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Abstract

In the last decade, there has been a growing interest to use Wishart processes for
modelling, especially for financial applications. However, there are still few studies on
the estimation of its parameters. Here, we study the Maximum Likelihood Estimator
(MLE) in order to estimate the drift parameters of a Wishart process. We obtain precise
convergence rates and limits for this estimator in the ergodic case and in some nonergodic
cases. We check that the MLE achieves the optimal convergence rate in each case.
Motivated by this study, we also present new results on the Laplace transform that
extend the recent findings of Gnoatto and Grasselli [17] and are of independent interest.

Keywords : Wishart processes, Laplace transform, parameter inference, maximum likeli-
hood, limit theorems, local asymptotic properties.
AMS MSC 2010: 62F12, 44A10, 60F05, 91B70.

1 Introduction and preliminary results

The goal of this paper is to study the maximum likelihood estimation of the parameters of
Wishart processes. These processes have been introduced by Bru [7] and take values in the
set of positive semidefinite matrices. Let d ∈ N∗ denote the dimension, Md be the set of
real d-square matrices, S+

d (resp. S+,∗
d ) be the subset of positive semidefinite (resp. definite)

matrices, Sd (resp. Ad) the subset of symmetric (resp. antisymmetric) matrices. Wishart
processes are defined by the following SDE{

dXt =
[
αa>a+ bXt +Xtb

>] dt+
√
XtdWta+ a>dW>t

√
Xt, t > 0

X0 = x ∈ S+
d ,

(1)

where α > d−1, a ∈Md, b ∈Md and (Wt)t>0 denotes a d-square matrix made of independent
Brownian motions. We recall that for x ∈ S+

d ,
√
x is the unique matrix in S+

d such that
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1 INTRODUCTION AND PRELIMINARY RESULTS 2

√
x

2
= x. It is shown by Bru [7] and Cuchiero et al. [8] in a more general affine setting that

the SDE (1) has a unique strong solution when α > d+ 1 and a unique weak solution when
α > d− 1. Besides, we have Xt ∈ S+,∗

d for any t > 0 when x ∈ S+,∗
d and α > d+ 1. In this

paper, we will denote by WISd(x, α, b, a) the law of (Xt, t > 0) and WISd(x, α, b, a; t) the
law of Xt. In dimension d = 1, Wishart processes are known as Cox-Ingersoll-Ross processes
in the literature. It is worth recalling that the law of X only depends on a through a>a since
we have

WISd(x, α, b, a) =
law

WISd(x, α, b,
√
a>a),

see e.g. equation (12) in [1]. Therefore, the parameters to estimate are α, b and a>a.
Wishart processes have been originally considered by Bru [6] to model some biological

data. Recently, they have been widely used in financial models in order to describe the
evolution of the dependence between assets. Namely, Gourieroux and Sufana [19] and Da
Fonseca et al. [10] have proposed a stochastic volatility model for a basket of assets that
assumes that the instantaneous covariance between the assets follows a Wishart process.
This extends the well-known Heston model [21] to many assets. Wishart processes have also
been used for interest rates models. Affine term structure models involving these processes
have been proposed for example by Gourieroux and Sufana [20], Gnoatto [16] and Ahdida
et al. [2]. For these models, the question of estimating the parameters of the underlying
Wishart process may be important for practical purposes and should be possible thanks to
the profusion of financial data. This issue has been considered by Da Fonseca et al. [9] for the
model presented in [10]. However, there is no dedicated study on the Maximum Likelihood
Estimator (MLE) for Wishart processes. For the Cox-Ingersoll-Ross process, the estimation
of parameters has been studied earlier, motivated in particular by its use for interest rates
(see Fournié and Talay [14]). Later on, the MLE has been studied by Overbeck [31] including
some nonergodic cases, and more recently by Ben Alaya and Kebaier [4, 5]. This paper
completes the literature by studying the MLE for Wishart processes.

