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Abstract. The behaviour of a model granular material (an assembly of slightly poly-
disperse spherical beads, with Hertz-Mindlin elastic and frictional contacts) subjected to
one dimensional (oedometric) compressions is studied by DEM simulations. We system-
atically investigate the influence of the (idealized) packing process on the microstructure
and stresses in the initial, weakly confined equilibrium state. Such characteristics as den-
sity (ranging from maximally dense to moderately loose), coordination number (which
might vary independently of solid fraction, especially in dense systems), fabric and stress
anisotropies are monitored in oedometric loading cycles in which the major principal
stress varies by up to 5 orders of magnitude. The evolution of the solid fraction (or the
void ratio) versus the imposed vertical (principal) stress as observed in the loading and
unloading paths, like in the case of isotropic compression [2] and unlike laboratory tests
on sands, the behaviour shows only very limited plastic strain and is very nearly reversible
in dense samples (which tend nevertheless to lose contacts in a loading cycle if the ini-
tial coordination number was large). The irreversibility observed in sands should thus
be attributed to plasticity or damage within inter granular contacts. The anisotropy of
the microstructure is described by the angular distributions of contacts and forces. It is
explicitly linked to the stresses in the loading history, by semi-quantitative relations. One
of the important characteristics measured during the compression is the ratio of lateral
to controlled (‘vertical’) stress, K0. We discuss conditions in which K0 might be regarded
as constant. We calculate, via a static (matrix) method [1], the complete tensor of elas-
tic moduli, expressing response to very small stress increments about the transversely
isotropic equilibrium states along the loading path.

1 INTRODUCTION

Granular materials are usually studied in soil mechanics at macroscale as a continuum
medium. Recent works tend to investigate more the microstructural mechanism (contact

1



M.H. Khalili, J.-N. Roux, J.-M. Pereira, M. Vandamme, S. Brisard and M. Bornert

forces, fabric anisotropy, coordination number...) and relate them to macroscopic behav-
ior. Discrete Element Method (DEM) [4], is a powerful tool to investigate the internal
state of packing, and provides relevant variables such as fabric and coordination num-
ber [5]. In this paper we propose to study slightly polydisperse spherical beads under
uni-axial oedometric compression. The evolution of structural parameters of the different
assembly is studied to characterize the internal state during oedemetric compression and
probe the effect of the initial packing process. Strain reversibility and elasticity are also
discussed. Note that other works have covered the oedometric compression by studying
the effect of bead size distribution on internal states [6] or stress anisotropy compared to
sand experiments [7].

2 DEM MODEL

In this study the sample is modeled by an assembly of 4000 spherical beads slightly
polydisperse (from d1 = 1 to d2 = 1.2), which interact through Hertz-Mindlin elastic
and frictional contacts. Glass beads were chosen with Young modulus E = 70 GPa,
Poisson ratio ν = 0.3 and friction coefficient µ = 0.3. Beads are contained in a periodic
cuboidal cell. Both grain positions and cell size are simultaneously determined on solving
dynamical equations, implemented as in Ref. [1] for isotropic compression. In our case
the applied stress and strain tensors describing the oedometric compression are σ1 = σ0

and ε2 = ε3 = 0. The strain rate is controlled during the compression and set to a
constant value until the desired stress is reached. Then we search for the equilibrium
state by allowing the strain rate to vary without exceeding a maximal value. The value
of strain rate is set through the inertia parameter I = ε̇

√
m/dσ0, with m the average

particle mass. We also define a stiffness parameter κ = (Ẽ/σ0)2/3, with Ẽ = E/(1− ν2),
such that the typical contact deflection is of order κ−1.

