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Building up Time-Consistency for
Risk Measures and Dynamic Optimization

Michel De Laraa, Vincent Leclèrea,∗

aUniversité Paris-Est, CERMICS (ENPC), 6-8 Avenue Blaise Pascal, Cité Descartes ,
F-77455 Marne-la-Vallée

Abstract

In stochastic optimal control, one deals with sequential decision-making un-
der uncertainty; with dynamic risk measures, one assesses stochastic processes
(costs) as time goes on and information accumulates. Under the same vocable
of time-consistency (or dynamic-consistency), both theories coin two different
notions: the latter is consistency between successive evaluations of a stochas-
tic processes by a dynamic risk measure (a form of monotonicity); the former
is consistency between solutions to intertemporal stochastic optimization prob-
lems. Interestingly, both notions meet in their use of dynamic programming, or
nested, equations.

We provide a theoretical framework that offers i) basic ingredients to jointly
define dynamic risk measures and corresponding intertemporal stochastic opti-
mization problems ii) common sets of assumptions that lead to time-consistency
for both. We highlight the role of time and risk preferences — materialized in
one-step aggregators — in time-consistency. Depending on how one moves from
one-step time and risk preferences to intertemporal time and risk preferences,
and depending on their compatibility (commutation), one will or will not observe
time-consistency. We also shed light on the relevance of information structure
by giving an explicit role to a state control dynamical system, with a state that
parameterizes risk measures and is the input to optimal policies.

Keywords: dynamic programming, time-consistency, dynamic risk measures

1. Introduction

You come accross time-consistency in two different mathematical fields. You
are time-consistent if, as time goes on and information accumulates, you do not
question the original assessment of stochastic processes (dynamic risk measures)
or planning of policies (stochastic optimal control).5
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We propose a general mechanism to build up time-consistent dynamic risk
measures, that serve as criteria for optimal control problems under uncertainty,
which henceforth inherit time-consistency. We show how in a few words.

Consider two sets T1 and T2, representing sets of time periods (T1 = {1, 2, 3},
T2 = {4, 5} for instance). Consider two sets W1 and W2, representing possible10

values of uncertainties. For any set S, denote by L(S) the set of functions
S→ R∪ {+∞}, and by GS : L(S)→ R∪ {+∞} a mapping. You can assess any
function A : T1 × T2 ×W1 ×W2 → R ∪ {+∞},

• either by block-aggregation: start by aggregating by time, yielding GT2
GT1

:
W1×W2 → R∪{+∞}, then by uncertainty, yielding GW2GW1GT2GT1A ∈15

R ∪ {+∞},

• or by nested-aggregation, yielding GW2
GT2

GW1
GT1

A ∈ R ∪ {+∞}.

We will show that nested-aggregation produces both time-consistent dynamic
risk measures and optimal control problems, and that so does block-aggregation
when a commutation property holds true. For example sum and integral are
commuting operators and a block-aggregation is equivalent to a nested-aggregation
as shown in the following equality∫∫∫

X×Y×Z
[c1(x) + c2(x, y) + c3(x, y, z)]dxdydz =∫

X

[
c1(x) +

∫
Y

[
c2(x, y) +

∫
Z

c3(x, y, z)dx
]
dy

]
dz .

Now, let us be more specific.

In stochastic optimal control, one deals with sequential decision-making un-
der uncertainty; with dynamic risk measures, one assesses stochastic processes20

(costs) as time goes on and information accumulates. We discuss the definition
of time-consistency in each setting one after the other (see also [1] for another
analysis of links between both notion).

In optimal control problems, we consider a dynamical process that can be
influenced by exogenous noises as well as decisions made at every time step.25

The decision-maker (DM) wants to optimize a criterion (for instance, minimize
a net present value) over a given time horizon. As time goes on and the system
evolves, the DM makes observations. Naturally, it is generally more profitable
for the DM to adapt his decisions to the observations. He is hence looking for
policies (strategies, decision rules) rather than simple decisions: a policy is a30

function that maps every possible history of the observations to corresponding
decisions.

The notion of “consistent course of action” (see [2]) is well-known in the
field of economics, with the seminal work of [3]: an individual having planned
his consumption trajectory is consistent if, reevaluating his plans later on, he35

does not deviate from the originally chosen plan. This idea of consistency as
“sticking to one’s plan” may be extended to the uncertain case where plans are
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replaced by decision rules (“Do thus-and-thus if you find yourself in this portion
of state space with this amount of time left”, Richard Bellman cited in [4]): [5]
addresses “consistency” and “coherent dynamic choice”, [6] refers to “temporal40

consistency”.
In this context, we loosely state the property of time-consistency in optimal

control problems as follows [7]. The decision maker formulates an optimization
problem at time t0 that yields a sequence (planning) of optimal decision rules
for t0 and for the following increasing time steps t1, . . . , tN = T . Then, at the45

next time step t1, he formulates a new problem starting at t1, that yields a new
sequence of optimal decision rules from time steps t1 to T . Suppose the process
continues until time T is reached. The sequence of optimization problems is
said to be time-consistent if the optimal strategies obtained when solving the
original problem at time t0 remain optimal for all subsequent problems. In other50

words, time consistency means that strategies obtained by solving the problem
at the very first stage do not have to be questioned later on.

Now, we turn to dynamic risk measures. At time t0, you assess, by means of

a risk measure ρt0,T , the “risk” of a stochastic process
{
A
t

}tN
t=t0

, that represents
a stream of costs indexed by the increasing time steps t0, t1, . . . , tN = T . Then,55

at the next time step t1, you assess the risk of the tail
{
A
t

}tN
t=t1

of the stochas-
tic process knowing the information obtained and materialized by a σ-field Ft1 .
For this, you use a conditional risk measure ρt1,T with values in Ft1-measurable
random variables. Suppose the process continues until time T is reached. The

sequence
{
ρt,T

}tN
t=t0

of conditional risk measures is called a dynamic risk mea-60

sure.
Dynamic or time-consistency has been introduced in the context of risk mea-

sures (see [8, 9, 10, 11, 12] for definitions and properties of coherent and consis-

tent dynamic risk measures). The dynamic risk measure
{
ρt,T

}tN
t=t0

is said to be
time-consistent when the following property holds. Suppose that two streams65

of costs,
{
A
t

}tN
t=t0

and
{
A
t

}tN
t=t0

, are such that they coincide from time ti up to

time tj > ti and that, from that last time tj , the risk of the tail stream
{
A
t

}tN
t=tj

is more than that of
{
A
t

}tN
t=tj

(i.e. ρtj ,T (
{
A
t

}tN
t=tj

) ≥ ρtj ,T (
{
A
t

}tN
t=tj

)). Then,

the whole stream
{
A
t

}tN
t=ti

has higher risk than
{
A
t

}tN
t=ti

(i.e. ρti,T (
{
A
t

}tN
t=ti

) ≥
ρti,T (

{
A
t

}tN
t=ti

)).70

We observe that both notions of time-consistency look quite different: the
latter is consistency between successive risk assessments of a stochastic process
by a dynamic risk measure (a form of monotonicity); the former is consistency
between solutions to intertemporal stochastic optimization problems. We now
stress the role of information accumulation in both notions of time-consistency,75

because it highlights how the two notions can be connected. For dynamic risk

measures, the flow of information is materialized by a filtration
{
Ft
}tN
t=t1

. In
stochastic optimal control, an amount of information more modest than the
past of exogenous noises is often sufficient to make an optimal decision. In
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the seminal work of [13], the minimal information necessary to make optimal80

decisions is captured in a state variable (see [14] for a more formal definition).
Moreover, the famous Bellman or Dynamic Programming Equation (DPE) pro-
vides a theoretical way to find optimal strategies (see [15] for a broad overview
on Dynamic Programming (DP)).