In this paper, we will follow the theory developed in the books by Lipster and Shiryaev [27]
and Kutoyants [23] and assume that we observe the full path (Xt, t ∈ [0, T ]) up to time T > 0.
This choice will be convenient from a mathematical point of view to study the convergence
of the MLE. Of course, in practice it can be relevant to study precisely the estimation when
we only observe the process on a discrete time-grid. This is left for further research, but
we already observe in our numerical experiments that the discrete approximation of the
MLE gives a satisfactory estimation of Wishart parameters (see Section 6). It is worth
noticing that once we observe the path (Xt, t ∈ [0, T ]), the parameter a>a is known. In
fact, we can calculate the quadratic covariation (see for example Lemma 2 in [1]) and get for
i, j, k, l ∈ {1, · · · , d}

〈Xi,j , Xk,l〉T =

∫ T

0
(a>a)j,l(Xs)i,k + (a>a)j,k(Xs)i,l + (a>a)i,l(Xs)j,k + (a>a)i,k(Xs)j,lds.

(2)

This leads to

(a>a)i,i =
1

4
〈Xi,i〉T

(∫ T

0
(Xs)i,ids

)−1
, (3)

(a>a)i,j =

(
1

2
〈Xi,j , Xi,i〉T − (a>a)i,i

∫ T

0
(Xs)i,jds

)(∫ T

0
(Xs)i,ids

)−1
,
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for 1 6 i, j 6 d and j 6= i. We note that these quantities are well defined as soon as the path
(Xt, t ∈ [0, T ]) has a finite quadratic variation and is such that Xt ∈ S+,∗

d dt-a.e., which is
satisfied by the paths of Wishart processes (see Proposition 4 in [7]). We will assume that
a>a ∈ S+,∗

d and denote by a ∈ Md an invertible matrix that matches the observed value of
a>a: a can be for example the square root of a>a or the Cholesky decomposition of a>a.
Then, we know that Yt = (a>)−1Xta

−1 follows the lawWISd((a
>)−1xa−1, α, (a>)−1ba>, Id),

see e.g. equation (13) in [1]. It is therefore sufficient to focus on the estimation of the
parameters α and b when a = Id, which we consider now.

We first present the MLE of θ = (b, α), and we denote by Pθ the original probability
measure under which X satisfies

dXt =
[
αId + bXt +Xtb

>
]
dt+

√
XtdWt + dW>t

√
Xt. (4)

When no confusion is possible, we also denote P this probability. We consider α0 > d + 1
and set θ0 = (α0, 0). We will assume for the joint estimation of α and b that

α > d+ 1 and x ∈ S+,∗
d . (5)

The latter assumption is not restrictive in practice since the condition α > d+1 ensures that
Xt ∈ S+,∗

d for any t > 0. Due to this assumption, we know by Theorem 4.1 in Mayerhofer [29]
that

dPθ0,T
dPθ,T

:= exp

(∫ T

0
Tr[HsdWs]−

1

2

∫ T

0
Tr[HsH

>
s ]ds

)
, with Ht =

α0 − α
2

(
√
Xt)
−1 − b

√
Xt

defines a probability measure under which W̃t = Wt −
∫ t

0 H
>
s ds is a d× d-Brownian motion,

where Pθ,T is the restriction of Pθ to the σ-algebra σ(Ws, s ∈ [0, T ]). We have

dXt = α0Iddt+
√
XtdW̃t + dW̃>t

√
Xt,

and the likelihood is then defined by (see Lipster and Shiryaev [27], Chapter 7)

Lθ,θ0T =
1

E
[
exp

(∫ T
0 Tr[HsdWs]− 1

2

∫ T
0 Tr[HsH>s ]ds

) ∣∣∣∣FXT ] , (6)

where (FXt )t>0 denote the filtration generated by the process X.

Proposition 1.1. For X ∈ S+,∗
d , let LX : Sd → Sd be the linear application defined by

LX(Y ) = XY + Y X. It is invertible, and the likelihood of (Xt, t ∈ [0, T ]) is given by

Lθ,θ0T = exp
(α− α0

4
log

(
det[XT ]

det[x]

)
− α− α0

4

(α+ α0

2
− 1− d

) ∫ T

0
Tr[X−1

s ]ds− αT

2
Tr[b]

+
1

2

∫ T

0
Tr
[
L−1
Xt

(
bXt +Xtb

>
)
dXt

]
− 1

4

∫ T

0
Tr
[
L−1
Xt

(
bXt +Xtb

>
)

(bXt +Xtb
>)
]
dt
)
.