3 SAMPLE PREPARATIONS

We investigate the effect of the initial state of the bead assembly on the oedometric
compression response. Different sample preparation methods provide different microstruc-
tures characterized by their density (or solid fraction φ), coordination number z and fabric
anisotropies. Bead diameters are randomly chosen according to a distribution uniform by
volume:

p(d) =
(d1d2)2

2(d2
2 − d2

1)

1

d3
, (1)

Random, low density (Φ = 0.55) configurations of non-contacting grains (granular gases)
are then subjected to different packing assembly processes, involving either isotropic or
oedometric (one-dimensional) compression to a solid state in which contact forces balance
the applied stress.
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Moderately loose packing. A weakly confined equilibrium state is obtained by ap-
plying a stress σ0 of 10 kPa to the granular gas, until an equilibrium configuration is
obtained with contact forces balancing the external load. Samples prepared in these
conditions are moderately loose and will be noted Li or Lo according to whether they
underwent an isotropic compression (all three principal stresses σ1 = σ2 = σ3 set to σ0)
or an oedometric one (σ1 = σ0, no strain in directions 2 and 3).

Maximally dense packing with high coordination number. We again confine the
granular gas at a confining pressure of 10 kPa. But this time, to maximize density [1],
we set the friction coefficient µ to zero. This process gives an unrealistically high initial
coordination number (z about 6). In what follows, these configurations will be denoted
DHi and DHo, for isotropic and oedometric compression.

Maximally dense packing with low coordination number. To obtain a more real-
istic coordination number in a dense packing process, we apply a small isotropic dilation
to the confined maximally dense sample (the high coordination number one prepared
without friction), so that all contacts open, and then confine the dilated configuration
under pressure 10 kPa. A mixing step before the final compression phase [1] is necessary
in the isotropic case. The final coordination numbers are about 4. We will denote these
configurations as DLi (isotropic) and DLo (oedometric).

Tab. 1 characterizes the different initial states, giving values of K0, the ratio of “hori-
zontal” stress σ2 = σ3 to “vertical” stress σ1 (σ1 denotes the applied stress in this paper),
fraction x0 of rattlers (grains carrying no force in equilibrated packs), coordination number
z, and coordination number of non-rattler grains, z? = z

1−x0 .

Loose Dense High Coordination Dense Low Coordination
oedometric isotropic oedometric isotropic oedometric isotropic

K0 0.72 1.0 0.94 1.0 0.51 1.0
φ 0.584 0.589 0.639 0.638 0.634 0.637
z 4.22 4.14 5.98 5.99 4.06 4.17
z? 4.63 4.63 6.07 6.07 4.54 4.65
x0(%) 8.8 10.3 1.5 1.3 10.4 10.37

Table 1: Structural parameters of different initial states. Values are averaged over 3 configurations
(differences for Φ, z,K0 lie below given accuracy level).

4 OEDOMETRIC COMPRESSION

4.1 Loading and unloading path

The different preparations of Sec. 3, are subjected to oedometric compressions, in
which equilibrium states are obtained at different axial strain σ1: 31.62 kPa, 100 kPa,
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316.2 kPa, 1 MPa, 3.162 MPa, 10 MPa, 31.62 MPa (equidistant on a logarithmic scale).
The calculation involves two steps. First, the system is compressed at a constant strain
rate ε̇1, maintaining inertia parameter I to 10−5. Then, once the desired stress level σ1

is obtained, it is kept constant until equilibrium criteria are satisfied for particles and
for internal stress (I is meanwhile requested to stay below 10−5). Upon unloading, the
corresponding value of I is set to 10−6.

4.2 Evolution of solid fraction φ and coordination number z

Fig. 1 shows the evolution of solid fraction during the oedometric compression of the
different sample types. The curves present similar behaviours and curves of samples with
the same initial solid fraction almost coincide on this scale – although highly coordinated
systems are less deformable in the initial compression stages. Coordination number z
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Figure 1: Evolution of φ with the vertical stress during the oedometric compression for samples of
different preparation routines.

