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Most engineering materials are highly heterogeneous at various length-scales. As a consequence it is highly impractical to build a model of a structure which would encompass all heterogeneities. Fortunately, when length-scales are separated, homogenization theory can help account in a simplified way for the heterogeneity of the material making-up the structure.

A typical multiscale simulation based on homogenization theory is a two-step process. In a first step, the so-called corrector problem formulated over a representative volume element (with adequate boundary conditions) is solved. The macroscopic (homogenized) properties of the heterogeneous material are then retrieved from the solution to this corrector problem. In a second step, a full model of the structure is built, in which the heterogeneous materials are given their homogenized properties as per the previous step.

The present paper focuses on the numerical solution to the corrector problem (step 1). For complex microstructures with convoluted interfaces, it might become very difficult to build a conforming mesh, which rules out standard finite element simulations. In such complex situations, numerical methods formulated over regular grids might be preferable.

In the method initially proposed by Moulinec and Suquet (1994, 1998), the corrector problem is first reformulated as an integral equation (also known as the Lippmann-Schwinger equation), which is then discretized over a regular grid. The popularity of this method comes from the use of the fast Fourier transform (FFT) to compute efficiently the convolution product appearing in the Lippmann-Schwinger equation with periodic boundary conditions. Since the publication of the original paper, many variants of the so-called basic scheme have been introduced.

 and a new formulation as a Galerkin discretization of the Lippmann-Schwinger equation was proposed. This approach leads to a unified framework for all variants of the basic scheme. In particular, the concept of discrete Green operator which stem from asymptotically consistent Galerkin discretizations of the Lippmann-Schwinger equation was introduced.

This paper briefly reviews FFT-based homogenization methods, with a focus on the Galerkin point of view.

Periodic homogenization and the corrector problem

This section briefly recalls the fundamentals of homogenization theory. The reader is referred to standard textbooks for more details (see e.g. [START_REF] Milton | The Theory of Composites[END_REF][START_REF] Dormieux | Microporomechanics. Engineering & Materials Science[END_REF][START_REF] Auriault | Homogenization of Coupled Phenomena in Heterogenous Media[END_REF]. The mathematical theory of homogenization is also well established (see e.g. Bensoussan et al., 1978;[START_REF] Cioranescu | An Introduction to Homogenization[END_REF][START_REF] Jikov | Homogenization of Differential Operators and Integral Functionals[END_REF].

In the present paper, we consider a linearly elastic structure S subjected to body forces b(x) (x ∈ S). The elastic equilibrium of this body is defined through the following partial differential equation over S ∇ • (C :

∇ s u) + b = 0, (1) 
complemented with the following boundary conditons on ∂S

u |∂S = 0 (2)
where u (resp. ε, σ, C) denotes the local displacement (resp. strain, stress and stiffness). It should be noted that Eq. ( 2) may be replaced with any other boundary conditions (provided that the resulting problem is well-posed).

Because of the heterogeneity of the constitutive material (C may vary over the structure S), solving Eqs. ( 1) and ( 2) can become a daunting task. Fortunately, in many engineering use cases, separation of scales prevails. In other words, the typical size of the heterogeneities is several orders of magnitude smaller than the typical size L of the structure S:

L. In such situations, homogenization theory can be invoked, and Eq. ( 1) may be replaced with the following problem of elastic equilibrium of a homogeneous body

∇ • C eff : ∇ s u + b = 0, (3) 
complemented with the same boundary conditions (2). In Eq. ( 3), the constant tensor C eff denotes the homogenized stiffness, to be defined below.

Although the results presented below can be extended to random homogenization, it is convenient to assume that the microstructure is periodic. In other words, the constitutive material of the structure S is made of the repetition of a prismatic unit cell U. For the sake of simplicity, the present paper will be restricted to cubic unit cells, U = (0, ) d , where is the size of the unit-cell and d is the spatial dimension. The homogenized stiffness is then defined as follows. Let u per be the unique (up to an additive constant) periodic solution to the corrector problem (formulated over U)

∇ • (C : (E + ∇ s u per )) = 0, (4) 
from u per , we can define the total strain ε and stress σ

ε = E + ∇ s u per , σ = C : ε, (5) 
and it is readily verified that ε = E, which is called the macroscopic strain1 .

Because of the linearity of Eq. ( 4), u per depends linearly on the sole loading parameter, namely the macroscopic strain E. This is also true of the macroscopic stress σ, and the homogenized stiffness C eff is defined as the fourth-order tensor which maps the macroscopic strain to the macroscopic stress

σ = C : ε := C eff : E = C eff : ε. (6)
Eq. ( 6) above shows how the homogenized stiffness can be retrieved from the solution to the corrector problem defined by Eq. ( 4). This homogenized stiffness can then be substituted in Eq. (3) to compute the mechanical fields in the whole structure S.

