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Abstract—The parameter estimation problem is a
widespread and challenging problem in engineering sciences
consisting in computing the parameters of a parametric
model that fit observed data. Calibration or geolocation can
be viewed as specific parameter estimation problems. In this
paper we address the problem of finding all the instances of
a parametric model that can explain at least q observations
within a given tolerance. The computer vision community
has proposed the RANSAC algorithm to deal with outliers
in the observed data. This randomized algorithm is efficient
but non-deterministic and therefore incomplete. Jaulin et
al. proposes a complete and combinatorial algorithm that
exhaustively traverses the whole space of parameter vectors to
extract the valid model instances. This algorithm is based on
interval constraint programming methods and on a so called
q-intersection operator, a relaxed intersection operator that
assumes that at least q observed data are inliers. This paper
proposes several improvements to Jaulin et al.’s algorithm.
Most of them are generic and some others are dedicated to
the shape detection problem used to validate our approach.
Compared to Jaulin et al.’s algorithm, our algorithm can
guarantee a number of fitted observations in the produced
model instances. Also, first experiments in plane and circle
recognition highlight speedups of two orders of magnitude.

I. INTRODUCTION

The parameter estimation problem handled as an inverse
problem is the process of calculating the parameters vectors
of a parametric model from a set of measurements or more
generally observed data.

Inverse problems are well-studied mathematical problems
because they tell us about parameters that we cannot di-
rectly observe. In this article, we propose a new parameter
estimation algorithm based on constraint programming. We
validate it in shape detection that can be cast as an inverse
problem: the observed data are 2D or 3D points of a scene;
the unknown parameters vector defines a primitive like a
plane or a circle that is compatible with a minimum number
q of observations.

The parametric model is specified by a function M that
maps an n-dimensional real vector p = (p1, ..pN ), referred
as the parameters vector, to a model instance M(p) that
is a subset of the space Rd in which the observed data lie.
This mapping is specified through the use of a real valued
function f and an implicit equation f(x,p) = 0. Given a

parameter vector p, the corresponding model instance M(p)
is given by

M(p) = {x | f(x,p) = 0} (1)

Given a finite set of observations {o1, ...,om} ⊂ Rd, we
search for all parameters vectors that are compatible with
at least q of these observations. An observation oi is said
compatible with the parameters vector p, using a tolerance
value τ , when it satisfies an observation constraint:

−τ ≤ f(oi,p) ≤ +τ (2)

Given a model instance M(p), we will define the consensus
set C(p) as the set of observations compatible with p:

C(p) = {oi| − τ ≤ f(oi,p),≤ τ} (3)

In the case f is a linear function of p and we search for
all parameters vectors p that are compatible with all the
observations, i.e. we assume that there are no outliers, then
the set of solutions is a convex polyhedron (intersection of
a finite number of half-spaces). The problem of finding a
single point in that polyhedron is equivalent to finding a
feasible point for a set of linear inequality constraints, which
can be done using any Linear Programming algorithm.
The inverse problem becomes more challenging when the
function f used to define the parametric model is not linear
and/or in presence of outliers.

Outliers can have numerous origins, including extreme
values of the noise, erroneous measurements and data report-
ing errors. In order to cope with outliers we search for model
instances whose consensus set contains at least q elements.
We refer to them as valid model instances. This problem
can be reformulated as a numerical constraint satisfaction
problem (NCSP) with N variables p1, . . . , pN having a real
interval domain, and a single constraint:

|C((p1, . . . , pN ))| ≥ q (4)

Because we use inequalities, this problem does not have
point-wise isolated solutions but a finite set of continuums of
feasible points. In this paper we aim at obtaining a concise
outer approximation of the whole solution set as a union
of boxes refined by the solving process. Each box returned



either 1) reaches a size that is below a fixed precision
threshold or 2) contains a feasible point that matches at
least q observations such that no other point matches more
observations.

A. RANSAC: Robust parameter estimation coping with out-
liers

The random sample consensus algorithm (RANSAC) [8]
has become a state-of-the-art tool in the computer vision
and image processing communities to achieve parameter
estimation robust to outliers. In addition to the observed
dataset, the input of RANSAC is a minimum number q of
inliers and the tolerance τ defined above. RANSAC is an
iterative and incomplete method that searches for the best
parameters vector by repeating the following steps.

