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NOTICE : this is an edited version of the original paper presented at the 22ème Congrès Français
de Mécanique. It includes some minor (mainly notational) corrections.

Résumé :
Les bornes de Hashin et Shtrikman sur les propriétés effectives de composites sont valides pour une
classe très large de matériaux. Néanmoins, elle ne prennent en compte qu’une information très limitée
sur la microstructure (fraction volumique de chaque phase dans le cas isotrope). De ce fait, ces bornes ne
sont en général pas très serrées. Dans ce travail, on présente une tentative d’amélioration de ces bornes
par addition explicite de la fraction volumique locale au jeu des descripteurs locaux de la microstructure.
On montre que, de façon inattendue, cette approche échoue, au sens où elle conduit aux bornes classiques.
On montre ensuite que ce résultat négatif s’applique à tous descripteurs locaux de la microstructure
faiblement isotropes (en un sens qui est précisé dans cet article). Cela suggère que des bornes améliorées
pourraient être obtenues en considérant des descripteurs anisotropes.

Abstract :

The celebrated bounds of Hashin and Shtrikman on the effective properties of composites are valid for a
very wide class of materials. However, they incorporate only a very limited amount of information on the
microstructure (volume fraction of each phase in the case of isotropic microstructures). As a result, they
are generally not tight. In this work, we present an attempt at improving these bounds by incorporating
explicitely the local volume fraction to the set of local descriptors of the microstructure. We show that,
quite unexpectedly, the process fails in the sense that the classical bounds are retrieved. We further show
that this negative result applies to so-called weakly isotropic local descriptors of the microstructure (to be
defined in this paper). This suggests that improved bounds may be obtained with anisotropic descriptors.

Mots clefs : elasticity, homogenization, bounds, effective properties, micro-
structure, local volume fraction

1 Introduction
Bounds on the effective properties of composites are very useful tools, as they provide exact safeguards
for more elaborate estimates. Among all available bounds, those of Hashin and Shtrikman [1] are probably
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the most popular, as they only require the volume fractions of the phases, and apply to a wide class of
composites (namely, isotropic microstructures). The price to pay for this simplicity and generality is, of
course, the fact that these bounds are usually not very tight. That they are insensitive to relative sizes of
the inclusions constitutes another major shortcoming.

Sharper bounds have been produced, which improve on the bounds of Hashin and Shtrikman ; see e.g. [2].
However, they generally involve complex statistical descriptors of the microstructure which are difficult to
measure. Besides, it is not possible to choose these statistical descriptors, as they merely are an outcome
of the whole optimization process.

In this paper, we present an attempt at improving the classical bounds of Hashin and Shtrikman. To
do so, we carry out the same optimization process as in the classical approach, with an enriched trial
field. This is a potentially very flexible approach, since any local descriptor can be used as enrichment.
As a first step, we use local volume fractions as supplementary local descriptors of the microstructure.
This was suggested by previous work by Widjajakusuma et al. [3], and by the fact that such descriptors
effectively introduce a length-scale (the size of the sliding window). The resulting bounds were expected
to be sensitive to the relative size of the inclusions.

The somewhat unexpected outcome of this approach is the fact that the resulting bounds coincide with
those of Hashin and Shtrikman. In other words, the supplementary microstructural information was
ignored by the oprimization process. We were able to extend this negative result to the class of weakly
isotropic local descriptors of the microstructure, that will be defined more precisely below. This now
suggests to explore the class of anisotropic local descriptors.

The present paper is organized as follows. The improved bounds on the macroscopic properties of
composites that we seek in this work are derived by means of polarization techniques within the framework
of linear elasticity. In Sec. 2, we provide a brief account of these techniques ; in particular, we introduce the
functionalH of Hashin and Shtrikman [4] (see also [5] for a modern presentation). In Sec. 3, we construct
enriched trial fields which incorporate supplementary local descriptors of the microstructure. We then
carry out the optimization process presented in [5] to derive bounds of the macroscopic properties, and
show that these bounds fail to improve on the classical bounds of Hashin and Shtrikman [1]. This negative
result is then extended to weakly isotropic local descriptors of the microstructure. Sec. 4 closes this paper
with a few thoughts on how to overcome the limitation highlighted in Sec. 3.