Interestingly, time-consistency in optimal control problems and time-consistency85

for dynamic risk measures meet in their use of DPEs. On the one hand, in opti-
mal control problems, it is well known that the existence of a DPE with state x
for a sequence of optimization problems implies time-consistency when solutions
are looked after as feedback policies that are functions of the state x. On the
other hand, proving time-consistency for a dynamic risk measure appears rather90

easy when the corresponding conditional risk measures can be expressed by a
nested formulation. In both contexts, such nested formulations are possible only
for proper information structures. In optimal control problems, a sequence of
optimization problems may be consistent for some information structure while
inconsistent for a different one (see [7]). For dynamic risk measures, time-95

consistency appears to be strongly dependent on the underlying information
structure (filtration or scenario tree). Moreover, in both contexts, nested for-
mulations and the existence of a DPE are established under various forms of
decomposability of operators that display monotonicity and commutation prop-
erties.100

Our objective is to provide a theoretical framework that offers i) basic ingre-
dients to jointly define dynamic risk measures and corresponding intertemporal
optimization problems under uncertainty ii) common sets of assumptions that
lead to time-consistency for both. We wish to highlight the role of time and risk
preferences, materialized in one-step aggregators, in time-consistency. Depend-105

ing on how you move from one-step time and risk preferences to intertemporal
time and risk preferences, and depending on their compatibility (commutation),
you will or will not observe time-consistency. We also shed light on the relevance
of information structure by giving an explicit role to a dynamical system with
state x.110

The paper is organized as follows. In §2, we define dynamic uncertainty
criteria (“cousins” of dynamic risk measures) and their time-consistency. Then,
we introduce the notions of time and uncertainty-aggregators, define their com-
position, and show two ways to craft a dynamic uncertainty criterion from one-
step aggregators: in the nested-aggregation case, we prove time-consistency; in115

the block-aggregation case, we have to add a commutation property for this.
In §3, we introduce the basic material to formulate intertemporal optimization
problems under uncertainty from dynamic uncertainty criteria, and define their
time-consistency. In the nested-aggregation case, we prove time-consistency by
displaying a DPE; in the block-aggregation case, we have to add a commutation120

property for this. We end with applications in §4, before concluding.

Notations

We fix notations used throughout the paper:
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• [[a, b]] is the set of integers between a and b (included);

• F
(
E,F

)
is the set of functions mapping E into F ;125

•
{
ut
}T

0
is the sequence

{
u0, . . . , uT

}
;

• R̄ = R ∪ {+∞};

• W[0:s] is the Cartesian product W0 × · · · ×Ws;

• G is used to refer to an aggregator with respect to uncertainty;

• φ is used to refer to an aggregator with respect to time.130

Furthermore, the superscript notation indicates that the domain of the map-
ping G[t:s] is F(W[t:s]; R̄) (not to be confused with G[t:s] =

{
Gr
}s
r=t

).

2. Building up Time-Consistent Risk Measures

In §2.1, we lay out adapted uncertainty processes and dynamic uncertainty
criterion, cousins of adapted processes and dynamic risk measures, then propose135

a definition of time-consistency. Then, in §2.2, we introduce the notions of time
and uncertainty-aggregators, define their composition, and outline general ways
of building a dynamic uncertainty criterion from one-step aggregators. Further,
in §2.3 we define nested criterion and give a time-consistency result relying on
monotonicity of one-step aggregators. Finally, in §2.4 we define a commuta-140

tion property between time and uncertainty aggregators. This commutation
property allow to give a time-consistency result for a block-aggregated dynamic
uncertainty criterion.

2.1. Time-Consistent Dynamic Uncertainty Criterion

Inspired by the definitions of risk measures and dynamic risk measures in145

Mathematical Finance, and motivated by intertemporal optimization, we in-
troduce the following definitions of dynamic uncertainty criterion, and Markov
dynamic uncertainty criterion. Such criteria are not restricted to assess mea-
surable mappings (as stochastic processes would be), and we pay the price by
letting +∞ be a possible assessment (for instance, the “mathematical expecta-150

tion” of a non-measurable function is +∞).
Mimicking the definition of adapted processes in probability theory, we first

introduce the following definition of adapted uncertainty processes.

Definition 1. We say that a sequence A[0:T ] =
{
As
}T

0
is an adapted uncertainty

process if As ∈ F
(
W[0:s]; R̄

)
(that is, As : W[0:s] → R̄), for all s ∈ [[0, T ]]. In155

other words,
[
F(W[0:s]; R̄)

]T
s=0

is the set of adapted uncertainty processes.

Definition 2. A dynamic uncertainty criterion is a sequence {%t,T }Tt=0, such
that, for all t ∈ [[0, T ]],
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• %t,T is a mapping

%t,T :
[
F(W[0:s]; R̄)

]T
s=t
→ F(W[0:t]; R̄) , (1a)

• the restriction of %t,T to the domain1
[
F(W[t:s]; R̄)

]T
s=t

yields constant
functions, that is,

%t,T :
[
F(W[t:s]; R̄)

]T
s=t
→ R̄ . (1b)

A Markov dynamic uncertainty criterion is a dynamic uncertainty criterion160

parametrized at each step t by a state xt belonging to a state space Xt.

We establish a parallel between uncertainty criteria and risk measures. For
this purpose, when needed, we implicitely suppose that each uncertainty set Wt

is endowed with a σ-algebra Wt, so that the set W[0:T ] of scenarios is naturally
equipped with the filtration

Ft =W0 ⊗ · · · ⊗Wt ⊗ {∅,Wt+1} ⊗ · · · ⊗ {∅,WT } , ∀t ∈ [[0, T ]] . (2)

Notice that, when the σ-algebra Wt is the complete σ-algebra made of all sub-
sets of Wt, F

(
W[0:t]; R̄

)
is exactly the space of random variables that are Ft-

measurable.
We provide a definition of time-consistency for Markov dynamic uncertainty165

criteria, inspired by the definition for dynamic risk measures. If two streams
of random costs coincide up to time t, but that the tail streams can be ranked
pointwise, so will their risk measure.

Definition 3. The Markov dynamic uncertainty criterion {{%xtt,T }xt∈Xt}Tt=0 is

said to be time-consistent if, for any couple of times 0 ≤ t < t ≤ T , the following170

property holds true.
If two adapted uncertainty processes {As}T0 and {As}T0 , satisfy

As = As , ∀s ∈ [[t, t]] , (3a)

ρxt,T
(
{As}Tt

)
≤ ρxt,T

(
{As}Tt

)
, ∀x ∈ Xt , (3b)

then we have:

ρ
x
t,T

(
{As}Tt

)
≤ ρ

x
t,T

(
{As}Tt

)
, ∀x ∈ Xt . (3c)

2.2. Aggregators and their Composition

We introduce the notions of time and uncertainty-aggregators, define their
composition, and outline general ways of constructing a dynamic uncertainty175

criterion from one-step aggregators.

1Where F(W[t:s]; R̄) is naturally identified as a subset of F(W[0:s]; R̄).
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2.2.1. One-Step Time-Aggregators and their Composition

For notational clarity the argument of time-aggregators are written between
curly braces ({·}) whereas the argument of uncertainty aggregators are written
between straight brackets [·].180

Definition 4. A multiple-step time-aggregator is a function mapping R̄k into
R̄, where k ≥ 2. When k = 2, we call one-step time-aggregator a function
mapping R̄2 into R̄. A one-step time-aggregator is said to be non-decreasing if
it is non-decreasing in its second variable.

Let Φ1 : R̄2 → R̄ be a one-step time-aggregator and Φk : R̄k → R̄ be a
multiple-step time-aggregator. We define the composition Φ1 � Φk : R̄k+1 → R̄
by (

Φ1 � Φk
){
c1, c2, . . . , ck+1

}
= Φ1

{
c1,Φ

k
{
c2, . . . , ck+1

}}
. (4)

The composition of multiple one-step time-aggregator is defined recursively
by ( T−1

�
s=t

Φs

)(
c[t:T ]

)
= Φt

{
ct,
( T−1

�
s=t+1

Φs

)(
c[t+1:T ]

)}
. (5)

Example. If each one-step time-aggregators is simply the sum of two terms
(Φt
{
ct, ct+1

}
= ct + ct+1), their composition is just the total sum:

( T−1

�
s=t

Φs

)(
c[t:T ]

)
=

T∑
s=t

cs .