1) Random sampling: A subset of the observations is
randomly selected. The cardinality of the sample is the
smallest sufficient to determine the model parameters:
N observations are generally required to characterize
the N parameters.

2) The parameters vector corresponding to the model
instance that best fits the selected sample is computed
by solving a system of N equality constraints.

3) Consensus: One checks if at least q elements of
the entire observation dataset are inliers given the
tolerance parameter τ .
Note that several trials of these first three steps can be
necessary, especially to select N points that will lead
to a valid model instance.

4) If a consensus is obtained, a second and better model
may be computed by using the whole consensus set.

In shape detection, the goal is to detect all the hidden
primitives that correspond to valid model instances. It is
important to understand that RANSAC is a randomized algo-
rithm that may not find all the valid model instances. Indeed,
the four-steps RANSAC explained above can find only one
primitive. In order to find several primitives, the RANSAC
version used in our experiments [16] and dedicated to shape
recognition finds the different primitives in a greedy way: it
definitely removes the data points involved in the consensus
set of the current model instance before searching for a
next one. Therefore we cannot know whether this iterative
process converges onto the whole set of model instances that
contain at least q inliers.

B. Complete interval constraint programming approach

A parameter estimation method based on interval con-
straint programming that is robust to outliers was first
described in [11].

Intervals are the first ingredient of the approach. We
denote by [xi] = [xi, xi] the interval/domain of the real-
valued variable xi, where xi, xi are floating-point numbers.
A Cartesian product of intervals like the domain [x] =
[x1]× ...× [xN ] is called a (parallel-to-axes) box. width(xi)

denotes the size or width xi − xi of an interval [xi]. The
width of a box is given by the width xm−xm of its largest
dimension xm. Interval methods also provide contracting
operators (called contractors), i.e. methods that can reduce
the variable domains involved in a constraint or a set of
constraints without loss of solutions. Let us consider one
observation oi and a subspace of the parameter space given
by a box [p]. Given an observation oi, we denote Vi the
set of parameters vectors that are compatible with that
observation, i.e.

Vi = {p | − τ ≤ f(oi,p) ≤ +τ} (5)

The set of parameter values within that box that are com-
patible with oi is given by Vi ∩ [p]. A contractor is able
to reduce the input box [p] while keeping all the points in
Vi∩[p], i.e. without losing any solution. The main contractor
used in this paper is the well-known HC4-revise [1],
[14], also called forward-backward. This contractor handles
a single constraint and obtains a (generally non optimal [6])
contracted box including all the solutions of that constraint.
Let us give the principles of HC4-revise on the constraint
f(oi,p) ≤ +τ .

The forward phase traverses the expression tree of the
constraint bottom up using interval arithmetic. In the exam-
ple, the unknowns p are replaced by their intervals [p] in
the expression and interval arithmetic evaluates [f ]([oi], [p]).
For instance, if f(o1,p) = o1 + p1 + p2 with o1 = 2.5
and [p] ∈ [−2, 3] × [0, 1], we have [f ]([o1], [p1], [p2]) =
[2.5, 2.5] + [−2, 3] + [0, 1] = [1.5, 6.5]. The image interval
is then intersected with [−∞, τ ] because the constraint is an
inequality. If the tolerance τ is 1e-1, then the intersection is
empty. The contractor terminates with an empty contracted
box, which proves that no vector inside the initial domain
[p] satisfies the constraint. If the resulting interval [r] is not
empty, e.g. the tolerance is 5, then the computed interval is
[r] = [1.5, 5] and one can run the second backward phase.

In the backward phase, the expression tree is traversed
top-down, and interval arithmetic is applied on so-called
inverse operators. Without detailing, this phase amounts to
evaluating all the (inverse) functions isolating every variable
occurrence. Consider for instance the inverse function fp1

used to contract p1: fp1(o1, p2) = r− o1− p2. We evaluate
fp1 using interval arithmetic, which produces the following
contraction: [p1] := [p1] ∩ [fp1 ]([o1], [p2]) = [−2, 3] ∩
([1.5, 5]−[2.5, 2.5]−[0, 1]) = [−2, 3]∩[−2, 2.5] = [−2, 2.5].

To contract a system of constraints, the HC4 algorithm
performs a propagation loop applying iteratively the HC4-
Revise procedure introduced above on each constraint in-
dividually until a quasi fixpoint is obtained in terms of
contraction.