It should be noted that this paper makes use of the terminology introduced by Ostoja-Starzewski [6]. In
particular, the notion of apparent stiffness of a statistical volume element (SVE) will be invoked.

2 Polarization techniques for linear elasticity
The standard presentation of these techniques requires the use of the Green operator for strains of a
bounded domain, which is generally unknown. Following Willis [5], it is usually replaced with the Green
operator for strains of the whole space Rd by means of a heuristic approximation, which was only recently
justified by Brisard et al. [7], as summarized below.

We consider a linearly elastic heterogeneous material occupying the d-dimensional domain Ω characte-
rized by its indicator function χ. For x ∈ Ω, C(x) denotes the local elastic stiffness of the composite,
while C0 denotes the (as yet unspecified) elastic stiffness of the so-called reference material.
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2.1 The modified Lippmann–Schwinger equation
The modified Lippmann–Schwinger equation (1) requires the fourth-order Green operator for strains Γ∞0
of the unbounded domain Rd, associated with the reference material C0. In a prestressed, unbounded,
homogeneous material with stiffnessC0, it relates the local strain to the applied (possibly inhomogeneous)
prestress. A more precise definition of this operator can be found elsewhere [e.g. 8, 9, 10, 5, 7].

The following modified Lippmann–Schwinger equation is introduced [7], with unknown τ (the stress
polarization), supported in Ω

(C−C0)−1 : τ + Γ∞0 ∗ (τ − χτ ) = E, (1)

where the loading parameter E is a symmetric, second-order tensor. In the remainder of this paper,
overlined quantities denote volume averages over the domain Ω. From the solution τ to Eq. (1), it is
possible to construct a strain (resp. stress) field ε (resp. σ) as follows

ε = E− Γ∞0 ∗ (τ − χτ ) σ = C0 : ε+ τ = C : ε, (2)

and it can be shown [7] that divσ = 0 over Ω and that, provided the domain Ω is ellipsoidal, ε = E.
In other words, the loading parameter E coincides with the macroscopic strain, ε is a compatible strain
field, σ is an equilibrated stress field, and ε and σ are associated through the local constitutive law of the
heterogeneous material. Therefore, Eqs. (1) and (2) provide the solution to a new auxiliary problem from
which the apparent stiffness Capp(C0) can be defined

σ = Capp(C0) : ε = Capp(C0) : E. (3)

It should be noted that the apparent stiffness introduced above depends on the stiffness of the reference
material, C0. It can be shown [7] that it is positive definite, and bounded from below (resp. above) by the
apparent stiffness defined through static (resp. kinematic) uniform boundary conditions (defined in e.g.
[11]). As a consequence, the apparent stiffness defined through Eq. (3) is consistent in the homogenization
sense : for statistically homogeneous and ergodic materials, it tends to the effective stiffness as the size of
the domain Ω grows to infinity.

2.2 The principle of Hashin and Shtrikman
For any trial field τ̂ , the functional of Hashin and Shtrikman is defined as follows

H(τ̂ ) = τ̂ : E− 1

2
τ̂ : (C−C0)−1 : τ̂ − 1

2
τ̂ : Γ∞0 :

(
τ̂ − χτ̂

)
. (4)

It can be shown [7] that the solution τ to the modified Lippmann–Schwinger equation (1) is a critical
point ofH. Furthermore

1

2
E : Capp(C0) : E =

1

2
E : C0 : E +H(τ ). (5)

The extremum principle of Hashin and Shtrikman can then be stated under further assumptions on the
stiffness of the reference material
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1. if C(x) ≤ C0 for all x ∈ Ω, thenH is minimal at τ , and for any trial field τ̂

1

2
E : Capp(C0) : E ≤ 1

2
E : C0 : E +H(τ̂ ), (6)

2. if C(x) ≥ C0 for all x ∈ Ω, thenH is maximal at τ , and for any trial field τ̂

1

2
E : Capp(C0) : E ≥ 1

2
E : C0 : E +H(τ̂ ), (7)

where inequalities between fourth-order tensors should be understood in the sense of the underlying
quadratic forms.