More generally, consider the sequence
{

Φt
}T−1

t=0
of one-step time-aggregators

given by

Φt
{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1 , ∀t ∈ [[0, T − 1]] , (6)

where (αt)t∈[[0,T−1]] and (βt)t∈[[0,T−1]] are sequences of functions, each mapping
R̄ into R. With the convention that αT (cT ) = cT , we have

( T−1

�
s=t

Φs

){
cs
}T
t

=

T∑
s=t

(
αs
(
cs
) s−1∏
r=t

βr
(
cr
))

, ∀t ∈ [[0, T − 1]] . (7)

2.2.2. One-Step Uncertainty-Aggregators and their Composition185

Definition 5. Let t ∈ [[0, T ]] and s ∈ [[t, T ]]. A [t :s]-multiple-step uncertainty-
aggregator is a mapping G[t:s] from F(W[t:s]; R̄) into R̄. When t = s, we

call G[t:t] a t-one-step uncertainty-aggregator. A [t :s]-multiple-step uncertainty-
aggregator is said to be non-decreasing if it is monotonous with respect to the
pointwise partial order of functions. To a [t :s]-multiple-step uncertainty-aggregator G[t:s],
we attach a mapping

G[t:s] : F(W[0:s]; R̄)→ F(W[0:t−1]; R̄) , (8)

obtained by freezing the first variables (seen as parameters).
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We define the notion of chained sequence of uncertainty-aggregators and
their composition as follows.

Definition 6. Let t ∈ [[0, T ]] and s ∈ [[t + 1, T ]]. Let G[t:t] : F(Wt; R̄) → R̄
be a t-one-step uncertainty-aggregator, and G[t+1:s] : F(W[t+1:s]; R̄) → R̄ be a
[t+ 1:s]-multiple-step uncertainty-aggregator. We define the [t :s]-multiple-step
uncertainty-aggregator G[t:t] �G[t:s] by, for all function At ∈ F

(
W[t:s]; R̄

)
,(

G[t:t] �G[t:s]
)[
At
]

= G[t:t]
[
wt 7→ G[t+1:s]

[
w[t+1:s] 7→ At

(
wt, w[t+1:s]

)]]
. (9)

We say that a sequence
{
Gt
}T
t=0

of one-step uncertainty-aggregators is a
chained sequence if Gt is a t-one-step uncertainty-aggregator, for all t ∈ [[0, T ]].190

Quite naturally, we define the composition of chained sequences by

T

�
s=T

Gs = GT and
( T

�
s=t

Gs
)

= Gt �
( T

�
s=t+1

Gs
)
. (10)

2.3. Time-Consistency for Nested Dynamic Uncertainty Criteria

After having introduced the ingredients of one-step aggregators and their
composition, we now cook up nested dynamic uncertainty criterion and prove
that they are time-consistent.

Definition 7. A monotonous pair
(
Φ,G

)
of sequences of aggregators consists195

in

• a sequence
{

Φt
}T−1

t=0
of non-decreasing one-step time-aggregators,

• a chained sequence
{
Gt
}T
t=0

of non-decreasing one-step uncertainty-aggregators.

From a monotonous pair
(
Φ,G

)
, we build a dynamic uncertainty criterion

by successive compositions.200

Definition 8. We inductively define a nested dynamic uncertainty criterion{
%Nt,T

}T
t=0

by

%NT
(
AT
)

= GT
[
AT
]
, (11a)

%Nt,T

({
As
}T
s=t

)
= Gt

[
Φt

{
At, %

N
t+1,T

({
As
}T
s=t+1

)}]
, ∀t ∈ [[0, T − 1]] , (11b)

for any adapted uncertainty process
{
As
}T
s=0

.

The following Theorem 9 states that monotonicity is enough to ensure the
time-consistency of nested dynamic uncertainty criteria.

Theorem 9. Let
(
Φ,G

)
be a monotonous pair of sequences of aggregators.

Then, the nested dynamic uncertainty criterion
{
%Nt,T

}T
t=0

defined by (11) is205

time-consistent (in the sense of Definition 3).
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Proof. Let t < t be both in [[0, T ]]. Consider two adapted uncertainty processes
{As}T0 and {As}T0 , where As and As maps W[0:T ] into R̄, such that

As =As , ∀s ∈ [[t, t]] , (12a)

%Nt,T
(
{As}Tt

)
≤%Nt,T

(
{As}Tt

)
, (12b)

We show by backward induction that, for all t ∈ [[t, t]], the following state-
ment (Ht) holds true:

(Ht) %Nt,T
(
{As}Tt

)
≤ %Nt,T

(
{As}Tt

)
. (13)

First, we observe that (Ht) holds true by assumption (12b). Second, by (Ht),
and as At−1 = At−1 monotonicity of Φt−1 yields

Φt−1

{
At−1, %

N
t,T

(
{As}Tt

)}
≤ Φt−1

{
At−1, %

N
t,T

(
{As}Tt

)}
.

Monotonicity of Gt−1 then gives

Gt−1

[
Φt−1

{
At−1, %

N
t,T

(
{As}Tt

)}]
≤ Gt−1

[
Φt−1

{
At−1, %

N
t,T

(
{As}Tt

)}]
.

By definition of %Nt−1,T in (11), we obtain (Ht−1).

Remark 10. In Definition 8, we build nested aggregators, first starting by ag-
gregating with respect to time, second with respect to uncertainty. If we aggregate
first with respect to uncertainty, second with respect to time, we obtain the dy-
namic uncertainty criterion given by

%N
′

T

(
AT
)

= GT
[
AT
]
,

%N
′

t,T

({
As
}T
s=t

)
= Φt

{
Gt
[
At
]
,Gt
[
%N

′

t+1,T

({
As
}T
s=t+1

)]}
, ∀t ∈ [[0, T − 1]] .

It is shown in [16, Chapter 2] that monotonicity is also sufficient to yield time-
consistency.

2.4. Time-Consistency for Block-Aggregated Criteria210

Nested uncertainty criteria carry the time-consistency property in the very
manner they are built. However, nested uncertainty criterion are not the most
natural candidates to assess risk and their economic interpretation is delicate.
In practice, uncertainty criterion are more often given in block-aggregation form
— integrate with respect to all times, then with respect to all uncertainties —215

than in nested form.
We first propose a commutation property that will allow to go from one

formulation to the other, and that will stand as one of the key ingredients for a
DPE and lead to the time-consistency result in Theorem 14.
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2.4.1. Commutation of Aggregators220

Definition 11. Let t ∈ [[0, T ]] and s ∈ [[t+1, T ]]. A [t :s]-multiple-step uncertainty-
aggregator G[t:s] is said to commute with a one-step time-aggregator Φ if

G[t:s]
[
w[t:s] 7→ Φ

{
c,Dt

(
w[t:s]

)}]
= Φ

{
c,G[t:s]

[
w[t:s] 7→ Dt

(
w[t:s]

)]}
, (14)

for any function Dt ∈ F(W[t:s]; R̄) and any extended scalar c ∈ R̄.
We say that a (Φ,G) is a commuting pair of sequence of aggregators if Gt

commutes with Φs, for any 0 ≤ s < t ≤ T .

Example. If (Wt,Ft,Pt) is a probability space and if

Φ
{
c, ct

}
= α(c) + β(c)ct , (15)

where α : R̄→ R and β : R̄→ R+, then the extended2 expectation G[t:t] = EPt
commutes with Φ.225

The following lemma shows how commutation of time-step aggregators leads
to commutation of multi-step aggregators.

Lemma 12. Consider a commuting pair (Φ,G) of aggregators. Then,
T

�
s=t

Gs
commutes with Φr, for any 0 ≤ r < t ≤ T , that is,

T

�
s=t

Gs
[
Φr
{
cr, A

}]
= Φr

{
c,

T

�
s=t

Gs
[
A
]}

, ∀ 0 ≤ r < t ≤ T , (16)

for any extended scalar c ∈ R̄ and any function A ∈ F
(
W[0:T ]; R̄

)
.

Beware that, for a given time t, we require the commutation of all subsequent
uncertainty-aggregators Gt+1, . . . ,GT with the time aggregator Φt (see Defini-230

tion 11). The proof of Lemma 12, by induction, is detailed in Appendix B.1.