Jaulin et al. proposed in [12] a simple deterministic algo-
rithm based on interval methods to handle inverse problems:
• A search tree is built to exhaustively explore the param-

eter space. [p] is recursively subdivided: one variable



(a) A set S of 2-dimensional boxes (b) The dashed box is ∩4S. Zones
that belong to at least 4 boxes are
darkened.

Figure 1. Illustration of q-intersection for q = 4, m = 2.

pi in p is selected, its domain [pi] is bisected into two
sub-intervals and the two corresponding sub-boxes are
explored recursively. The combinatorial process stops
when a precision is reached, i.e. when the width of the
current box is inferior to εsol (the box is thus a leaf of
the search tree).

• At each node of the tree, the current box is contracted
w.r.t. the observation constraints, and sometimes elimi-
nated, using the forward-backward contractor described
above.

Compared to RANSAC, the main advantage of this ap-
proach is that all the valid model instances can be produced
in an exhaustive way. In addition, bounded errors can also
be taken into account in the observed data: a measurement
with a bounded error can be modeled by a (constant) box
[o] and not a vector. The main drawback is that outliers lead
to an empty contracted box (i.e., no model instance exists in
the box) since the parameter box contracted using an outlier
observation constraint does not intersect the other ones.

The second ingredient used in the parameter estimation
tool based on interval constraint programming was also
proposed by Jaulin et al. to deal with outliers (see [10]). Like
RANSAC, the approach assumes that at least q observations
are inliers, the other ones being viewed as potential outliers.

This idea is implemented by the q-intersection operator.
This operator relaxes the previous intersection of m boxes
(corresponding in our inverse problem to the contraction of
[p] w.r.t. all the m observation constraints) by the union of
all the intersections obtained with q boxes. More formally:

Definition 1: Let S be a set of boxes. The q-intersection
of S, denoted by ∩qS, is the box of smallest perimeter that
encloses the set of points of Rn belonging to at least q boxes.
For instance, the box in dotted lines in Fig. 1–b is the 4-
intersection of the m = 10 two-dimensional boxes (in plain
lines).

The parameter estimation tool proposed by Jaulin et
al. has been extended to cope with outliers using a q-
intersection operator. The contraction phase is replaced by a
more sophisticated routine called contAndQinter in this
paper:

1) A forward-backward contraction is achieved on each

of the m observation constraints, which produces a
set S of boxes. Note that no (standard) intersection is
achieved on these boxes.

2) The box returned by contAndQinter is the q-
intersection of these contracted boxes: ∩qS.

The q-intersection of boxes is a difficult problem and has
been proven DP-complete in [3] where an exact algorithm
based on the search of q-cliques has been proposed. In
this paper, we simply resort to a non optimal q-intersection
operator often used in parameter estimation. Computing a
reasonable enclosure of ∩qS may be satisfactory, provided
it can be done in polynomial time, since the q-intersection
operator is typically used to filter the search space at each
node of a search tree. It appeared that the exact q-intersection
algorithm was too costly for the shape detection instances
studied in this paper.

This algorithm, called here q-proj, solves the problem
on each dimension independently. For each dimension i, the
algorithm computes the projection S[i] of the boxes and
solves the q-intersection problem on S[i]. Since S[i] is a
set of intervals, each ∩qS[i] can be computed in polynomial
time by sorting the lower and upper bounds using a method
first introduced in [5]. The overall complexity of q-proj
is O(nm log(m)). Figure 2 illustrates the algorithm.

Figure 2. Principle of q-proj for q = 2, n = 2. The algorithm outputs
the dashed box, an overestimate of ∩2S.

Jaulin et al.’s interval-based approach has been used in
several parameter estimation applications, including geolo-
cation. More recently, a 3D reconstruction problem has been
handled by estimating the coefficients of the transformation
matrix between two poses [2].

Contribution

This paper describes several improvements to Jaulin et
al.s interval CP parameter estimation solver. Contrarily to
RANSAC, our tool is still exhaustive (complete), but its an-
swer is more interesting than Jaulin et al.’s approach because
a large fraction of the model instances found are guaranteed
to fit at least q observations. Generic improvements are
described in Section II while improvements dedicated to
shape detection are described in Section III. Overall, gains
in performance of 2 or 3 orders of magnitude are measured
on first artificial and realistic shape (i.e., planes in 3D and
circles in 2D) detection instances. The approach gives us the



hope of superseding the incomplete RANSAC approach for
real applications.