(Fig. 2) slightly decreases in the first compression steps for samples DHi and DHo, for
which its initial value is high (∼ 6) due to the absence of friction in the assembling
process. Friction stabilizes grain packs at lower coordination levels. z increases again at
higher pressures, as in all systems: new contacts are formed by closing the gaps between
neighbours in denser structures [2]. Under high pressures, coordination numbers increase
with density. The evolution of the coordination number depends on its initial value and
the value of the solid fraction. Rattler fractions follow the opposite evolution to that of
z except for samples DHi and DHo for which the initial decrease of z does not translate
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into an increase of x0.
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Figure 2: Coordination number z and rattler fraction x0 versus vertical stress σ1 along oedometric
loading path for the different sample preparations.

4.3 Variation of coefficient of lateral pressure K0

In experiments on sands [8, 9, 10], K0 is regarded as constant. As shown in Fig.
3 the variation in K0 in our simulated bead packings strongly depends on the initial
state. Obviously, samples initially confined by an isotropic compression of the granular
gas are first devoid of structural anisotropy. Therefore, K0 varies as the sample becomes
anisotropic during the axial compression. This is the case of the samples Li, DHi and
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DLi. Within this group, the denser samples reach higher anisotropy, the faster the larger
the number of contacts (enabling different force distributions in contact networks).

The samples prepared under oedometric compression of the granular gas (such as DLo
and Lo) are anisotropic from the beginning. K0 is then observed to remain almost con-
stant. As to DHo, prepared with no friction, its very small initial anisotropy is typical
of frictionless systems [12]. The anisotropy of contacts and forces also depends on the
preparation and will be detailed in the next section.
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Figure 3: K0 versus ”vertical” stress σ1 in oedometric compression.

4.4 Anisotropy characterization

K0 is characteristic of the overall degree of stress anisotropy of the system. At the
microscopic level, stresses are determined by contact forces, which may differently con-
tribute to σ1 and σ2, depending on their directions and their amplitudes. Anisotropies of
the force network may thus be characterized by the distribution of contact orientations,
and also by the angular dependence of the force distribution. We only consider here the
normal component of the contact forces, as the tangential force contribution to normal
stress components σ1, σ2 = σ3 is found negligible. We denote as n the normal unit vector
at contacts.

Contact distribution. Due to rotational invariance about the oedometric compression
axis, the density distribution function P (n) on the unit sphere Σ depends on |n1| only, and
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it and can be expanded in a series of Legendre polynomials of even order. The simplest
non-isotropic form is truncated at order 2:

P (|n1|) ' 1 +
5

4
(3c2 − 1)

(
3n2

1 − 1
)

(with c2 = 〈n2
1〉) (2)

Angular distribution of normal force amplitudes. The distribution of the average
force amplitude in the contacts with direction n depends on |n1| as well, and its expansion
to second order in Legendre polynomials is analogous to (2). We define

f2 =
1

4π

∫
Σ

F(|n1|)n2
1d

2n

with notation F(|n1|) = 〈FN〉(|n1|)/〈FN〉. Here 〈FN〉 is the overall average normal contact
force and 〈FN〉(|n1|) is the average normal force among contacts with normal direction n.

4.5 Evolution of c2 and f2

Fig. 4 is a plot, versus σ1, in the oedometric compression, of the second order anisotropy
parameters c2 and f2 respectively characterizing the contact distribution and the force
distribution. c2 and f2, similarly to K0, depend on initial state. The large variation of
K0 observed in isotropically assembled samples appears to be due to the evolution of f2,
rather than that of c2. The relation of K0 to both anisotropy parameters c2 and f2 can
be made more explicit, as shown in the following section.

4.6 Estimation of K0 from anisotropy parameters

The normal force contribution to principal stresses is given by:

σα =
3zφ

π

< d >

< d3 >
< FN >

∫
S

P (n)F(n))nαnαdΩ (3)

Using second order expansion (2), and neglecting the products of anisotropic terms, we
get the following approximation

σα '
3zφ

π

< d >

< d3 >
< FN >

[
< n2

α > +〈〈FN〉(|nα|)n2
α〉 −

1

3

]
. (4)

Knowing that < n2
2 >=< n2

3 >= 1
2
(1− < n2

1 >), one may finally estimate K0 as:

K0 =
σ22

σ11

' 4− 3(c2 + f2)

6(c2 + f2)− 2
. (5)

This estimate of K0 agrees well with measured values (see Fig. 5).
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Figure 4: Anisotropy parameters c2 and f2 versus applied stress σ1.