2.4.2. Time-Consistency for Block-Aggregated Criteria

We now define block dynamic uncertainty criteria and prove their time-
consistency under a commutation property.

Definition 13. We define the block dynamic uncertainty criterion {%Bt,T }Tt=0 by

%Bt,T =
( T

�
s=t

Gs
)
◦
( T−1

�
s=t

Φs

)
, ∀t ∈ [[0, T − 1]] . (17)

235

The following Theorem 14 is our main result on time-consistency in the
block-aggregation case.

2We set β ≥ 0, so that, when Ct ∈ F(Wt; R̄) is not integrable with respect to Pt, the
equality (14) still holds true.
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Theorem 14. Let (Φ,G) be a commuting and monotonous pair of sequences

of aggregators. Then the block dynamic uncertainty criterion
{
%Bt,T

}T
t=0

defined
by (17) is time-consistent.240

Proof. Since, for any 0 ≤ s < t ≤ T , Gt commutes with Φs, the block-
dynamic uncertainty criterion {%Bt,T }Tt=0, given by Definition 17, coincides with

{%Nt,T }Tt=0, given by Definition 8. Indeed, we prove that {%Bt,T }Tt=0 satisfies the
backward induction (11).

With the convention that
( T−1

�
r=T

Φr

)
is the identity mapping, we have %BT =245

GT , that is, (11a).

Then, let t be fixed. For any
{
As
}T
t
∈
[
F(W[0:s]; R̄)

]T
s=t

, we have:

%Bt

({
As
}T
s=t

)
=

s

�
r=t

Gr

[
T−1

�
r=t

Φr

{{
As
}T
s=t

}]
by (17),

= Gt

[
s

�
r=t+1

Gr
[
T−1

�
r=t

Φr

{{
As
}T
s=t

}]]
by (10),

= Gt

[
s

�
r=t+1

Gr
[
Φt

{
At,
( T−1

�
r=t+1

Φr

){
As
}T
s=t+1

}]]
by (5),

= Gt

[
Φt

{
At,

s

�
r=t+1

Gr
[( T−1

�
r=t+1

Φr

){
As
}T
s=t+1

]}]
by (16)

= Gt

[
Φt

(
At, %

B
t+1

({
As
}T
s=t+1

))]
by (17).

Thus, {%Bt,T }Tt=0 satisfies the backward induction (11).

Remark 15. In Definition 13, we build block-aggregators, first starting by ag-
gregating with respect to time, second with respect to uncertainty. If we aggregate
first with respect to uncertainty, second with respect to time, we obtain another250

dynamic uncertainty criterion. However, to show time-consistency would re-
quire monotonicity and another notion of commutation, less widespread than
Definition 11. See [16, Chapter 2] for more details on the subject.

In [16, Chapter 2], the construction of this §2 is extended to Markovian
aggregators. Roughly speaking, the time-step time and uncertainty aggregators255

are parametrized by a state, that follows a control dynamical system. All results
remain true if the commutation property holds true for every possible value of
the underlying state.

3. Building up Time-Consistent Intertemporal Optimization Prob-
lems260

In §2, we considered dynamic uncertainty criterion that value (the risk of)
a stream of costs. We now use such criteria to formulate intertemporal opti-
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mization problems under uncertainty. In §3.1, we lay out the basic material to
formulate intertemporal optimization problems. Then, we provide definition of
time-consistency in §3.2, and time-consistency results in §3.3.265

3.1. Ingredients for Optimal Control Problems

In §3.1.1, we recall the formalism of Control Theory, with dynamical system,
state, control and costs. In §3.1.2, we show how to produce adapted uncertainty
processes of costs, that will be the inputs to dynamic uncertainty criteria.

3.1.1. Dynamical System, State, Control and Costs270

Let T ≥ 2 be an integer. We define a control T -stage dynamical sys-

tem as follows. We consider sequences of sets of states (
{
Xt
}T

0
), controls

(
{
Ut
}T−1

0
), and uncertainties (

{
Wt

}T
0

). We also consider sequences of func-

tions representing dynamics (
{
ft
}T−1

0
, where ft : Xt × Ut ×Wt → Xt+1) con-

straints (
{
Ut
}T−1

0
, where Ut : Xt ⇒ Ut is a set-valued function), and costs275

(
{
Jt
}T−1

0
with Jt : Xt × Ut ×Wt 7→ R̄ being instantaneous cost functions) and

JT : XT ×WT → R̄ the final cost function.3

A policy π = (πt)
T−1
0 is a sequence of functions πt : Xt → Ut, and we denote

by Π the set of all policies. More generally, for all t ∈ [[0, T ]], we call (tail) policy
a sequence π = (πs)

T−1
t and we denote by Πt the set of all such policies.280

We restrict our search of optimal solutions to so-called admissible policies
belonging to a subset Πad ⊂ Π. An admissible policy π ∈ Πad always satisfies:

πt(x) ∈ Ut(x) , ∀x ∈ Xt , ∀t ∈ [[0, T − 1]] .

We can express in Πad other types of constraints, such as measurability or
integrability ones when we are in a stochastic setting. Naturally, we set Πad

t =
Πt ∩Πad.

Definition 16. For any time t ∈ [[0, T ]], state x ∈ Xt and policy π ∈ Π, the

flow {Xx,π
t,s }Ts=t of the dynamics

{
ft
}T−1

0
is defined by the forward induction:

∀w ∈W[0:T ] ,


Xx,π
t,t (w) = x ,

Xx,π
t,s+1(w) = fs

(
Xx,π
t,s (w), πs(X

x,π
t,s (w)), ws

)
, ∀s ∈ [[t, T ]] .

(18)

The expression Xx,π
t,s (w) is the state xs ∈ Xs reached at time s ∈ [[0, T ]], when285

starting at time t ∈ [[0, s]] from state x ∈ Xt and following the dynamics
{
fr
}T−1

0
with the policy π ∈ Π along the scenario w ∈W[0:T ].

3For notational consistency with the Jt for t = [[0, T − 1]], we will often write JT (x, u, w)
to mean JT (x,w).
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Remark 17. For 0 ≤ t ≤ s ≤ T , the flow Xx,π
t,s is a function that maps the set

W[0:T ] of scenarios into the state space Xs:

Xx,π
t,s : W[0:T ] → Xs . (19)

By (18),

• when t > 0, the expression Xx,π
t,s (w) depends only on the inner part w[t:s−1]

of the scenario w = w[0:T ], hence depends neither on the head w[0:t−1], nor290

on the tail w[s:T ],

• when t = 0, the expression Xx,π
0,s (w) in (18) depends only on the head w[0:s−1]

of the scenario w = w[0:T ], hence does not depend on the tail w[s:T ].

This is why we often consider that the flow Xx,π
t,s is a function that maps the set

W[t:s−1] of scenarios into the state space Xs:

Xx,π
t,s : W[t:s−1] → Xs , ∀s ∈ [[1, T ]] , ∀t ∈ [[0, s− 1]] . (20)

A state trajectory is a realization of the flow
{
Xx,π

0,s (w)
}T
s=0

for a given sce-
nario w ∈W[0:T ]. The flow property

Xx,π
t,s ≡ X

Xx,π
t,s′ ,π

s′,s , ∀t, s, s′ , t < s′ < s , ∀x ∈ Xt (21)

expresses the fact that we can stop anywhere along a state trajectory and start295

again.

3.1.2. Producing Streams of Costs

With a policy and a scenario, we obtain state and control trajectories that
we plug into the instantaneous cost functions Js to deliver streams of costs.

Definition 18. For a given policy π ∈ Π, and for all times t ∈ [[0, T ]] and
s ∈ [[t, T ]], we define the uncertain costs evaluated along the state trajectories
by:

Jx,πt,s : w ∈W[0:T ] 7−→ Js

(
Xx,π
t,s (w), π

(
Xx,π
t,s (w)

)
, ws

)
. (22)

300

Remark 19. By Remark 17, we consider that Jx,πt,s is a function that maps the

set W[t:s] of scenarios into R̄:

Jx,πt,s : W[t:s] → R̄ , ∀s ∈ [[0, T ]] , ∀t ∈ [[0, s]] . (23)

As a consequence, the stream
{
Jx,π0,s

}T
s=0

of costs is an adapted uncertainty pro-
cess (see Definition 1).
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By (22) and (18), we have, for all t ∈ [[0, T ]] and s ∈ [[t+ 1, T ]],

∀w[t:T ] ∈W[t:T ] ,


Jx,πt,t (wt) = Jt

(
x, πt(x), wt

)
,

Jx,πt,s (wt, {wr}Tt+1) = J
ft(x,πt(x),wt),π
t+1,s ({wr}Tt+1) .