Solving Eq. ( 3) is fairly standard structural analysis, and the remainder of this paper is devoted to solving Eq. ( 4) numerically. At this point, it should be recalled that this problem is formulated on the unit cell U, which is assumed to be much smaller than the structure S. However, C may vary within U, and approximating the solution to Eq. ( 4) through e.g. finite elements may remain difficult (see for example the microstructure pictured in Fig. 1, left). In such situations, the numerical technique presented below might be attractive.

The remainder of this paper is organized as follows. In Sec. 2, it is shown that Eq. ( 4) can be transformed into an integral equation known as the Lippmann-Schwinger equation. Then, in Sec. 3, this equation is discretized through a Galerkin approach. Sec. 4 shows that the resulting linear system can be solved efficiently in Fourier space. Finally, some examples are provided in Sec. 5.

The Lippmann-Schwinger equation

In the present section, Eq. ( 4) is transformed into an integral equation. This requires the introduction of the Green operator for strains, which is defined as follows. We consider the following auxiliary problem of the equilibrium over the unit cell U of a prestressed, homogeneous, linearly elastic, reference material with stiffness

C 0 ∇ • (C 0 : ∇ s u per + ) = 0, (7) 
where denotes the prestress (symmetric, second-order tensor field) and u per is the unknown periodic displacement induced by . It can readily be shown that the derived strain field results from the convolution of with a kernel Γ 0

∇ s x u per = - y∈U Γ 0 (x -y) : (y)dV y = -(Γ 0 * )(x), ( 8 
)
where Γ 0 is the Green operator for strains. Taking advantage of the periodic boundary conditions, both and Γ 0 * can be developped in Fourier series

(x) = b∈Z d ˆ (b)ϕ b (x) (9) (Γ 0 * )(x) = b∈Z d Γ0 (b) : ˆ (b)ϕ b (x) (10)
where the basis functions ϕ b and Fourier modes ˆ (b) are given by

ϕ b (x) = exp 2iπ (b 1 x 1 + • • • b d x d ) (11) ˆ (b) = 1 |U| x∈U (x)ϕ -b (x)dV x (12)
For isotropic reference materials, closed-form expressions of the Fourier modes Γ0 (b) of the Green operator for strains are known (see Appendix A).

We are now ready to go back to the corrector problem. Introducing an arbitrary homogeneous reference material C 0 and the polarization τ defined by Eq. (13b) below, Eq. ( 4) is equivalent to finding a U-periodic displacement field u per such that

∇ • (C 0 : ∇ s u per + C 0 : E + τ ) = 0, (13a) τ = (C -C 0 ) : (E + ∇ s u per ) . ( 13b 
)
From the definition of the Green operator for strains, it is readily seen that Eq. (13a) leads to

∇ s u per = -Γ 0 * τ . ( 14 
)
Eliminating ∇ s u per with the help of Eq. ( 13b), we finally get the following integral equation, where the main unknown is the polarization τ

(C -C 0 ) -1 : τ + Γ 0 * τ = E, (15) 
which is known as the Lippmann-Schwinger equation [START_REF] Korringa | Theory of elastic constants of heterogeneous media[END_REF][START_REF] Zeller | constants of polycrystals[END_REF][START_REF] Kröner | On the physics and mathematics of self-stresses[END_REF][START_REF] Nemat-Nasser | On composites with periodic structure[END_REF]. Sec. 3 below addresses the numerical approximation of the solution to this equation.

Galerkin discretization of the Lippmann-Schwinger equation

The Lippmann-Schwinger equation was first discretized on a cartesian grid by Moulinec andSuquet (1994, 1998), using point collocation and truncation of Fourier series. In this seminal work, the authors noticed that in Eq. ( 15), each term can be computed efficiently: indeed, the first term is local in the real space (it does not couple the polarizations of two different cells), while the second term is local in Fourier space [it does not couple the Fourier modes of the polarization, see Eq. ( 10)]. Accordingly, Moulinec and Suquet proposed an iterative scheme which takes full advantage of the particular structure of Eq. ( 15): each iteration takes place alternatingly in the real and the Fourier spaces. The efficiency of the resulting scheme comes from the fact that discrete Fourier transforms are evaluated by means of the Fast Fourier Transform algorithm.