(7)

Lemmas B.1 and B.2 states some properties of LX , and the proof of Proposition 1.1 is given
in Appendix A. In particular, we see from this proof that dPθ0,T

dPθ,T ∈ F
X
T if, and only if b ∈ Sd,
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in which case the likelihood has the following simpler form

Lθ,θ0T = exp
(α− α0

4
log

(
det[XT ]

det[x]

)
+

Tr[bXT ]− Tr[bx]

2
− 1

2

∫ T

0
Tr[b2Xs]ds

− α− α0

4

(α+ α0

2
− 1− d

) ∫ T

0
Tr[X−1

s ]ds− αT

2
Tr[b]

)
, (8)

since L−1
Xt

(bXt +Xtb) = b.
Now, we want to maximize the likelihood and observe that the quantity in the exponen-

tial (7) is quadratic with respect to (b, α) and goes almost surely to −∞ when ‖(b, α)‖ → +∞.
To do so, we first remark that Tr[b] = Tr[L−1

Xt

(
bXt +Xtb

>)] by Lemma B.1. Then, Cauchy-
Schwarz inequality yields to

|Tr[αb]| =
∣∣∣∣ 1

T

∫ T

0
Tr

[√
2L−1

Xs

(
bXs +Xsb

>
)√

Xs
α√
2

√
X−1
s

]
ds

∣∣∣∣
6

1

T

∫ T

0
Tr
[
(L−1

Xs

(
bXs +Xsb

>
)

)2Xs

]
ds+

α2

4

1

T

∫ T

0
Tr
[
X−1
s

]
ds (9)

=
1

2T

∫ T

0
Tr
[
L−1
Xs

(
bXs +Xsb

>
)

(bXs +Xsb
>)
]
ds+

α2

4

1

T

∫ T

0
Tr
[
X−1
s

]
ds,

and it is strict almost surely, which gives that the quadratic form in the exponential (7) is
negative definite. There is thus a unique global maximum of (7) on R×Md. We know from
Lemma B.2 that L−1

Xs
is self-adjoint, and we get with straightforward calculations that the

MLE θ̂T = (b̂T , α̂T ) is characterized by the following equations:{
1
4 log

(
det[XT ]
det[x]

)
− α̂T−1−d

4

∫ T
0 Tr[X−1

s ]ds− T
2 Tr[b̂T ] = 0,∫ T

0 L
−1
Xs

(dXs)Xs −
∫ T

0 L
−1
Xs

(b̂TXs +Xsb̂
>
T )Xsds− α̂TT

2 Id = 0.
(10)

Unless in the ergodic case, we will not be able to obtain convergence results for this estimator.
Instead, we will mostly work with the MLE estimator when b is known to be symmetric. This
enables us to work with more tractable formulas, even if the calculations are already quite
involved in case. Analyzing the general case would require development of further arguments.
Besides, we can consider that Wishart processes with b symmetric already form an interesting
family of processes that may be rich enough in many applications. When b ∈ Sd, the unique
global maximum θ̂T = (b̂T , α̂T ) of (8) on R× Sd is characterized by the following equations:{

1
4 log

(
det[XT ]
det[x]

)
− α̂T−1−d

4

∫ T
0 Tr[X−1

s ]ds− T
2 Tr[b̂T ] = 0,

XT−x
2 − 1

2

∫ T
0 (b̂TXs +Xsb̂T )ds− α̂TT

2 Id = 0.
(11)

To get more explicit formulas, we have to invert this linear system. For X ∈ Sd and a ∈ R,
we define the linear applications

LX : Sd → Sd
Y 7→ Y X +XY

and LX,a : Sd → Sd
Y 7→ Y X +XY − 2aTr[Y ]Id.

(12)

We introduce the following shorthand notation

RT :=

∫ T

0
Xsds, QT :=

(∫ T

0
Tr[X−1

s ]ds

)−1

, ZT := log

(
det[XT ]

det[x]

)
, (13)
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and note that QT and ZT are defined only for α > d + 1 while RT is defined for α > d − 1
and belongs almost surely to S+,∗

d .1 By using the convexity property of the inverse, see e.g.
Mond and Pecaric [30], we have when α > d+ 1

Tr

[(
RT
T

)−1
]
<
Q−1
T

T
, a.s. (14)

We get α̂T = 1+d+QT
(
ZT −2T Tr[b̂T ]

)
and LRT ,T 2QT (b̂T ) = XT −x−T (QTZT + 1 + d) Id.

By (14) and Lemma B.1, the latter equation can be inverted, which leads to
α̂T = 1 + d+QT

(
ZT − 2T Tr

[
L−1
RT ,T 2QT

(XT − x− T [QTZT + 1 + d] Id)
])

b̂T = L−1
RT ,T 2QT

(XT − x− T [QTZT + 1 + d] Id) .