4.7 Elastic moduli

The elastic moduli are computed in equilibrium configurations via the static method of
Ref. [3]. Moduli C11 and C12, respectively relating increments of strain ε1 to increments
in stresses σ1 and σ2, are plotted in Fig. 6, as functions of axial stress σ1. At low pressure
C11 depends on both density and coordination number. At high pressure, the coordina-
tion tends itself to be determined by the density, and the curves separate in two groups
according to solid fraction. For C12 only the dependence on the coordination number is
observed. The results along unloading paths appear to depend on solid fraction only for
C11, and nearly coincide for C12. This is to be correlated to the evolution of coordination
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Figure 5: K0 versus σ1. Dots joined by solid line: measured values. Dots joined by dashed line: Eq. 5.

number upon unloading, as shown below in Sec. 5.

5 REVERSIBILITY

5.1 Void ratio

The void ratio e = −1+1/Φ, as plotted in Fig. 7 versus axial stress in the compression
cycle, appears to be very nearly reversible, especially in dense samples. This behaviour is
quite different from the typical experimental ones. In sands, the initial and final values of
e in such a cycle is of the order of 0.05, and the final value is almost equal to the lowest
one reached in the loading phase [11]. The irreversibility observed in sands should thus
be attributed to phenomena (plasticity or damage at contacts) which are not present in
the present model. Reversiblity, in the simulations, is only apparent, and should not to be
confused with elasticity. The right plot of Fig. 7 shows that coordination numbers change
irreversibly in the compression cycle: samples with high initial z values end up with much
lower final values (as in the isotropic compressions of Ref. [2]). This also justifies the
change in the elastic moduli in unloading observed above.

5.2 Elastic strain

From the curves in Fig. 6 we can fit a function C11 (σ1) which allows to estimate a total
elastic deformation as:

εel =

∫ σmax

σmin

dσ1

C11(σ1)
(6)
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Figure 6: C11 (top) and C12 (bottom) versus σ1 in oedometric compression (doubly logarithmic plots),
along loading (left graph) and unloading (right graph) paths. Black dashed line has slope 1/3 .

The value of this elastic strain represents the expected strain in the sample if all the
occurring evolution were governed by elastic mechanisms. Such elastic strains are smaller
than measured strains, as reported in Tab. 2, with larger differences in looser states –
thereby providing new evidence of nonelastic strain mechanisms. In the loose case (Lo)
the difference between observed and elastic strain is somewhat reduced by considering the
unloading stress path, but still of the order as the one obtained in denser systems.
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Figure 7: Void ratio e (left) and coordination number z (right) versus σ1 in oedometric compression
cycle.

εel εld εuld

Lo 1.72 % 3.54 % 2.58 %
DHo 1.27 % 2.28 % 2.38 %
DLo 1.38 % 2.22 % 2.14 %

Table 2: Total strains computed from elastic moduli (εel) and measured in simulations along loading
(εld) and unloading (εuld) paths .

6 CONCLUSION

This numerical study of granular media under oedometric compression shows that the
evolution of K0 depends on the packing process. It was observed that when care is taken
to establish an initial anisotropy in the sample (thus mimicking such processes as air
pluviation) the coefficient K0 can be regarded as constant during loading. K0 can be
simply related to fabric (contact orientation) and normal force anisotropy parameters.
We also showed that the irreversibility usually obtained for sands in real experiments is
not present in our DEM simulations and hence should be attributed to other phenomena
that were not included in the model such as grains damage and plasticity.
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