Since it was first introduced, many improvements of this scheme have been proposed (see e.g. [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF][START_REF] Michel | A computational scheme for linear and non-linear composites with arbitrary phase contrast[END_REF][START_REF] Brisard | FFT-based methods for the mechanics of composites: A general variational framework[END_REF]Monchiet and Bonnet, 2012, among others). It has been applied in various practical situations, including complex, non-linear behaviors [START_REF] Michel | A computational scheme for linear and non-linear composites with arbitrary phase contrast[END_REF][START_REF] Šmilauer | Identification of viscoelastic C-S-H behavior in mature cement paste by fft-based homogenization method[END_REF][START_REF] Lebensohn | Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals[END_REF][START_REF] Lebensohn | An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials[END_REF][START_REF] Monchiet | Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme[END_REF].

The mathematical analysis of such schemes was initiated by [START_REF] Brisard | Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites[END_REF], who reformulated them as asymptotically consistent Galerkin approximations of the variational form of the Lippmann-Schwinger equation. This led to a proof of convergence as the cell-size goes to zero, whereas all previous studies were dedicated to the convergence of the iterative scheme itself (at constant cell-size). It should be noted that an alternative Galerkin approach (using trigonometric collocation) was also proposed by [START_REF] Vondřejc | An FFT-based galerkin method for homogenization of periodic media[END_REF]. Error estimates were also recently obtained [START_REF] Schneider | Convergence of fft-based homogenization for strongly heterogeneous media[END_REF][START_REF] Brisard | Periodic homogenization using the Lippmann-Schwinger formalism[END_REF].

The Galerkin approximation of the Lippmann-Schwinger equation by cell-wise constant polarization fields is based on the variational form of Eq. ( 15) find τ ∈ V such that, for all ∈ V : a(τ , ) = E : ,

where the space of polarizations V is defined in [START_REF] Brisard | Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites[END_REF] and the bilinear form a reads

a(τ , ) = : (C -C 0 ) -1 : τ + : (Γ 0 * τ ). ( 17 
)
A Galerkin discretization of Eq. ( 15) is then obtained by solving Eq. ( 17) on a finite dimension subspace of V. In the present case, we consider a tessellation of the unit cell U by a cartesian grid. Let h denote the grid spacing, so that the number of cells in each direction is N = /h (the total number of cells is N d ). Cells are indexed by greek tuples

β = (β 1 , . . . , β d ) ∈ {0, . . . , N -1} d , such that cell β is C h β = (β 1 h, (β 1 + 1)h) × • • • × (β d h, (β d + 1)h) ( 18 
)
We then consider as discretization space V h ⊂ V the space of cell-wise constant polarization fields; τ h β denotes the constant value of τ h ∈ V h over the cell C h β , and τ h b their discrete Fourier transform

τ h b = N -1 b 1 =0 • • • N -1 b d =0 exp - 2iπ N (β 1 b 1 + • • • + β d b d ) τ h β , (19) 
which can be computed efficiently by means of the Fast Fourier Transform.

The Galerkin approximation of the solution to problem ( 16) is then defined by the following variational problem

find τ h ∈ V h such that, for all h ∈ V h : a(τ h , h ) = E : h . ( 20 
)
Since V h is a finite-dimensional subspace of V, the above equation reduces to a standard linear system which is identified from the evaluation of a(τ h , h ) for all τ h , h ∈ V h . It was shown that [START_REF] Brisard | Periodic homogenization using the Lippmann-Schwinger formalism[END_REF][START_REF] Brisard | FFT-based methods for the mechanics of composites: A general variational framework[END_REF] this system reads

N -1 β 1 =0 • • • N -1 β d =0 C h β -C 0 -1 : τ h β + N -1 b 1 =0 • • • N -1 b d =0 DFT -1 β Γh,c 0,b : τ h b = E, (21) 
for all β ∈ {0, • • • , N } d . In Eq. ( 21), C h β denotes the equivalent stiffness of cell β and Γh,c

0,b
is the so-called consistent, discrete Green operator [START_REF] Brisard | Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites[END_REF]. Both are defined more precisely in Appendix B [see Eqs. (B.1) and (B.2)].

To close this section, it should be noted that the present, variational approach can lead to rigorous bounds on the homogenized stiffness as was illustrated by [START_REF] Brisard | FFT-based methods for the mechanics of composites: A general variational framework[END_REF]. This results from the application of the principle of [START_REF] Hashin | On some variational principles in anisotropic and nonhomogeneous elasticity[END_REF].

Implementation of the method

One ot the assets of the method is its ease of implementation: a basic, non-optimized version would amount to few tens lines of code only.

Eq. ( 21) is solved by means of iterative linear solvers, which require an efficient implementation of the matrix-vector product [START_REF] Barrett | Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods[END_REF]. Of course, a matrix-free approach is adopted. This means that the matrix of the system ( 21) is neither stored, nor even computed. Rather, the matrix-vector product is computed at each iteration by means of Eq. ( 21).