(15)

The estimator of α when α ∈ [d − 1, d + 1) given by the MLE is no longer well defined.
The same thing already occurs in dimension d = 1 for the CIR process, see Ben Alaya and
Kebaier [4]. However, it is still possible to estimate the parameter b ∈ Md when α > d − 1
is known. In this case, we denote θ = (b, α) and θ0 = (0, α) and get by repeating the same
arguments that

Lθ,θ0T = exp
(1

2

∫ T

0
Tr
[
L−1
Xt

(
bXt +Xtb

>
)
dXt

]
− 1

4

∫ T

0
Tr
[
L−1
Xt

(
bXt +Xtb

>
)

(bXt +Xtb
>)
]
dt− αT

2
Tr[b]

)
,

and the MLE is characterized by∫ T

0
L−1
Xs

(dXs)Xs −
∫ T

0
L−1
Xs

(b̂TXs +Xsb̂
>
T )Xsds−

αT

2
Id = 0. (16)

When b is known a priori to be symmetric, the likelihood and the MLE are then given by

Lθ,θ0T = exp
(Tr[bXT ]− Tr[bx]

2
− 1

2

∫ T

0
Tr[b2Xs]ds−

αT

2
Tr[b]

)
, (17)

b̂T = L−1
RT

(XT − x− αTId) . (18)

The goal of the paper is to study the convergence of the MLE under the original prob-
ability Pθ. To do so, we first consider the case where the Wishart process is ergodic. By
Lemma C.1, this holds if −(b + b>) ∈ S+,∗

d when b ∈ Md, and the ergodicity is equivalent
to −b ∈ S+,∗

d when b ∈ Sd. Then, we can use Birkhoff’s ergodic theorem to determine the
convergence of the MLE. Section 2 presents these results for (15) when α > d+1, for (7) when
α > d+ 1 and for both (18) and (16) when α > d− 1. Section 3 studies the convergence of
the MLE in some nonergodic cases, namely when b = λ0Id with λ0 > 0 and when b is known
to be symmetric. More precisely, when b = 0, we obtain convergence results for (15) when
α > d + 1 and for (18) when α > d − 1. When λ0 > 0, we only obtain convergence results

1This is obvious when α > d−1 since Xt ∈ S+,∗
d a.s. by Proposition 4 in [7]. For α = d−1, we would have

by contradiction the existence of vT ∈ FXT such that ∀t ∈ [0, T ], v>TXtvT = 0. This is clearly not possible by
using the connection with matrix-valued Ornstein-Uhlenbeck in this case, see eq. (5.7) in [7].
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for (18) when α > d−1. In all these cases, we analyse the convergence by the mean of Laplace
transforms. Though limited to some nonergodic cases, we however recover and extend the
recent convergence results obtained by Ben Alaya and Kebaier for the one-dimensional CIR
process [4, 5]. In Section 4, we check that the MLE achieves the optimal rate of convergence
in the different cases by proving local asymptotic properties. Last, we study in Section 5 the
Laplace transform of (XT , RT ). This study can be of independent interest and improves the
recent results of Gnoatto and Grasselli [17].

2 Statistical Inference of the Wishart process: the ergodic case

When −(b + b>) ∈ S+,∗
d , the Wishart process Xt converges in law when t → +∞ to the

stationary law X∞ ∼ WISd(0, α, 0,
√

2q∞; 1/2) with q∞ =
∫∞

0 esbesb
>
ds for any starting

point x ∈ S+
d by Lemma C.1. Therefore this is the unique stationary law which is thus

extremal, and we know by Stroock ([35], Theorem 7.4.8) that it is then ergodic, see also
Pagès [32], Annex A. We introduce the following quantity

R∞ := Eθ(X∞).

From the ergodic Birkhoff’s theorem, we have

RT
T

a.s.−→ R∞, as T → +∞. (19)

Besides, when α > d+ 1, Q∞ = 1
Eθ(Tr[X−1

∞ ])
is finite and satisfies

Q∞Tr[R
−1
∞ ] < 1, (20)

due to the convexity property of the inverse, see e.g. Mond and Pecaric [30]. Again, the
ergodic Birkhoff’s theorem gives

TQT
a.s.−→ Q∞ =

1

Eθ(Tr[X−1
∞ ])

, as T → +∞. (21)

This section is organized as follows. First, we study the MLE (15) when b is known to be
symmetric in the cases α > d + 1 and α = d + 1. Then, we focus on the MLE (10) when
b ∈ Md and α > d + 1. The analysis follows the same steps and reuses some calculations
made in the symmetric case. Last, we study the convergence of the MLE when α > d− 1 is
known, in both symmetric and general cases.