II. GENERIC IMPROVED PARAMETER ESTIMATION
ALGORITHM

A. Combinatorial q-inter based algorithm

Algorithm 1 describes the proposed generic parameter
estimation algorithm that exhaustively explores the whole
parameter space by achieving a depth-first search. Several
informations are updated at each node of the tree search,
using backtrackable data structures:
• a box [p] corresponding to the current domain,
• a set possibleCS of observations that is superset of the

consensus set of any point in [p],1

• a valid point p ∈ [p],
• a set validCS = C(p) of valid observations. We have
validCS ⊂ possibleCS.

Hence, the following property holds for any node:

|node.validCS| ≤ max
p∈[p]

|C(p)| ≤ |node.possibleCS| (6)

The set possibleCS is initialized with all the observations.2

The tree search (i.e., the while loop of Algorithm 1)
terminates when the stack of open nodes becomes empty.
At each iteration, the most recent open node is popped
up, implying a depth-first search tree traversal that lim-
its the memory used. The box is contracted using the
contAndQinter procedure mentioned in Section I: for
every possible observation, a box is produced by contracting
the current box with a forward-backward contractor; if this
box becomes empty, then Vi∩[p] = ∅ and the corresponding
observation is removed from possibleCS; the q-intersection
of these boxes then contracts the current box (box is an
in-out parameter of the procedure). box becomes empty if
the q-intersection eliminates it or if less than q observations
remain possible.

If the box is not empty, we try to validate it. The
validateBox procedure checks whether mid(box) sat-
isfies more observations than the valid point inherited from
the node parent in the search tree. In that case, mid(box)
becomes the new valid point for the current box and
node.validCS is assigned with its consensus set. Note that
since the q-intersection did not empty the box, we have
|node.possibleCS| ≥ q.

We then look at the box to take a decision. If the
box is large and some possible observations are not valid
(node.possibleCS 6= node.validCS), then the box is

1In other terms, each point in [p] violates all observation constraints
outside (excluded from) possibleCS.

2For the sake of simplicity, one considers that an observation is given by
its index (between 1 and m) that allows one to reach the information for
retrieving the corresponding constraint. In the case of 3D points belonging
to a plane, an observation is a point (x, y, z) allowing one to retrieve a
constraint “point belonging to plane”, i.e. ax+ by+ cz+d = 0 (with e.g.
a2 + b2 + c2 = 1), where a, b, c and d are the parameters to estimate.

Algorithm QinterEstim (box, observations, q, εsol, τ )
solutions ← ∅
node ← new Node
node.box ← box
node.possibleCS ← observations
node.validCS ← ∅
nodeStack ← {node}
while nodeStack 6= ∅ do

node ← pop (nodeStack)
box ← node.box
contAndQinter (box, τ , q, node.possibleCS)
if box 6= ∅ then

validateBox (box, node, τ , node.possibleCS,
node.validCS)
if width(box) < εsol or node.validCS =
node.possibleCS then

solutions ← solutions ∪ {node}
else

bisect (box, box1, box2) /* split the box */
node1 ← quasiCopy (node, box1)
node2 ← quasiCopy (node, box2)
push (nodeStack, node1)
push (nodeStack, node2)

return solutions

Algorithm 1: Generic exhaustive parameter estimation
algorithm based on q-intersection.

split on one dimension into two sub-boxes, and these sub-
boxes are pushed into the stack of nodes. node1 and
node2 inherit from the backtrackable data structures of
node (procedure quasiCopy in Algorithm 1). In particular,
node.possibleCS is inherited in both node1 and node2;
node.validCS and the valid point are inherited in the child
node where the valid point of node is still present.

Otherwise, the box is stored in solutions. If
|node.validCS| = |node.possibleCS|, it is guaranteed
that no other point in the box can have a strictly larger
consensus set. The other condition related to the box
size (i.e., width(box) < εsol) aims at speeding up the
solving process. In this case, the box returned does not
have necessarily |node.validCS| ≥ q and thus does not
constitute necessarily a guaranteed solution.

Note that basic Jaulin et al.s q-intersection based parame-
ter estimation tool never guarantees the existence of a valid
point inside the boxes returned. Indeed, Jaulin et al.’s tool
does not manage a set node.validCS, so that the boxes
returned at the end may contain no real vector satisfying at
least q observations.

