporal structure of the rainfall field is investigated through the analysis 

of 1 D (vertical column, time series) or 2D (drop accumulations cuts of the spatio-temporal 
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field. Further investigations would be needed to establish a rigorous link between the full 

underlying process and these cuts. This would enable to improve our representation of the full

3+1D structure of the field with all its drops which is the ultimate goal. We showed that 

during heaviest rainfall period the commonly used Poisson hypothesis is not valid and results 

suggest that a framework relying on multifractals may help overcome some of current 

discrepancies. Finally it should be mentioned that this work has some strong consequences on

the remote sensing of rainfall with weather radar for instance. Indeed radar rainfall retrieval 

algorithms usually assume that drops are homogeneously distributed within the scanned 

volume which is not necessarily the case especially during the most intense portions of 

rainfall events. This issue of non-uniform beam filling issue is experienced by radar analysts. 

Given the scale gap between the volume scanned by radar and the studied volume of the 

vertical column (at least a ratio of 106 between the volumes), it is difficult to be more 

affirmative, but it converges with studies of  the speckle effect, due to coherent backscattering

of inhomogeneously distributed drops, which underpinned strong biases in the rainfall rate 

estimates. Some theoretical investigations of this effect with the help of multifractals have 

already been carried out (Lovejoy et al. 1996, Schertzer et al. 2012), and further empirical 

analysis with the reconstructed columns could help to better quantify the actual consequences 

of this effect. The variability observed between consecutive snapshots of vertical columns 

(done every second in this paper) also suggests that the sampling uncertainty of radar data due

to limited revisit time in the scanning strategies should be investigated more in depth. These 

two issues will be analysed in future work. 
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Figure caption list

Figure 1: Picture of the installed 2DVD in Le Pradel, Ardèche, France

Figure 2: (a) Example of a reconstruction for a 26 cm vertical column; dimensions are in mm, 

drops have been coloured according to size and their diameter has been multiplied by 4 to 

improve visibility (b) Illustration of the 36 m x 11 cm x 11 cm reconstructed column divided 
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into smaller boxes. (c) Vertical evolution of the LWC (in g.m-3) within the vertical column for 

the reconstructed field (top in black) and simulated assuming homogenous distribution of 

drop positions (bottom in red) for an instant of the 09-24-2012 event. The horizontal axis 

corresponds to the box number (0: ground level, 8192: top of the reconstructed column).

Figure 3: (a) Spectral analysis of the vertical column snapshots for 60 seconds starting on 24 

September 2012 02:17 UTC. (b) TM analysis of the same data (points) and the corresponding 

synthetic field-same drops (size and velocity) but their position is randomly (uniformly) 

assigned (solid, curved lines). The linear regressions (straight lines on the right side of the 

figure) are performed only for large scales, i.e. 0.5 – 36 m  (c) Same as in (b) zoomed on the 

large scales (d) Spectral analysis of the corresponding synthetic field.

Figure 4: Illustration of the absence of scaling in columns with too low number of drops. (a) 

Same as in Fig. 3.b but for 60 time steps starting at 02:23UTC. (b) Scatter plot of r2 for q=1.5 

in the TM analysis vs. the average number of drops in the studied columns. (c) Scatter plot of 

the average number of drops in the studied columns vs. the indicative rain rate computed at 

ground level.

Figure 5: Figures are plotted for the 09-24-2012 event (a) Temporal evolution of the number 

of drops passing through the sampling area with 1ms time steps. (b), (c) and (d) Temporal 

evolution of the rain rate during the same event with time steps of 1ms, 1s and 1min 

respectively. (e) Temporal evolution of the average mass weighted diameter. (f), (g) and (h): 

same as in (b), (c) and (d) expressed in log.
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Figure 6: Spectral analysis (a) and TM analysis (b) data corresponding to 140 min of the 10-

23-2013 event with 1 ms time steps (time series of length 223).  

Figure 7:  Top: natural drop accumulation: rain accumulation map (left) and occurrence map 

(right) for 150 consecutive drops during the 10-23-2013 event. Bottom: Same as Top but for a

homogenised version of the drop accumulation (see text for details). The colour scale is in 

mm x 10-3

Figure 8: Fractal analysis (Eq. 1 in log-log plot) of the drop position for 10-23-2013 event 

with 150 drops per drop accumulation map (ensemble analysis on the 1179 pictures recorded 

on a total duration of 12h). (a) On the drop centres. (b) Considering all the pixels occluded by 

drops.