2.1 The global MLE estimator of θ = (b, α) when b is known to be sym-
metric

When b ∈ Sd, the ergodicity is by Lemma (C.1) equivalent to −b ∈ S+,∗
d , which we assume

in this subsection. We have X∞ ∼ WISd(0, α, 0,
√
−b−1; 1/2) and it is easy to get from (4)

that αId + bR∞ + R∞b = 0, which gives R∞ = −α
2 b
−1 ∈ S+,∗

d . We will also show in the
proof of Theorem 2.1 that

Q∞ :=
α− (1 + d)

2 Tr[−b]
. (22)
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We consider the convergence of the MLE given by (15) when α > d + 1. We introduce
the following martingales:

Mt :=

∫ t

0

√
XsdWs +

∫ t

0
dW>s

√
Xs, (23)

Nt :=

∫ t

0
Tr[(

√
Xs)

−1dWs]. (24)

We use the dynamics of (Xt)t>0 under Pθ and Itô’s formula for (Zt)t>0 (see e.g. Bru [7],
equation (2.6)) to get on the one hand

XT = x+ αTId + LRT (b) +MT , ZT = (α− 1− d)Q−1
T + 2 Tr[b]T + 2NT . (25)

On the other hand, we obtain from (11) and (13) that XT = x + α̂TTId + LRT (b̂T ) and
ZT = (α̂T − 1− d)Q−1

T + 2T Tr[b̂T ], which yields to
α̂T − α = 2TQT Tr[b− b̂T ] + 2QTNT

LRT (b̂T − b) = (α− α̂T )TId +MT = 2T 2QT Tr[b̂T − b]Id +MT − 2TQTNT Id.

(26)

Theorem 2.1. Assume that −b ∈ S+,∗
d and α > d + 1. Under Pθ,

(√
T (b̂T − b, α̂T − α)

)
converges in law when T → +∞ to the centered Gaussian vector (G, H) that takes values in
Sd × R and has the following Laplace transform: for c, λ ∈ Sd × R,

Eθ [exp (Tr[cG] + λH)] = exp

(
2Q∞λ

2

1−Q∞Tr[R
−1
∞ ]
− 2Q∞λ

1−Q∞Tr[R
−1
∞ ]

Tr[cR
−1
∞ ] + Tr[cL−1

R∞,Q∞
(c)]

)
.

Proof. By (14) and Lemma B.1, we can rewrite the system (26) as follows
√
T (α̂T − α) = 2TQT

NT√
T
− 2TQT Tr

[
L−1
RT
T
,TQT

(
MT√
T
− 2TQT Id

NT√
T

)]
√
T (b̂T − b) = L−1

RT
T
,TQT

(
MT√
T
− 2TQT Id

NT√
T

)
.

Note that, for i, j, k, l ∈ {1, . . . , d} we have

〈Mi,j ,Mk,l〉t = [δjl(Rt)i,k + δjk(Rt)i,l + δil(Rt)j,k + δik(Rt)j,l] ,

〈Mi,j , N〉t = 2tδij and 〈N〉t = Q−1
t , (27)

where δij stands for the Kronecker symbol.
So, it follows from the central limit theorem for martingales (see e.g., Kutoyants [23],

Proposition 1.21), that (MT√
T
, NT√

T
) converges in law under Pθ towards a centered Gaussian

vector (G̃, H̃) taking values in Sd × R such that

Eθ(G̃i,jG̃k,l) =
[
δjl(R∞)i,k + δjk(R∞)i,l + δil(R∞)j,k + δik(R∞)j,l

]
, (28)

Eθ(G̃i,jH̃) = 2δi,j and Eθ(H̃2) = Q
−1
∞ .
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From (25) and (21), we obtain (22). From Lemma B.1, the function (X,Y, a) 7→ L−1
X,a(Y ) is

continuous, and we get by Slutsky’s theorem that (
√
T (b̂T − b),

√
T (α̂T − α)) converges in

law to the Gaussian vector

(G, H) =
(
L−1
R∞,Q∞

(
G̃− 2Q∞H̃Id

)
, 2Q∞

(
H̃ − Tr

[
L−1
R∞,Q∞

(
G̃− 2Q∞H̃Id

)]))
.