This equation clearly shows that the linear operator of the system to be solved is the sum of two terms: the first term is block-diagonal, while the second term is block-circulant. Matrix-vector products are therefore evaluated as the sum of two terms: the first term is computed in the real space, while the second term is computed in the Fourier space. Therefore, the cost of one matrix-vector product is dominated by the cost of two discrete Fourier transforms (one forward, one inverse) per component of τ h .

To close this section, it should be noted that in practice, evaluating the consistent discrete Green operator Γh,c 0,b is prohibitively costly. It is also unnecessary, since it is acceptable to replace it with an asymptotically consistent approximation, by e.g. truncation (Moulinec andSuquet, 1994, 1998), filtering [START_REF] Brisard | Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites[END_REF], finite differences [START_REF] Willot | Fourier-based schemes with modified green operator for computing the electrical response of heterogeneous media with accurate local fields[END_REF][START_REF] Willot | Fourier-based schemes for computing the mechanical response of composites with accurate local fields[END_REF] or finite elements [START_REF] Yvonnet | A fast method for solving microstructural problems defined by digital images: a space Lippmann-Schwinger scheme[END_REF] -see also [START_REF] Brisard | Periodic homogenization using the Lippmann-Schwinger formalism[END_REF] for a brief review of the merits of each approximation.

Example of application

The application presented in this section illustrates the ability of the method to capture the finest details of the mechanical fields which develop in complex microstructures. Computations were carried out with a home-made code. Fast Fourier transforms were computed by means of the FFTW2 library, while the PETSc3 toolkit provided scalable iterative linear solvers.

The microstructure depicted on Fig. 1 (left) is a dense assembly of 10 000 oblate inclusions (a/c = 8). The total volume fraction of inclusions is 60 %. The macroscopic strain is purely deviatoric, E = e 1 ⊗ e 2 + e 2 ⊗ e 1 and the elastic properties of the matrix (m) and inclusions (i) were chosen as follows Matrix µ m = 1, ν m = 0.3, Inclusions µ i = 100, ν i = 0.2.

The Lippmann-Schwinger equation ( 15) was discretized on a 1024 3 grid (6.44 10 9 unknowns), and the simulation was run on 16 cores of an Intel Xeon E5-2643 (3.30 GHz, 762 Go) for about 24 h. Fig. 1 (right) shows a section through the 3D map of the (1, 2) component of the polarization field τ . Due to the closeness of the inclusions and the high elastic contrast between inclusions and matrix, the mechanical fields exhibit high fluctuations, which are well captured by the method.

Conclusion

This paper provides a brief overview of FFT-based numerical homogenization techniques. It shows that adopting a Galerkin point of view provides a sound ground for the mathematical 2013), and a 2D cut through the 3D map of τ 12 (right), for a macroscopic strain E = e 1 ⊗e 2 +e 2 ⊗e 1 . On 1024 3 grids, the method reveals fine details of the mechanical fields.

analysis of such schemes, as well as a unified framework for all the variants of the basic scheme.
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 1 Figure.1. The microstructure to be homogenized (left, reproduced from[START_REF] Brisard | Small-angle scattering of dense, polydisperse granular porous media: Computation free of size effects[END_REF], and a 2D cut through the 3D map of τ 12 (right), for a macroscopic strain E = e 1 ⊗e 2 +e 2 ⊗e 1 . On 1024 3 grids, the method reveals fine details of the mechanical fields.

In the present paper, overlined quantities denote volume averages over the unit cellε = 1 |U| x∈U ε(x)dV x .
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Appendix A. The Green operator for strains

Closed-form expressions of the Fourier modes of the Green operator for strains can readily be derived (see e.g. [START_REF] Suquet | A simplified method for the prediction of homogenized elastic properties of composites with a periodic structure[END_REF][START_REF] Nemat-Nasser | Bounds and estimates of overall moduli of composites with periodic microstructure[END_REF] when the reference material C 0 is isotropic

where µ 0 (resp. ν 0 ) is the shear modulus (resp. Poisson ratio) of the reference material, δ is the second-order identity tensor, sym denotes symmetrization about the first and last two indices and

Consistent discretization of the Lippmann-Schwinger equation

As shown in [START_REF] Brisard | FFT-based methods for the mechanics of composites: A general variational framework[END_REF], the equivalent stiffness of cell β is given by

The above formula allows for heterogeneous cells. The consistent discrete Green operator allows for the exact calculation of h : (Γ 0 * τ h ) for any τ h , h ∈ V h . It is given by the following (slowly-converging) d-dimensional series [START_REF] Brisard | Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites[END_REF]