B. Update of possibleCS during q-intersection

The q-proj q-intersection algorithm has been slightly
extended to better comply with our parameter estimation
tool. The implemented q-proj algorithm also returns the
set of observations corresponding to boxes eliminated by



the algorithm. These observations are removed from the set
possibleCS managed in the search tree, thus improving the
performances. In addition, the q-proj algorithm has been
modified to also eliminate boxes, inside the bounds of the
q-intersection box, that have been detected invalid.

C. Procedure ProjNewDim: q-intersection in a new di-
mension

The procedure contAndQinter has been also extended
to better contract, using a new dimension. More pre-
cisely, once the q-proj algorithm ends, a new procedure
ProjNewDim linearizes all the observation constraints and
projects them on a new axis. On this new dimension the
intervals are expected to be smaller and q-intersecting them
will more likely reduce the resulting box.

We will first assume that the function f used in the model
parameterization can be rewritten using a function f̃ of n−1
parameters

f(x,p) = f̃(x,p1:N )− p0 (7)

Given an observation oi, the function f̃ allows one to
estimate the compatible interval for the first parameter p0
as a function of the remaining parameters p1:N .

f̃(oi,p1:N )− τ ≤ p0 ≤ f̃(oi,p1:N ) + τ (8)

Given a box in the parameter space B = [b0, b0]× · · · ×
[bN , bN ] we denote B̃ the projected lower dimensional box
obtained by removing the first dimension interval, i.e. B̃ =
[b1, b1] × · · · × [bN , bN ]. We have B = [b0, b0] × B̃. Given
an observation oi, we use affine arithmetic [7] to find affine
upper and lower bounds of f̃(oi, .) in the box B̃, i.e.

∀p1:N ∈ B̃ : ai · p1:N + ci ≤ f̃(oi,p1:N ) ≤ ai · p1:N + ci
(9)

where the ai, ci and ci are the coefficients of the bounding
affine functions generated.
From the definition of Vi (see eq. (5)), we get

∀p ∈ B ∩ Vi :
{

ai · p1:N + ci − p0 ≤ f(oi,p) ≤ τ
ai · p1:N + ci − p0 ≥ f(oi,p) ≥ −τ

(10)
We denote Ai the region in the parameter space defined by

Ai = {p|−τ−ci ≤ ai ·p1:N−p0 ≤ τ−ci,p1:N ∈ B̃} (11)

The region Ai is a parallelogram that contains the set of
valid parameters vectors in that box. More precisely we can
show that we have (Vi ∩ B) ⊂ Ai. Figure 3 shows two
parallelograms associated to two measures. Given a box B,
we want to detect that B does not contain valid solutions
using one-dimensional q-intersection after projections of the
sets Vi ∩B onto a line. In [10] the projection is done along
the box directions, however when looking at Figure 3, it
appears that a projection onto a slanted line almost aligned
with the small axis of the parallelogram leads to a better

Figure 3. Projecting parallelograms Ai along the mean normal direc-
tion. Note that the y-coordinate corresponds to p0 and the x-coordinate
corresponds to p1.

separability of the intervals after projection, and thus better
rejection rates.

We compute the direction by taking the mean µ of the
vectors ai (slopes of the slanted parallelogram side when
N = 2) associated to all observations that have not yet been
rejected for the box B, and we compute an averaged normal
vector ~u = (1,−µ1, . . . ,−µN−1). We denote [li, li] the one-
dimensional interval that corresponds to the projection of the
set Ai along the direction ~u and that is defined by

li = min
p∈Ai

~u · p (12)

li = max
p∈Ai

~u · p (13)

We can show that we have

li = min
p1:N∈B̃

(ai − µ) · p1:n + ci − τ (14)

li = max
p1:N∈B̃

(ai − µ) · p1:n + ci + τ (15)

The minimization or the maximization of a linear function
over a box domain is straightforward and we get li = γi −
δi + ci − τ and li = γi + δi + ci + τ with

γi =
1

2

∑
k

(aik − µk)(bk + bk) (16)

δi =
1

2

∑
k

|aik − µk|(bk − bk) (17)

Once we have computed the intervals [li, li] for all the
observations that have not been rejected when filtering the
box B, we can compute the q-intersection of these intervals
and reject the box if empty.