We are interested to calculate the Laplace transform of this law. First, we calculate the
Laplace transform of (G̃, H̃):

∀c ∈ Sd, λ ∈ R,Eθ
[
exp

(
Tr[cG̃] + λH̃

)]
= exp

(
1

2

(
λ2Q

−1
∞ + 4λTr[c] + 4 Tr[c2R∞]

))
.

(29)
We want to calculate for c ∈ Sd and λ ∈ R,

Eθ [exp (Tr[cG] + λH)] = Eθ
[
exp

(
Tr[(c− 2λQ∞Id)G] + 2λQ∞H̃

)]
.

Due to (20) and Lemma B.1, we can introduce c̃ = L−1
R∞,Q∞

(c− 2λQ∞Id). We have

R∞c̃+ c̃R∞ − 2Q∞Tr[c̃]Id = c− 2λQ∞Id,

and thus

Tr[(c− 2λQ∞Id)G] = Tr[(R∞c̃+ c̃R∞ − 2Q∞Tr[c̃]Id)G]

= Tr[c̃(R∞G + GR∞ − 2Q∞Tr[G]Id)] = Tr[c̃(G̃− 2Q∞H̃Id)].

We therefore obtain from (29)

Eθ [exp (Tr[cG] + λH)]

= Eθ
[
exp

(
Tr[c̃(G̃− 2Q∞H̃Id)] + 2λQ∞H̃

)]
= Eθ

[
exp

(
Tr[c̃G̃] + 2Q∞(λ− Tr[c̃])H̃

)]
= exp

(
2
{

(λ− Tr[c̃])2Q∞ + 2(λ− Tr[c̃]) Tr[c̃]Q∞ + Tr[c̃2R∞]
})
.

Since 2 Tr[c̃2R∞] = Tr[c̃(c̃R∞ +R∞c̃)] = Tr[c̃c] + 2Q∞(Tr[c̃]− λ) Tr[c̃], we get

Eθ [exp (Tr[cG] + λH)] = exp
(
2λ(λ− Tr[c̃])Q∞ + Tr[c̃c]

)
.

We now use that L−1
R∞,Q∞

(Id) = 1

2(1−Q∞ Tr[R
−1
∞ ])

R
−1
∞ to get c̃ = L−1

R∞,Q∞
(c) − λ Q∞R

−1
∞

1−Q∞ Tr[R
−1
∞ ]

.

Since we have Tr[L−1
R∞,Q∞

(c)] = Tr[R
−1
∞ c]

2(1−Q∞ Tr[R
−1
∞ ])

by Lemma B.1, this yields to the claimed
result.

When α = d+ 1, the rate of convergence of the MLE of α is even better as stated by the
following theorem.

Theorem 2.2. Assume −b ∈ S+,∗
d and α = d+1. Then, under Pθ,

(√
T (b̂T − b), T (α̂T − α)

)
converges in law when T → +∞ to

(
G,−2τ−1

−Tr[b]
Tr[b]

)
, where τa = inf{t ≥ 0, Bt = a} with

(Bt)t≥0 a given one-dimensional standard Brownian motion and G is a Gaussian vector
independent of B such that Eθ [exp (Tr[cG])] = exp

(
Tr[cL−1

R∞
(c)]
)
, c ∈ Sd.
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Proof. By (14) and Lemma B.1, we can rewrite the system (26) as follows
T (α̂T − α) = 2T 2QT

(
NT

T
− 1√

T
Tr

[
L−1
RT
T
,TQT

(
MT√
T
− 2T 3/2QT Id

NT

T

)])
√
T (b̂T − b) = L−1

RT
T
,TQT

(
MT√
T
− 2T 3/2QT Id

NT

T

)
.

(30)

From (25), we have
NT

T
=

1

2T
log

(
det[XT ]

det[x]

)
− Tr[b].

As for −b ∈ S+,∗
d the Wishart process (Xt)t≥0 is stationary with invariant limit distribution

X∞ we easily deduce that NT
T converges in probability to −Tr[b] when T → ∞. Then, it

follows from (19) that

(T−1RT , T
−1NT )

Pθ→ (R∞,−Tr[b]), as T →∞. (31)

Hence, we only need to study the asymptotic behavior of the couple (T−1/2MT , T
2QT ).