(24)

We relate dynamic uncertainty criteria and optimization problems as follows.

Definition 20. Given a Markov dynamic uncertainty criterion
{{
%xtt,T

}
xt∈Xt

}T
t=0

,

we define a Markov optimization problem as the following sequence of families
of optimization problems, indexed by t ∈ [[0, T ]], and x ∈ Xt:

(Pt)(x) min
π∈Πad

%xt,T

({
Jx,πt,s

}T
s=t

)
. (25)

Each Problem (25) is indeed well defined by (1b), because
{
Jx,πt,s

}T
s=t

belongs305

to
[
F(W[t:s]; R̄)

]T
s=t

by (23).

3.2. Definition of Time-Consistency for Markov Optimization Problems

With the formalism of §2.1, we can now give a definition of time-consistency
for Markov optimization problems.

For the clarity of exposition, suppose for a moment that any optimization
problem (Pt)(x) in (25) has a unique solution, a policy that we denote πt,x =
{πst,x}T−1

s=t ∈ Πad
t to stress that it parametrically depends on t, x as (Pt)(x)

does. Consider 0 ≤ t < t ≤ T . Suppose that, starting from the state x at time
t, the flow (18) drives you to

x = X
x,π

t,t
(w) , π = πt,x (26)

at time t, along the scenario w ∈W[0:T ] and adopting the optimal policy πt,x ∈
Πad
t . Arrived at x, you solve (Pt)(x) and get the optimal policy πt,x = {πst,x}T−1

s=t
∈

Πad
t

. Time-consistency holds true when

πs
t,x = πs

t,x , ∀s ≥ t , (27)

that is, when the “new” optimal policy, obtained by solving (Pt)(x), coincides,310

after time t, with the “old” optimal policy, obtained by solving (Pt)(x). In
other words, you “stick to your plans” (here, a plan is a policy) and do not
reconsider your policy whenever you stop along an optimal path and optimize
ahead from this stop point.

To account for non-uniqueness of optimal policies, we propose the following315

formal definition.
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Definition 21. We say that the Markov optimization problem (25) of Defini-
tion 20 is time-consistent if, for any couple of times t ≤ t in [[0, T ]] and any
state x ∈ Xt, the following property holds: there exists a policy π] = {π]s}T−1

s=t ∈
Πad
t such that320

• {π]s}T−1
s=t is optimal for Problem Pt(x);

• the tail policy {π]s}T−1
s=t

is optimal for Problem Pt(x), where x ∈ Xt is any

state achieved by the flow X
x,π]

t,t
in (18).

We stress that the above definition of time-consistency of a sequence of
families of optimization problems is contingent on the state x and on the dy-325

namics
{
ft
}T−1

0
by the flow (18). In particular, we assume that, at each time

step, the control is taken only in function of the state: this defines the class of
solutions as policies that are feedbacks of the state x (such restriction is justified
in the Markovian case, for example).

3.3. Time-Consistency for Optimal Control Problems330

We now provide time-consistency results, differing whether in the nested-
aggregation or in the block-aggregation case.

3.3.1. Time-Consistency for Nested Criteria

We define the nested Markov optimization problem formally by

(PN
t )(x) V Nt (x) = min

π∈Πad
t

%Nt,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (28)

where the functions Jx,πt,s are defined by (22), and the nested uncertainty crite-

rion
{
%Nt,T

}T
t=0

by (11).335

The following Proposition 22 expresses sufficient conditions under which any
Problem (PN

t )(x), for any time t ∈ [[0, T−1]] and any state x ∈ Xt, can be solved
by means of a Dynamic Programming Equation (DPE).

Proposition 22. Let
(
Φ,G

)
be a monotonous pair of sequences of aggregators.

Assume that there exists an admissible policy π] ∈ Πad such that

π]t(x) ∈ arg min
u∈Ut(x)

Gt

[
Φt

{
Jt(x, u, ·),V Nt+1 ◦ ft(x, u, ·)

}]
,

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .

(29)

Then, π] is an optimal policy for any Problem (PN
t )(x), for all t ∈ [[0, T ]] and

for all x ∈ Xt, and the value functions Vt satisfy the DPE

V NT (x) = GT
[
JT (x, ·)

]
, ∀x ∈ XT , (30a)

V Nt (x) = min
u∈Ut(x)

Gt

[
Φt

{
Jt(x, u, ·), V Nt+1 ◦ ft(x, u, ·)

}]
, (30b)

∀t ∈ [[0, T − 1]] , ∀x ∈ Xt .
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Remark 23. It may be difficult to prove the existence of a measurable selection340

among the solutions of (29). Since it is not our intent to consider such issues,
we make the assumption that an admissible policy π] ∈ Πad exists, where the def-
inition of the set Πad is supposed to include all proper measurability conditions.

The proof of Proposition 22 is detailed in the appendix.345

The following Theorem 9 is our main result on time-consistency in the
nested-aggregation case.

Theorem 24. Let
(
Φ,G

)
be a monotonous pair of sequences of aggregators.

Then

1. the nested dynamic uncertainty criterion
{
%Nt,T

}T
t=0

defined by (11) is time-350

consistent;

2. the Markov optimization problem
{{

(PN
t )(x)

}
x∈Xt

}T
t=0

defined in (28) is

time-consistent, as soon as there exists an admissible policy π] ∈ Πad such
that (29) holds true.

3.3.2. Time-Consistency for Block-Aggregated Criteria355

We define the block Markov optimization problem formally by

(PB
t )(x) min

π∈Πad
t

%Bt,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (31)

where the functions Jx,πt,s are defined by (22), and the block uncertainty criterion{
%Bt,T

}T
t=0

by (17).
The following Theorem 25 is our main result on time-consistency in the

block-aggregation case. We do not give the proof since it directly follows from
Theorem 9 and Theorem 14.360

Theorem 25. Let
(
Φ,G

)
be a monotonous and commuting pair of sequences

of aggregators. Then

1. the block-aggregated dynamic uncertainty criterion
{
%Bt,T

}T
t=0

defined by (17)
is time-consistent;

2. the Markov optimization problem
{{

(PB
t )(x)

}
x∈Xt

}T
t=0

defined in (31) is365

time-consistent, as soon as there exists an admissible policy π] ∈ Πad such
that (29) holds true.

Remark 26. Theorem 24 and 25 are given for criteria obtained via time fol-
lowed by uncertainty aggregation. When uncertainty precedes time aggregation,
we can obtain similar results, at the price of a different definition of commuting370

aggregators [16, Chapter 2].

In [16, Chapter 2], the time consitency result is extended to Markovian
aggregators, made of one-step time and uncertainty aggregators parameterized
by the state. All results remain true if the commutation property holds true for
every possible value of the state.375
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4. Applications

We end by providing classes of dynamic uncertainty criteria and correspond-
ing intertemporal optimization problems that display time-consistency, as well
as examples of applications.

4.1. Coherent Risk Measures380

We introduce a class of dynamic uncertainty criteria, that are related to
coherent risk measures, and we show that they display time-consistency. We
thus extend, to more general one-step time-aggregators, results known for the
sum (see e.g. [17, 18]).

