Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale - École des Ponts ParisTech
Article Dans Une Revue Science of the Total Environment Année : 2016

Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

Y. Coquet
  • Fonction : Auteur

Résumé

Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m3/d — Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n = 11), pharmaceuticals and hormones (PPHs; n = 62) and other emerging pollutants (n = 57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90–100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38–45%) and chemical oxygen demands (21–48%), DOC (13–44%) and UV-254 (22–48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2−. For micropollutants, PPHs have a good affinity for μGAC and high (> 60%) or very high (> 80%) removals are observed for most of the quantified compounds (n = 22/32), i.e. atenolol (92–97%), carbamazepine (80–94%), ciprofloxacin (75–95%), diclofenac (71–97%), oxazepam (74–91%) or sulfamethoxazole (56–83%). In addition, alkylphenols, artificial sweeteners, benzotriazole, bisphenol A, personal care products (triclocarban and parabens) and pesticides have removals lying in the 50 −> 90% range. Overall, the fluidized bed of μGAC allows obtaining performances comparable to PAC at the same activated carbon dose. Indeed, the average removal of the 13 PPHs found at a high occurrence (> 75%) in WWTP discharges is similar at 20 g/m3 of μGAC (78–89%) and PAC (85–93%). In addition, this recycled μGAC operation leads to several operational advantages (no FeCl3, reactivable, higher SRT, higher treated flow) and has a stronger impact on the overall wastewater quality compared to PAC.
Fichier principal
Vignette du fichier
WR_Mailleretal_2015_Manuscript_v6.pdf (1.58 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01228409 , version 1 (19-06-2018)

Identifiants

Citer

R. Mailler, J. Gasperi, Y. Coquet, A. Buleté, E. Vulliet, et al.. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. Science of the Total Environment, 2016, 542, ⟨10.1016/j.scitotenv.2015.10.153⟩. ⟨hal-01228409⟩
414 Consultations
917 Téléchargements

Altmetric

Partager

More