According to Theorem 4.1 in Mayerhofer [29], we have for λ > 0 and Γ ∈ Sd

Eθ
[
exp

(
λ

T
NT −

λ2

2T 2
Q−1
T +

1√
T

Tr[ΓMT ]− 2

T

∫ T

0
Tr[Γ2Xs]ds−

2λ√
T

Tr[Γ]

)]
= 1. (32)

Now, let us introduce the quantity

AT = Eθ
[
exp

(
λ
NT

T
+ λTr[b]

)
exp

(
− λ2

2T 2
Q−1
T +

1√
T

Tr[ΓMT ]

)
× exp

(
− 2

T

∫ T

0
Tr[Γ2Xs]ds+ 2 Tr[Γ2R∞]

)]
.

Then, by (32) we easily get AT = exp
(
λTr[b] + 2 Tr[Γ2R∞] + 2λ√

T
Tr[Γ]

)
. We now write

AT = ÃT + Eθ
[
exp

(
− λ2

2T 2Q
−1
T + 1√

T
Tr[ΓMT ]

)]
with

ÃT = Eθ
[
(exp (ξT )− 1) exp

(
− λ2

2T 2
Q−1
T +

1√
T

Tr[ΓMT ]

)]
ξT = λ

NT

T
+ λTr[b]− 2

T

∫ T

0
Tr[Γ2Xs]ds+ 2 Tr[Γ2R∞].

Cauchy-Schwarz inequality and Q−1
T > 0 give

|ÃT | 6 E1/2
θ [exp (2ξT )− 2 exp (ξT ) + 1]E1/2

θ

[
exp

(
2√
T

Tr[ΓMT ]

)]
.

On the one hand, Proposition 5.1 with m = −b ∈ S+,∗
d gives

Eθ
[
exp

(
2√
T

Tr[ΓMT ]

)]
6 Eθ

[
exp

(
2

T
Tr[Γ2RT ]

)]
<∞.
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On the other hand, we have for any r > 0,

Eθ[exp (rξT )] 6 Eθ
[
exp

(
λr

T
NT

)]
exp(2rTr[Γ2R∞]).

From (25), we have

Eθ
[
exp

(
λr

T
NT

)]
= exp(−λrTr[b])Eθ

[(
det[XT ]

det[x]

) λr
2T

]
.

The sublinear growth of the coefficients of the Wishart SDE and the convergence to a sta-

tionary law gives that Eθ
[(

det[XT ]
det[x]

)λ̃]
is uniformly bounded in T > 0, λ̃ < 1 and there-

fore supT>λr
2
Eθ
[(

det[XT ]
det[x]

) λr
2T

]
< ∞. This gives the uniform integrability of the family

(exp (2ξT ) , T > λ). Then, we deduce from (31) that Eθ[exp (2ξT ) − 2 exp (ξT ) + 1] →
T→+∞

0

and thus ÃT →
T→+∞

0.

Hence, we obtain

lim
T→∞

Eθ
[
exp

(
− λ2

2T 2
Q−1
T +

1√
T

Tr[ΓMT ]

)]
= lim

T→∞
AT = exp

(
λTr[b] + 2 Tr[Γ2R∞]

)
.

Therefore, we deduce by Lemma B.4 the following convergence in law(
Q−1
T

T 2
,
MT√
T

)
⇒
(
τ−Tr[b]

,

√
R∞G̃ + G̃>

√
R∞

)
as T →∞,

where G̃i,j 1 6 i, j 6 d are independent standard normal variables. Together with (31), we
obtain that

(T−1RT , T
2QT , T

−1NT , T
−1/2MT )⇒ (R∞, 1/τ−Tr[b]

,−Tr[b],

√
R∞G̃ + G̃>

√
R∞), (33)

which gives the claim by (30) and Lemma B.4.

2.2 The global MLE estimator of θ = (b, α) when b ∈Md

We define the linear operators L̄X , L̄X,a :Md →Md by

L̄X(Y ) = L−1
X (Y X +XY >)X, L̄X,a(Y ) = L̄X(Y )− aTr[Y ]Id.