We denote by P(Wt) the set of probabilities over the set Wt endowed with
the σ-algebra Wt. Let P0 ⊂ P(W0), . . . , PT ⊂ P(WT ). If A and B are sets of
probabilities, then A⊗B is defined as

A⊗B = {PA ⊗ PB |PA ∈ A , PB ∈ B} . (32)

Let (αt)t∈[[0,T−1]] and (βt)t∈[[0,T−1]] be sequences of functions, each mapping R̄
into R, with the additional property that βt ≥ 0, for all t ∈ [[0, T − 1]]. We set,
for all t ∈ [[0, T ]],

%co
t,T

({
As
}T
t

)
= sup

Pt∈Pt
EPt

[
· · · sup

PT∈PT
EPT

[ T∑
s=t

(
αs
(
As
) s−1∏
r=t

βr
(
Ar
))]
· · ·
]
,

(33)

for any adapted uncertain process
{
At
}T

0
, with the convention that αT (cT ) =385

cT .

Proposition 27. Time-consistency holds true for

• the dynamic uncertainty criterion {%cot,T }Tt=0 given by (33),

• the Markov optimization problem

min
π∈Πad

%cot,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (34)

where Jx,πt,s (w) is defined by (22), as soon as there exists an admissible

policy π] ∈ Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π]t(x) ∈ arg min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt
(
Jt(x, u, ·)

)
+βt

(
Jt(x, u, ·)

)
Vt+1◦ft(x, u, ·)

]}
,

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT

EPT
[
JT (x, ·)

]
, (35a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt
(
Jt(x, u, ·)

)
(35b)

+ βt
(
Jt(x, u, ·)

)
Vt+1 ◦ ft(x, u, ·)

]}
.
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Proof. The setting is that of Theorem 14 and Proposition 22, where the one-
step time-aggregators are defined by

Φt
{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1 , ∀t ∈ [[0, T − 1]] , ∀

(
ct, ct+1

)
∈ R̄2 , (36a)

and the one-step uncertainty-aggregators are defined by

Gt
[
Ct
]

= sup
Pt∈Pt

EPt
[
Ct
]
, ∀t ∈ [[0, T − 1]] , ∀Ct ∈ F(Wt; R̄) . (36b)

The DPE (35) is the DPE (30), which holds true as soon as the assumptions of
Theorem 14 hold true (mainly that we have a commuting monotonous pair of390

operators).
First, we prove that, for any 0 ≤ t < s ≤ T , Gs commutes with Φt (this is

a special case of Proposition 30 shown in appendix). Indeed, letting ct be an
extended real number in R̄ and Cs a function in F(Ws; R̄), we have

Gs
[
Φt{ct, Cs}

]
= sup

Ps∈Ps

{
EPs
[
α(ct) + β(ct)Cs

]}
by (36b) and (36a),

= αt(ct) + βt(ct) sup
Ps∈Ps

{
EPs [Cs]

}
as βt ≥ 0 ,

= αt(ct) + βt(ct)Gs[Cs] by (36b),

= Φt{ct,Gs[Cs]} by (36a).

Second, we observe that Gt is non-decreasing (see Definition 5), and that ct+1 ∈
R̄ 7→ Φt

{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1 is non-decreasing, for any ct ∈ R̄.

The one-step uncertainty-aggregators Gt in (36b) correspond to a coherent
risk measure (see [19]). In fact, our result extends to aggregators of the form395

θ supP∈P EP+(1−θ) infQ∈Q EQ, with θ ∈ [0, 1], and even to more complex convex
combinations of infima and suprema as shown in Proposition 31 in Appendix
A.

Our result extends to a Markovian setting where one-step aggregators Gt
and Φt are indexed by the state x. More precisely, the coefficient αt and βt and400

the set of probability Pt can depend on the state x.
Our result differs from the work of A. Ruszczyński [17, Theorem 2] in two

ways. On the one hand, Ruszczyński provides arguments to show that there
exists an optimal Markovian policy among the set of adapted policies (that is,
having a policy taking as argument the whole past uncertainties would not give405

a better cost than a policy taking as argument the current value of the state).
We do not tackle this issue since we directly deal with policies as functions of the
state. Where we suppose that there exists an admissible policy π] ∈ Πad such
that (29) holds true, Ruszczyński gives conditions ensuring this property. On the
other hand, where Ruszczyński restricts to the sum to aggregate instantaneous410

costs, we consider more general one-step time-aggregators Φt. For instance, our
results applies to the product of costs.
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4.2. Convex Risk Measures

We introduce a class of dynamic uncertainty criteria, that are related to
convex risk measures (see [20]), and we show that they display time-consistency.415

We consider the same setting as in §4.1, with the restriction that βt ≡ 1 in (33)
and an additional data (Υt)t∈[[0,T ]].

Let P0 ⊂ P(W0), . . . , PT ⊂ P(WT ), and (Υt)t∈[[0,T ]] be sequence of func-
tions, each mapping P(Wt) into R̄. Let (αt)t∈[[0,T ]] be sequence of functions,
each mapping R̄ into R. We set, for all t ∈ [[0, T ]],

%cx
t,T (
{
As
}T
t

) = sup
Pt∈Pt

EPt

[
· · · sup

PT∈PT
EPT

[ T∑
s=t

(
αs(As)−Υs(Ps)

)]
· · ·
]
, (37)

for any adapted uncertain process
{
At
}T

0
, with the convention that αT (cT ) =

cT .

Proposition 28. Time-consistency holds true for420

• the dynamic uncertainty criterion {%cxt,T }Tt=0 given by (37),

• the Markov optimization problem

min
π∈Πad

%cxt,T (
{
Jx,πt,s

}T
s=t

) , ∀t ∈ [[0, T ]] , ∀x ∈ Xt , (38)

where Jx,πt,s (w) is defined by (22), as soon as there exists an admissible

policy π] ∈ Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π]t(x) ∈ arg min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt
(
Jt(x, u, ·)

)
+ Vt+1 ◦ ft(x, u, ·)

]
−Υt(Pt)

}
,

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT

EPT
[
JT (x, ·)

]
−ΥT (PT ) , (39a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt
(
Jt(x, u, ·)

)
+ Vt+1 ◦ ft(x, u, ·)

]
−Υt(Pt)

}
. (39b)

Proof. We follow the proof of Proposition 27, where the one-step time-aggregators
are defined by

Φt
{
ct, ct+1

}
= αt(ct) + ct+1 , ∀t ∈ [[0, T − 1]] , ∀

(
ct, ct+1

)
∈ R̄2 , (40a)

and the one-step uncertainty-aggregators are defined by

Gt
[
Ct
]

= sup
Pt∈Pt

EPt
[
Ct
]
−Υt(Pt) , ∀t ∈ [[0, T − 1]] , ∀Ct ∈ F(Wt; R̄) . (40b)

19



We show that, for any t ∈ [[0, T − 1]] and s ∈ [[t + 1, T ]], Gs commutes with Φt
(we could also apply Proposition 31). Letting ct be an extended real number in
R̄ and Cs a function in F(Ws; R̄), we have

Gs
[
Φt{ct, Cs}

]
= sup

Ps∈Ps

{
EPs
[
α(ct) + Cs

]
−Υs(Ps)

}
by (40a) and (40b)

= αt(ct) + sup
Ps∈Ps

{
EPs [Cs]−Υs(Ps)

}
= αt(ct) + Gs[Cs] by (40b)

= Φt{ct,Gs[Cs]} by (40a).

This ends the proof.

The one-step uncertainty-aggregators Gt in (40b) correspond to a convex
risk measure (see [20]). Moreover, Proposition 31 shows that we could also
consider any positive linear combination of suprema and infima of expectation.425

4.3. Worst-Case Risk Measures (Fear Operator)

A special case of coherent risk measures consists of the worst case scenario
operators, also called “fear operators”. For this subclass of coherent risk mea-
sures, we show that time-consistency holds for a larger class of time-aggregators
than the ones above.430

For any t ∈ [[0, T−1]], let W̃t be a non empty subset of Wt, and let Φt : R̄2 →
R̄ be a function which is continuous and non-decreasing in its second variable.
We set, for all t ∈ [[0, T ]],

%wc
t,T

({
As
}T
t

)
= sup{

ws

}T
t
∈W̃t×···×W̃T

Φt

{
At(
{
ws
}T
t

),Φt+1

{
· · · ,

ΦT−1

{
AT−1(wT−1, wT ), AT (wT )

}}}
,

(41)

for any adapted uncertain process
{
At
}T

0
.

Note that %wc
t,T is the fear operator on the Cartesian product W̃t× · · ·× W̃T .