III. IMPROVEMENTS DEDICATED TO SHAPE DETECTION

We also propose three other improvements dedicated to
shape detection: the branching strategy (variable choice
heuristic) used to build the search tree, the implementation
of the HC4-Revise algorithm and the modeling (parameter-
ization) of planes.

A. Branching strategy

For both plane and circle detection, the same types of
variable interval bisection heuristics have been designed. All
the variables are selected in a round-robin manner, except
the distance to origin for planes and the radius for circles.
These variables are selected only when the precision on
the others has been reached. This can be explained by
the mathematical expressions underlying the corresponding
observation constraints. The variables selected first have
a more significant impact on the image of the respective
functions and therefore on contraction, the distance to origin
and circle radius being involved in a sum.

B. Forward-backward algorithm implementation

In our first implementation, we used the general-purpose
HC4-Revise procedure available in Ibex. A performance
overhead of this implementation is due to the data structures
created when the mathematical expressions are parsed, like
trees, bitsets, etc. However, in our shape detection appli-
cations, the constraints have a few operators and all the
observation constraints follow the same pattern. Therefore
we have produced an implementation dedicated to the ob-
servation constraints involved. It is not original and Jaulin et
al. often resort to dedicated contraction algorithms. However,
the gains in performance are significant in our case tests (see
Section IV).

For plane detection, we have even removed the backward
phase, i.e. the forward phase keeps the box unchanged or
eliminates it entirely, leaving the contraction part to the q-
intersection algorithm.

C. Efficient line/plane parameterization

A classic 2D line parameterization when doing line detec-
tion (using for example the Hough transform [9]) consists
in using an angle θ and a distance to the origin ρ using the
equation:

x cos(θ) + y sin(θ) = ρ (18)

This equation uses trigonometric functions that have a
computational cost that is greater than simple additions and
multiplications.

We use instead a parameterization, where the angle θ is
replaced by 2 linked parameters dx and dy

xdx + ydy = ρ (19)

with
d2x + d2y = 1 (20)

In order to suppress symmetric solutions, we can restrict
the domains of dx ∈ [0, 1] and dy ∈ [−1, 1]. However, this
parameterization has 3 parameters (dx, dy and ρ) linked by
a quadratic equation.

Finally, in order to decrease the number of parameters,
we propose a new parameterization, with 2 cases:

dx + dy = 1, dx ∈ [0, 1] and dy ∈ [0, 1] (21)

or
dx − dy = 1, dx ∈ [0, 1] and dy ∈ [−1, 0] (22)

We can then eliminate the parameter dx, studying two cases
(dy ∈ [−1, 0] and dy ∈ [0, 1]), where the equation becomes
linear. The contractions and projections become then cheaper
to compute.

For plane detection, we extend this parameterization in
3D, where the initial equation is :

dxx+ dyy + dzz = ρ (23)

and where we replace dx by a linear expression in dy and
dz . We have then 4 cases to study, depending on the sign of
dy and dz . The experiments show the interest of this new
parameterization.

IV. EXPERIMENTS

A. Instances

We have performed some experiments on plane and circle
detection. All q-intersection variants have been implemented
in the Ibex interval C++ library [4] (version of January
2015) with its affine relaxation [15] and run on an X86-64
under Linux Ubuntu.

For plane detection, we have generated 9 artificial test
cases, with different numbers of points, numbers of planes
to detect, and inlier rates (i.e., percentage of points belonging
to a plane). All the 3D points are inside a bounded box B.
The q points belonging to each plane have been placed near
the plane: 2 coordinates are random, and the third one is
computed to satisfy the thick equation of the plane. The
remaining points have been uniformly randomly generated
in B. In order to be close to the real case described further,
the planes are made of 2 sets of orthogonal planes (i.e., 2
planes in x and y and 2 planes in y and z for instances P1

to P3).
Table I presents the characteristics of the studied test

cases.

Table I
CHARACTERISTICS OF THE ARTIFICIAL PLANE DETECTION TEST CASES

Test case P1 P2 P3 P4 P5 P6 P7 P8 P9

points 1000 1000 1000 1000 1000 1000 4000 4000 4000
planes 4 4 4 25 25 25 25 25 25
inlier rate 10% 5 % 4 % 2 % 1.5% 1% 2% 1.5% 1%

We have also tried our algorithm on a real 3D point cloud,
issued from a part of scene1 of velodyndata from



sites.google.com/site/kevinlai726/datasets [13]. We selected
from this urban scene the 529 points labeled in house40,
a specific building in the scene. This problem is named H40

in the tables. We want to find the quasi horizontal and quasi
vertical planes of the building façade. We run our algorithm
with the parameters q = 21, τ = 0.001 and εsol = 0.001.