2.3 The classical bounds of Hashin and Shtrikman
In this section, and in the remainder of this paper, Greek indices always refer to material phases. Besides,
random variables are indexed by ω.

The celebrated bounds of Hashin and Shtrikman were initially derived in [1] ; a more modern proof was
proposed by Willis [5]. Extension to ellipsoidal distributions is due to Ponte Castañeda and Willis [12].
The random composite under consideration is made of N linearly elastic, perfectly bounded phases. For
α = 1, . . . , N and x ∈ Ω, χα(x;ω) denotes the indicator function at point x of phase α ; fα denotes the
volume fraction of phase α : fα = 〈χα〉 (where angle brackets denote ensemble averages). The local
stiffness of the composite reads

C(x;ω) =
N∑
α=1

χα(x;ω)Cα, (8)

where Cα denotes the stiffness of phase α. To derive the bounds of Hashin and Shtrikman, the following
trial field is selected

τ̂ (x;ω) =

N∑
α=1

χα(x;ω)τ̂α, (9)

where τ̂ 1, . . . , τ̂N are N deterministic symmetric, second-order tensors. Assuming that the reference
medium is stiffer than all phases of the composite, Eq. (6) gives

1

2
E : Capp(C0;ω) : E ≤ 1

2
E : C0 : E +H(τ̂ 1, . . . , τ̂N ;ω), (10)

whereH(τ̂ 1, . . . , τ̂N ;ω) = H(τ̂ ;ω) is a quadratic form of τ̂ 1, . . . , τ̂N . Taking the ensemble average in
Eq. (11) and passing to the limit of infinite domains Ω leads to

1

2
E : Ceff : E ≤ 1

2
E : C0 : E + 〈H(τ̂ 1, . . . , τ̂N ;ω)〉ω, (11)

where Ceff denotes the effective stiffness of the composite. The ensemble average 〈H(τ̂ 1, . . . , τ̂N ;ω)〉ω
is a deterministic quadratic form of τ̂ 1, . . . , τ̂N . It can be minimized with respect to these parameters, in
order to produce the sharpest bounds on the effective stiffness in Eq. (11). For a wide class of composites,
the resulting bound can be computed explicitely [5, 12] ; for isotropic composites, these bounds depend
on the volume fraction and stiffness of each phase only.
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3 Towards improved bounds on the effective moduli ?

3.1 Construction of enriched trial fields
The trial field (9) considered by Hashin and Shtrikman [1] includes one point microstructural information
only : the stress polarization at point x ∈ Ω is totally defined by the phase at x. Our aim in the present
paper is to produce sharper bounds, by providing more microstructural information to the optimization
process described in Sec. 2.3. In other words, we will consider an enrichment of the trial fields (9).

As already argued by Widjajakusuma et al. [3], the local volume fraction is a local descriptor of the
microstructure which is believed to play a significant role on the macroscopic properties ; we propose
trial fields that incorporate this descriptor.

The local volume fraction is defined in this paper as the volume fraction of a specified phase contained in
a sliding window of specified size. The present derivation is restricted to spherical windows of radius a.
The local volume fraction of phase α at point x ∈ Ω is the following quantity

f̃α(x, a;ω) =
1

Wa

∫
‖y‖≤a

χα(x + y;ω) dy, (12)

whereWa = 4πa3/3 denotes the volume of the spherical window of radius a. The local volume fraction is
a random field ; its expectation coincides with the global volume fraction fα. Because f̃1 + · · ·+ f̃N = 1,
f̃1, . . . , f̃N are linearly dependent. As a consequence, only f̃1, . . . , f̃N−1 should be included in the
proposed enriched trial field.