Proposition 29. Time-consistency holds true for

• the dynamic uncertainty criterion {%wc
t,T }Tt=0 given by (41),

• the Markov optimization problem

min
π∈Πad

%wc
t,T (
{
Jx,πt,s

}T
s=t

) , (42)

where Jx,πt,s (w) is defined by (22), as soon as there exists an admissible

policy π] ∈ Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π]t(x) ∈ arg min
u∈Ut(x)

sup
wt∈W̃t

Φt

{
Jt
(
x, u, wt

)
, Vt+1 ◦ ft

(
x, u, wt

)}
,
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where the value functions are given by the following DPE

VT (x) = sup
wT∈W̃T

JT (x,wT ) , (43a)

Vt(x) = min
u∈Ut(x)

sup
wt∈W̃t

Φt

{
Jt
(
x, u, wt

)
, Vt+1 ◦ ft

(
x, u, wt

)}
. (43b)

Proof. We follow the proof of Proposition 27, where

Gt
[
Ct
]

= sup
wt∈W̃t

Ct(wt) , ∀t ∈ [[0, T − 1]] , ∀Ct ∈ F(Wt; R̄) . (44)

We prove that, for any t ∈ [[0, T − 1]] and s ∈ [[t+ 1, T ]], Gs commutes with Φt.
Letting ct be an extended real number in R̄ and Cs a function in F(Ws; R̄), we
have

Gs
[
Φt{ct, Cs}

]
= sup
ws∈W̃s

[
Φt
{
ct, Cs(ws)

}]
by (44),

= Φt

{
ct, sup

w∈W̃s

[
Cs(ws)

]}
by continuity of Φt{ct, ·} ,

= Φt
{
ct,Gs[Cs]

}
by (44).

This ends the proof.435

4.4. Examples

State-dependent discounting and beliefs

We consider the following long term investment problem. Let Jt
(
xt, ut, wt

)
be the cost incurred at time t in the state xt, under decision ut and uncertainty
wt. The state xt includes economic indicators, one of them affecting the discount
factor e−rt(xt). Hence, the time-aggregation of the cost process is given by

T−1∑
t=0

e−rt(It)Jt
(
Xt,Ut,Wt

)
. (45)

We suppose that the one-step uncertainty aggregators are coherent risk measures

Gxtt
[
·
]

= sup
Q∈P(xt)

EQ
[
·
]
, (46)

where the probability set P(xt) of beliefs is allowed to depend on the economic
indicators in xt.

Such an optimization problem, where both discounting and beliefs depend on440

the state, falls into the framework developped in §4.1 in its Markovian version.
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Non-additive time preferences

In environmental economics literature, when time spans across generations
(like with climate change issues), scholars discuss the use of additive time pref-
erences. Indeed, additivity implies possible compensations between distant gen-
erations, and discounting can lead to myopic decisions [21, 22]. The so-called
Rawls or maximin criterion [23]

min
{
J0

(
x0, u0, w0

)
, · · · , JT−1

(
xT−1, uT−1, wT−1

)}
(47)

is a possible alternative, which can be obtained by aggregation of one-step time-
aggregators Φt

{
ct, ct+1

}
= max

{
ct, ct+1

}
. Now, when the uncertainty aggre-

gator is the worst-case operator over the Cartesian product W̃t × · · · × W̃T−1,445

the resulting optimization problem falls into the framework developped in §4.3.

Risk-sensitive optimization

We consider a family of risk-sensitive optimization problems

min log

(
E
[

exp
( T−1∑
t=t0

Jt
(
Xt,Ut,Wt

))])
(48)

Xt+1 = ft
(
Xt,Ut,Wt

)
, Xt0

= x0

Ut ∈ Ut(Xt) .

This family is time-consistent, after an equivalent reformulation as follows.
First, as the function log is increasing, it is equivalent to minimize its argu-

ment. Second, denoting J̃t
(
Xt,Ut,Wt

)
= exp

(
Jt
(
Xt,Ut,Wt

))
, we arrive at

the following optimization problem

min E
[ T−1∏
t=t0

(
J̃t
(
Xt,Ut,Wt

))]
Xt+1 = ft

(
Xt,Ut,Wt

)
, Xt0

= x0

Ut ∈ Ut(Xt) .

Hence, by changing costs, we are falling into the setting of Proposition 27, and we
can write a time-consistent Markov decision problem equivalent to Problem 48.

5. Conclusion450

We have provided basic ingredients — one-step time and uncertainty ag-
gregators — to make up dynamic uncertainty criteria and corresponding in-
tertemporal optimization problems under uncertainty. Nested criteria carry
the time-consistency property in the very manner they are built, only relying
on monotonicity property. Block-aggregated are more natural candidates than455
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nested ones as dynamic uncertainty criteria. However, we prove that they dis-
play time-consistency at the additional price of commutation between one-step
time and uncertainty aggregators.

Thus equipped, we have tools to cook up time-consistent dynamic uncer-
tainty criteria and intertemporal optimization problems under uncertainty. More-460

over, our framework extends to the Markovian setting, where the one-step time
and uncertainty aggregators are parametrized by the state, that follows a control
dynamical system. This is how our results cover a large class of applications.
However, our results also point to the fact that, in practice, time-consistency
is mostly related to linearity and expectation (see [18] for some comments on465

the subject). Other ways to obtain time-consistent formulation consist in using
either a worst case approach, or a nested formulation from the beginning.

We think that an interesting question for further research is the following.
Given a dynamic risk measure or an intertemporal optimization problem under
uncertainty, can we identify a state or a new state such that time-consistency470

holds true with this new information setting? A first set of answers can be found
in [24]. We think that our analysis provides insight to look after the properties
expected from such a state.

Appendix A. Constructing new commuting aggregators

We show that we can construct new commuting one-step uncertainty aggre-475

gators either as linear combination of suprema or infima of one-step commuting
aggregators.

Proposition 30. Let Φ be a one-step time-aggregator and (Git)i∈I be a family
of one-step uncertainty aggregators. Suppose that Git commutes with Φ, for all
i ∈ I, and that480

• either, for all c ∈ R̄, Φ
{
c, ·
}

is continuous and non-decreasing;

• or, for all Ct ∈ F(Wt, R̄), supi∈I Git[Ct] is attained (always true for I
finite).

Then, the one-step uncertainty-aggregator supi∈I Git commutes with Φ, and so
does infi∈I Git, provided infi∈I Git never takes the value −∞.485

Proof. We consider the supremum case, the infimum being similar. For any
(c, Ct) ∈ R̄×F(Wt, R̄), we have

Ḡt
[
Φ
{
c, Ct

}]
= sup

i∈I
Git
[
Φ
{
c, Ct

}]
by definition of Ḡt ,

= sup
i∈I

Φ
{
c,Git

[
Ct
]}

by commutation of Gi and Φ,

= Φ
{
c, sup
i∈I

Git
[
Ct
]}

.
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The last equality being obtained either because the supremum is attained or by
continuity.

The following Proposition allows to build uncertainty aggregators commut-
ing with affine or linear (in the second variable) time-aggregator.

Proposition 31. Let Φ be a one-step time-aggregator and (Git)i∈I be a fam-
ily of one-step uncertainty aggregators. Suppose that for all i ∈ I, the time-
step uncertainty aggregator Gi commutes with the time-step time aggregator
Φ. For j ∈ [[1, n]], let Ij ⊂ I, and Ij ⊂ I, be families of subsets of I, and

({θj}j∈[[1,N ]], {θj}j∈[[1,N ]]) be non-negative scalars. We define

Ḡ =

n∑
j=1

θj inf
i∈Ij

Git +

n∑
j=1

θj sup
i∈Ij

Git (A.1)

• If Φ is affine in its second variable, that is, if

Φ
{
c, d
}

= α(c) + β(c)d , (A.2)

and if ({θj}j∈[[1,N ]], {θj}j∈[[1,N ]]) sum to one, then the convex combina-490

tion Ḡ of infima and suprema of subfamilies of {Git}i∈I commutes with Φ,
provided infi∈Ij G

i
t never takes the value −∞.