Figure 9: (a) Duration need to record pictures with 350 drops during the 10-27-2013 event (b) 

The exceedance probability of the distribution of the durations in a log-log plot (t and x are 

in s).
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Tables

Event Approx 

duration (h)

Total depth 

(mm)

Maximum rain 

rate (mm/h)
09-24-2012 0.6 10.9 103
10-26-2012 20 20.4 45.9
10-23-2013 8 21.4 76.1
10-27-2013 6 10.6 76.9
Table 1: Basic features of the studied events

Event Studied 

duration (min)

Large scale 

range (min)

 C1

09-24-2012 35 35 – 2 1.95 0.21
10-26-2012 140 140 – 9 1.7 0.3
10-23-2013 140 140 – 2 1.3 0.3
10-27-2013 140 140 – 2  1.03 0.47
Table 2: UM parameter estimates for large scales in the temporal analysis of 1 ms resolution 

time series for the 5 studied events. 

Figure list: 

33

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

33



Figure 1: Picture of the installed 2DVD in Le Pradel, Ardèche, France

Figure 2: (a) Example of a reconstruction for a 26 cm vertical column; dimensions are in mm, 

drops have been coloured according to size and their diameter has been multiplied by 4 to 

improve visibility (b) Illustration of the 36 m x 11 cm x 11 cm reconstructed column divided 

into smaller boxes. (c) Vertical evolution of the LWC (in g.m-3) within the vertical column for 

the reconstructed field (top in black) and simulated assuming homogenous distribution of 

drop positions (bottom in red) for an instant of the 09-24-2012 event. The horizontal axis 

corresponds to the box number (0: ground level, 8192: top of the reconstructed column).
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Figure 3: (a) Spectral analysis of the vertical column snapshots for 60 seconds starting on 24 

September 2012 02:17 UTC. (b) TM analysis of the same data (points) and the corresponding 

synthetic field-same drops (size and velocity) but their position is randomly (uniformly) 

assigned (solid, curved lines). The linear regressions (straight lines on the right side of the 

figure) are performed only for large scales, i.e. 0.5 – 36 m  (c) Same as in (b) zoomed on the 

large scales (d) Spectral analysis of the corresponding synthetic field.
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Figure 4: Illustration of the absence of scaling in columns with too low number of drops. (a) 

Same as in Fig. 3.b but for 60 time steps starting at 02:23UTC. (b) Scatter plot of r2 for q=1.5 

in the TM analysis vs. the average number of drops in the studied columns. (c) Scatter plot of 

the average number of drops in the studied columns vs. the indicative rain rate computed at 

ground level.
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Figure 5: Figures are plotted for the 09-24-2012 event (a) Temporal evolution of the number 

of drops passing through the sampling area with 1ms time steps. (b), (c) and (d) Temporal 

evolution of the rain rate during the same event with time steps of 1ms, 1s and 1min 

respectively. (e) Temporal evolution of the average mass weighted diameter. (f), (g) and (h): 

same as in (b), (c) and (d) expressed in log.

Figure 6: Spectral analysis (a) and TM analysis (b) data corresponding to 140 min of the 10-

23-2013 event with 1 ms time steps (time series of length 223).  
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Figure 7:  Top: natural drop accumulation: rain accumulation map (left) and occurrence map 

(right) for 150 consecutive drops during the 10-23-2013 event. Bottom: Same as Top but for a

homogenised version of the drop accumulation (see text for details). The colour scale is in 

mm x 10-3

Figure 8: Fractal analysis (Eq. 1 in log-log plot) of the drop position for 10-23-2013 event 

with 150 drops per drop accumulation map (ensemble analysis on the 1179 pictures recorded 

on a total duration of 12h). (a) On the drop centres. (b) Considering all the pixels occluded by 

drops.
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Figure 9: (a) Duration need to record pictures with 350 drops during the 10-27-2013 event (b) 

The exceedance probability of the distribution of the durations in a log-log plot (t and x are 

in s).
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