For the sake of simplicity, the remainder of this paper is restricted to two phase materials (N = 2).
Therefore, the only local descriptor of the microstructure to be considered is the local volume fraction of
phase 1, which will be abusively called the local volume fraction, and denoted f̃ (dropping the index) ;
besides, the radius a of the spherical window will also be droped. We consider trial fields which are
polynomials of the local volume fraction

τ̂ (x;ω) =
2∑

α=1

p∑
k=0

χα(x;ω)[f̃(x, a;ω)]kτ̂αk, (13)

where τ̂αk is a deterministic (symmetric) tensor. Obivously, the classical trial field (9) is retrieved with
p = 0 ; p ≥ 1 effectively leads to an enrichment of the set of trial fields. In turn, this enrichment is
expected to lead to sharper bounds on the effective properties of the microstructure.

3.2 Evaluation of the functional of Hashin and Shtrikman
Following the approach described in Sec. 2.3, we must evaluate the ensemble average ofH for the trial
field specified by Eq. (13). Each term of H is evaluated separately below. Introducing the following
moments of the local volume fraction

Yαk(x) = 〈χα(x;ω)f(x;ω)k〉ω (14)
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it is readily verified that for statistically homogeneous materials, Yαk does not depend on the observation
point x. Indeed,

Yαk(x) =
1

W k
〈χα(x;ω)

k∏
i=1

∫
‖yi‖≤a

χ1(x + yi;ω) dyi〉ω

=
1

W k

∫
‖y1‖,...,‖y‖k≤a

〈χα(x;ω)

k∏
i=1

χ1(x + yi;ω)〉ω dy1 · · · dyk,

and the integrand in the last line does not depend on x, due to statistical homogeneity. Evaluation of the
first term of 〈H(τ̂ )〉 is trivial

〈τ̂ 〉 =
2∑

α=1

p∑
k=0

Yαkτ̂αk. (15)

The second term of the ensemble-averaged functional of Hashin and Shtrikman reads

1

2
〈τ̂ : (C−C0)−1 : τ̂ 〉 = 〈 1

2V

∫
x∈Ω

∑
α,β,h,k

χα(x;ω)χβ(x;ω)f(x;ω)h+k

τ̂αh : [C(x;ω)−C0]−1 : τ̂ βk dx〉ω,

where V denotes the volume of the domain Ω. Observing that χα(x;ω)χβ(x;ω) = 0 for α 6= β, and
that χα(x;ω)C(x;ω) = χα(x;ω)Cα we finally find

〈τ̂ : (C−C0)−1 : τ̂ 〉 =
∑
α,h,k

Yα,h+kτ̂αh : (Cα −C0)−1 : τ̂αk. (16)

Evaluation of the last term is more complex ; first, the convolution product is expanded as follows

τ̂ : Γ∞0 ∗
(
τ̂ − χτ̂

)
=

1

V

∫
x,y∈Ω

τ̂ (x) : Γ∞0 (y − x) :
[
τ̂ (y)− τ̂

]
dx dy,

where the above integral should be understood in the sense of principal values (see e.g. [13]). Substituting
in the above equation the general form (13) of the trial field, and taking the ensemble average leads to

〈τ̂ : Γ∞0 ∗
(
τ̂ − χτ̂

)
〉 =

1

V

∑
α,β,h,k

∫
x,y∈Ω

[Zαh,βk(y − x)− YαhYβk] τ̂αh : Γ∞0 (y − x) : τ̂ βk dx dy

where
Zαh,βk(x,y) = 〈χα(x;ω)χβ(y;ω)[f̃(x;ω)]h[f̃(y;ω)]k〉ω, (17)

and it can readily be shown that this statistical descriptor is translation-invariant. Assuming that the
microstructure is statistically isotropic, so that Zαh,βk(x,y) depends on the norm of (y− x) only, it can
be shown that

〈τ̂ : Γ∞0 ∗
(
τ̂ − χτ̂

)
〉 =

∑
α,h,k

Yα,h+kτ̂αh : P0 : τ̂αk −
∑

α,β,h,k

YαhYβkτ̂αh : P0 : τ̂ βk, (18)

where P0 denotes the Hill tensor of a spherical inclusion embedded in the reference material C0.
Gathering Eqs. (15), (16) and (18) leads to the following expression of the ensemble averaged functional
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of Hashin and Shtrikman