• If Φ is linear in its second variable, that is, if

Φ
{
c, d
}

= β(c)d , (A.3)

then the linear combination Ḡ of infima and suprema of subfamilies of
{Git}i∈I commutes with Φ.

Proof. Assume that Φ is given by (A.2), and define

Ḡ =

n∑
j=1

θj inf
i∈Ij

Git +

n∑
j=1

θj sup
i∈Ij

Git

Then, we have

Ḡ
[
Φ
{
c,Ct

}]
=
( n∑
j=1

θj inf
i∈Ij

Git +

n∑
j=1

θj sup
i∈Ij

Git
)[

Φ
{
c,Ct

}]
=

n∑
j=1

θj inf
i∈Ij

Git
[
α(c) + β(c)Ct

]
+

n∑
j=1

θj sup
i∈Ij

Git
[
α(c) + β(c)Ct

]
=

n∑
j=1

θj

(
α(c) + β(c) inf

i∈Ij
Git
[
Ct

])
+

n∑
j=1

θj

(
α(c) + β(c) sup

i∈Ij
Git
[
Ct

])
= α(c) + β(c)

n∑
j=1

θj inf
i∈Ij

Git
[
Ct

]
+

n∑
j=1

θj sup
i∈Ij

Git
[
Ct

]
= Φ

{
c, Ḡ

[
Ct

]}
,

where the last equality is obtained either because the coefficient θj sum to one495

(affine case) or because α is equal to zero (linear case).
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Appendix B. Technical Proofs

Appendix B.1. Proof of Lemma 12

Proof. We prove by induction that

( T

�
s=t

Gs
)[

Φr
{
c,Dt

}]
= Φr

{
c,
( T

�
s=t

Gs
)[
Dt

]}
, ∀ 0 ≤ r < t ≤ T , (B.1)

for any extended scalar c ∈ R̄ and any function Dt ∈ F
(
W[t:T ]; R̄

)
. For t ∈

[[1, T ]], let (Ht) be the following assertion

(Ht) : ∀r ∈ [[0, t− 1]] , ∀c ∈ R̄ , ∀Dt ∈ F
(
W[t:T ]; R̄

)
,( T

�
s=t

Gs
)[

Φr
{
c,Dt

}]
= Φr

{
c,
( T

�
s=t

Gs
)[
Dt

]}
.

(B.2)

The assertion (HT ) coincides with the property that, for any 0 ≤ r < T , GT
commutes with Φr (apply (14) where t = T , Φ = Φr), and hence holds true.500

Now, suppose that (Ht+1) holds true. Let r < t, c ∈ R̄ andDt ∈ F
(
W[t:T ]; R̄

)
.

We have( T

�
s=t

Gs
)[

Φr
{
c,Dt

}]
,

= Gt

[
wt 7→

( T

�
t+1

Gs
)[
w[t+1:T ] 7→ Φr

{
c,Dt

(
wt, w[t+1:T ]

)}]]
,

= Gt

[
wt 7→ Φr

{
c,
( T

�
s=t+1

Gs
)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]}]
by (Ht+1) since r < t < t+ 1,

and where, for all wt, Dt+1 : w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)
∈ F

(
W[t:T ]; R̄

)
,

= Φr

{
c,Gt

[
wt 7→

( T

�
s=t+1

Gs
)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]]}
,

by commutation property (14) of Gt with Φ = Φr, since 0 ≤ r < t ≤ T ,

and where Ct : wt 7→
( T

�
s=t+1

Gs
)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]
∈ F

(
Wt; R̄

)
,

= Φr

{
c,
( T

�
s=t

Gs
)[
Dt

]}
This ends the induction, hence the proof of (B.1) which leads to (16).

Appendix B.2. Proof of Proposition 22

Proof. In the proof, we denote by Vt the sequence of function given by (30).
Let π ∈ Πad be a policy. For any t ∈ [[0, T ]], we define V πt (x) as the intertemporal
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cost from time t to time T when following policy π starting from state x:

V πt (x) = %Nt,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]] , ∀x ∈ Xt . (B.3)

This expression is well defined because Jx,πt,s : W[t:s] → R̄, for s ∈ [[t, T ]] by (23).

First, we show that the functions {V πt }Tt=0 satisfy a backward equation “à
la Bellman”:

V πt (x) = Gt
[
Φt

{
Jt(x, πt(x), ·), V πt+1◦ft(x, πt(x), ·)

}]
, ∀t ∈ [[0, T−1]] , ∀x ∈ Xt .

(B.4)
Indeed, we have,

V πT (x) = %NT,T

(
Jx,πT,T

)
by the definition (B.3) of V πT (x),

= %NT,T

(
JT (x, ·)

)
by (22) that defines Jx,πT,T ,

= GT
[
JT (x, ·)

]
by the definition (11a) of %NT ,

= GT
[
JT (x, ·)

]
by Definition of GT .

We also have, for t ∈ [[0, T − 1]],

V πt (x) = %Nt,T

({
Jx,πt,s

}T
s=t

)
by (B.3)

= Gt
[
Φt

{
Jx,πt,t , %

N
t+1,T

({
Jx,πt,s

}T
s=t+1

)}]
by (11b)

= Gt
[
Φt

{
Jx,πt,t , %

N
t+1,T

({
J
ft(x,πt(x),·),π
t+1,s

}T
s=t+1

)}]
by (24)

= Gt
[
Φt

{
Jx,πt,t , V

π
t+1 ◦ ft(x, πt(x), ·)

}]
by (B.3)

= Gt
[
Φt

{
Jt(x, πt(x), ·), V πt+1 ◦ ft(x, πt(x), ·)

}]
by (24)

= Gt
[
Φt

{
Jt(x, πt(x), ·), V πt+1 ◦ ft(x, πt(x), ·)

}]
.

Second, we show that Vt(x), as defined in (30) is lower than the value of the
optimization problem PN

t (x) in (28). For this purpose, we denote by (Ht) the
following assertion

(Ht) : ∀x ∈ Xt , ∀π ∈ Πad, Vt(x) ≤ V πt (x) .

By definition of V πT (x) in (B.3) and of VT (x) in (30a), assertion (HT ) is true.505

Now, assume that (Ht+1) holds true. Let x be an element of Xt. Then, by
definition of Vt(x) in (30b), we obtain

Vt(x) ≤ inf
π∈Πad

Gt
[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]
, (B.5)
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since, for all π ∈ Πad we have πt(x) ∈ Ut(x). By (Ht+1) we have, for any
π ∈ Πad,

Vt+1 ◦ ft
(
x, πt(x), ·

)
≤ V πt+1 ◦ ft

(
x, πt(x), ·

)
.

From monotonicity of Φt and monotonicity of Gt, we deduce:

Gt
[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]
≤ Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, V πt+1 ◦ ft

(
x, πt(x), ·

)}]
.

(B.6)

We obtain:

Vt(x) ≤ inf
π∈Πad

Gt
[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]
by (B.5),

≤ inf
π∈Πad

Gt
[
Φt

{
Jt
(
x, πt(x), ·

)
, V πt ◦ ft+1

(
x, πt(x), ·

)}]
by (B.6),

= inf
π∈Πad

V πt (x) by the definition (B.3) of V πt (x).

Hence, assertion (Ht) holds true.

Third, we show that the lower bound Vt(x) for the value of the optimization
problem PN

t (x) is achieved for the policy π] in (29). For this purpose, we
consider the following assertion

(H ′t) : ∀x ∈ Xt, V π
]

t (x) = Vt(x) .

By definition of V π
]

T (x) in (B.3) and of VT (x) in (30a), (H ′T ) holds true. For
t ∈ [[0, T − 1]], assume that (H ′t+1) holds true. Let x be in Xt. We have

Vt(x) = Gt
[
Φt

{
Jt
(
x, π]t(x), ·

)
, Vt+1 ◦ ft(x, π]t(x), ·)

}]
by definition of π] in (29),

= Gt
[
Φt

{
Jt
(
x, π]t(x), ·

)
, V π

]

t+1 ◦ ft(x, π
]
t(x), ·)

}]
by (H ′t+1)

= V π
]

t (x) by (B.3).

Hence (H ′t) holds true, and the proof is complete by induction.
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