We made finally an experiment for circle detection in
a 2D photo. The data are issued from a buoy detection
problem [10] amounting to finding a circle in a submarine
photo. We used the data of the paper with 614 points (C1),
and created a (more) noisy problem C2 with 1228 points,
randomly adding to the original problem 614 outliers. The
parameters are the center coordinates (x and y) and the
radius (r) of the circle to be detected. An observation oi

is given by the coordinates oxi and oyi of the point in the
image. The equation is then

(x− oxi)2 + (y − oyi)2 = r2 (24)

We run our algorithm with the parameters q = 57, τ = 11
and εsol = 0.02.

B. Results

Table II shows the results in CPU time, with a timeout of
one hour, each line corresponding to the introduction of an
additional improvement into our algorithm, in the following
order:
• Jaulin: the existing interval-based parameter estimation

tool
• QinterEstim: the generic algorithm 1
• q-projBis: update of the set of possible observations

after the projection algorithm (see Section II-B)
• ded. fwdbwd: use of dedicated forward backward pro-

cedures written for plane and circle detection (instead
of using HC4-Revise) described in Section III-B

• projNewDim: the additional projection described in
Section II-C

• bisect. strat.: the new bisection strategy described in
Section III-A

• parameteriz.: the efficient parameterization described in
Section III-C (for plane detection only)

We observe that each improvement brings significant
speedups. In all, about three orders of magnitude are gained
w.r.t. Jaulin et al.’s implementation of QInterEstim on
all the instances. On Table III, we remark that both the
new projection (that allows early rejection of boxes) and
the bisection strategy greatly decrease the number of nodes.
The new projection is especially efficient for the real plane
detection problem (H40), where we obtain a gain of one
order of magnitude in time and two orders of magnitude in
number of nodes.

Table IV shows the CPU time results when we remove
one of the improvements. The first line (no) reports the
results of the most advanced algorithm. We observe that
each improvement improves the efficiency of our approach.

C. Comparison with RANSAC

We compared our approach with RANSAC. We
run the RANSAC algorithm from [16] available
online at cg.cs.uni-bonn.de/en/publications/paper-details/
schnabel-2007-efficient/. The first line of Table II gives the
CPU time and the number of planes found by one run of
this algorithm. Since this algorithm is stochastic, several
runs give different sets of solutions and even by running
it many times, we are never sure to get all the solutions
found by our algorithm. For example, we ran RANSAC on
P6: in the first run, 10 planes were detected; after 10 runs,
a total number of 21 planes were found; after 15 runs, 23
planes were detected, whereas the 25 planes were found by
our algorithm.

Another phenomenon appears with the real point cloud
H40. With parameter values q and τ close to ours, RANSAC
is able to find only the horizontal planes. Indeed, since it is
greedy, the points used in the horizontal planes are removed
and cannot be used anymore to find the vertical ones.

V. DISCUSSION

RANSAC is efficient but can miss valid model instances.
However, the model instances computed are guaranteed to fit
at least q observed data (provided RANSAC were corrected
to check the observation constraints using interval arith-
metic...). Jaulin et al.’s interval CP approach is deterministic
but does not guarantee the answered model instances since
no parameters vectors inside the returned boxes are checked.
Our extension of Jaulin et al.’s parameter estimation tool
is both complete and can guarantee a large fraction of
its answered model instances while showing speedups of
orders of magnitude. However, the CP parameter estimation
tool is still used as a low-level tool, like RANSAC today.
In particular, the input τ and q must be tuned manually
by the user in real applications. Both parameters are not
completely independent and different values of (τ , q) should
be tried to better detect different primitives. For instance, if
q and τ are too small, several vertical planes, close to each
other, can be detected by the algorithm in the H40 instance.
A straightforward post-processing keeps only the maximal
model instances, i.e. model instances that fit a superset of
the observations used in another one. To conclude, since our
approach is deterministic, and the performances are good,
it gives hope of a more sophisticated tool able to (semi)
automatically adapt (τ , q) for finding the model instances.
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