〈H(τ̂ )〉 =
∑
a,k

Yαkτ̂αk : E− 1

2

∑
α,h,k

Yα,h+kτ̂αh :
[
(Cα −C0)−1 + P0

]
: τ̂αk

+
1

2

∑
α,β,h,k

YαhYβkτ̂αh : P0 : τ̂ βk. (19)

3.3 Determination of the optimum trial field
Optimization of expression (19) with respect to τ̂αh leads to the following characterization of the critical
point ∑

k

Yα,h+k

[
(Cα −C0)−1 + P0

]
: ταk = Yαh

E +
∑
β,k

YβkP0 : τ βk

 , (20)

for α = 1, 2 and h = 1, . . . , N . The last term involves the ensemble average of the trial field τ̂ [see Eq.
(15)], and we have∑

k

Yα,h+k

[
(Cα −C0)−1 + P0

]
: τ̂αk = Yαh (E + P0 : 〈τ̂ 〉) , (21)

Introducing the inverse Xα,hk of Yα,h+k in the following sense∑
`

Xα,h`Yα,`+k =
∑
`

Yα,h+`Xα,`k = δhk, (22)

the solution to Eqs. (21) is readily found

[
(Cα −C0)−1 + P0

]
: τ̂αh =

(∑
k

Xα,hkYαk

)
(E + P0 : 〈τ̂ 〉) .

Then, from Eq. (22) ∑
k

Xα,hkYαk =
∑
k

Xα,hkYα,k+0 = δh0,

which shows that τ̂αh = 0 for h 6= 0, and the optimum trial field reduces to the classical form given by
Eq. (9). In other words, we get the surprising result that the enriched trial field (13) does not improve
the classical Hashin and Shtrikman [1] bounds on the effective elastic properties. This result is briefly
extended to a wider class of enriched trial fields in 3.4 below.

3.4 Extension to a wider class of trial fields
It can be shown that the above results extend to a much wider class of trial fields. We consider here n
local descriptors of the microstructure φ1(x;ω), . . . , φn(x;ω), and the following trial field

τ̂ (x;ω) =
N∑
α=1

n∑
k=1

χα(x;ω)φk(x;ω)τ̂αk, (23)

where τ̂αk is again a deterministic, second order, symmetric tensor. In order to ensure that Eq. (23) is
indeed an enrichment of Eq. (9), we chose φ1(x;ω) = 1. It is assumed that these local descriptors of the
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microstructure are weakly isotropic in the sense that the following two-point statistical descriptors

〈χα(x;ω)φh(x;ω)χβ(y;ω)φk(y;ω)〉ω (24)

depend on the norm ‖y − x‖ of the radius-vector only. Under this assumption, it can be shown that
optimization of 〈H(τ̂ )〉 with respect to τ̂αh again leads to τ̂αh = 0 for h 6= 1. This means that the
classical bounds of Hashin and Shtrikman [1] are again retrieved.

4 Conclusion and outlook
In this paper, we have presented an attempt at improving the classical bounds of Hashin and Shtrikman [1],
by considering enriched trial fields which incorporate non-trivial local descriptors of the microstructure.
By contrast, the only local descriptor used to derive the classical bounds is the phase at the observation
point.

We first try to incorporate the local volume fractions as supplementary descriptors. This was suggested
by previous work by Widjajakusuma et al. [3], and by the fact that this descriptor effectively introduces a
length-scale (the size of the sliding window). We were therefore hoping to be able to produce bounds
that would be sensitive to e.g. particle-size distributions (which is not the case of the classical bounds).
However, our derivation shows that optimization of the ensemble-averaged functional of Hashin and
Shtrikman again leads to the classical bounds. The supplementary descriptors are therefore totally ignored.
This somewhat unexpected result was then extended to a very wide class of local descriptors of the
microstructure.

Does this mean that improving the bounds of Hashin and Shtrikman [1] is a hopeless task ? Not necessarily.
Indeed, the result presented in this paper is obtained under the assumption of isotropic probing of the
microstructure [see Eq. (24)]. In other words, it is assumed that the two-point cross-correlations of all
local descriptors only depend on the distance between the two observation points. This strongly suggests
to use anisotropic probes ; this will be investigated in future work.
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