From (4), we get ZT = (α− 1− d)Q−1
T + 2 Tr[b]T + 2NT . This yields with (10) to
α̂T − α = 2TQT Tr[b− b̂T ] + 2QTNT∫ T

0 L̄Xs(b̂T − b)ds− T
2QT Tr[b̂T − b]Id =

∫ T
0 L

−1
Xs

(dMs)Xs − TQTNT Id.

(34)

We now define

L̂T (Y ) =
1

T

∫ T

0
L̄Xs(Y )ds− TQT Tr[Y ]Id,
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which is a linear operator on Md. By using the convexity of the inverse function, there
exists γ ∈ (0, 1) that depends on (Xs, s ∈ [0, T ]) such that TQT = γ

T

∫ T
0

1
Tr[X−1

s ]
ds. We get

L̂T (Y ) = 1
T

∫ T
0 L̄Xs, γ

Tr[X−1
s ]

(Y )ds. By Lemma B.3, L̂T is self adjoint and positive. It is even

positive definite since Tr[L̂T (Y )>Y ] = 0 implies by using Lemmas B.3 that Y Xs+XsY
> = 0

a.s. on [0, T ] under Pθ, and therefore the quadratic variation of Tr[uY Xs] is equal to zero for
any u ∈ Sd. This gives

∫ T
0 Tr[(uY +Y >u)Xs(uY +Y >u)]ds = 0 and thus uY +Y >u = 0 for

all u ∈ Sd, which necessarily implies Y = 0. Thus, we rewrite (34) as
√
T (α̂T − α) = −2TQT Tr[

√
T (b̂T − b)] + 2TQT

NT√
T√

T (b̂T − b) = L̂−1
T

(
1√
T

∫ T
0 L

−1
Xs

(dMs)Xs − TQT NT√T Id
)
.

(35)

We will assume −(b+b>) ∈ S+,∗
d and know from Lemma C.1 that XT converges in law under

Pθ to the stationary law X∞ ∼WISd(0, α, 0,
√

2q∞; 1/2). We define

L̂∞(Y ) = Eθ[L̄X∞(Y )]−Q∞Tr[Y ]Id. (36)

Note that for Y ∈ Sd, L̂∞(Y ) = Y R∞−Q∞Tr[Y ]Id. From the convexity of the inverse func-
tion, Q∞ = γEθ[1/Tr[X−1

∞ ]] with γ ∈ (0, 1), and thus L̂∞(Y ) = Eθ[L̄X∞, γ

Tr[X−1
∞ ]

(Y )] is a self-

adjoint positive operator by Lemma B.3. It is even positive definite since Tr[L̂∞(Y )>Y ] = 0
implies by Lemma B.3 that Y X∞ + X∞Y

> = 0 almost surely. Since the law X∞ has a
positive density on S+,∗

d , this gives Y u+ uY > = 0 for any u ∈ Sd and thus Y = 0.

Theorem 2.3. Assume −(b+b>) ∈ S+,∗
d and α > d+1. Then, under Pθ,

(√
T (b̂T − b), T (α̂T − α)

)
converges in law when T → +∞ to the centered Gaussian vector (G, H) that takes values in
Md × R and has the following Laplace transform: for c, λ ∈Md × R,

Eθ[exp(Tr[c>G] + λH)] = exp

(
2Q∞λ

2

1−Q∞Tr[R
−1
∞ ]
− 2Q∞λ

1−Q∞Tr[R
−1
∞ ]

Tr[cR
−1
∞ ] (37)

+
1

4
Eθ[Tr[L−1

X∞
(L̂−1
∞ (c)X∞ +X∞L̂−1

∞ (c)>)(L̂−1
∞ (c)X∞ +X∞L̂−1

∞ (c)>)]]

+
Tr[cR

−1
∞ ]Q∞

1−Q∞Tr[R
−1
∞ ]

(
1

2

Tr[cR
−1
∞ ]

1−Q∞Tr[R
−1
∞ ]
− Tr[L̂−1

∞ (c)]

))
Proof. From the ergodic Birkhoff’s theorem, L̂T converges almost surely to L̂∞, and thus
L̂−1
T converges almost surely to L̂−1

∞ . We define the martingale M̂T =
∫ T

0 L
−1
Xs

(dMs)Xs. We
have

d(M̂s)i,j = Tr[e>i,jL−1
Xs

(dMs)Xs] =
1

2
Tr[L−1

Xs
(ei,jXs +Xse

>
i,j)dMs]

=
1

2

∑
1≤k,l≤d

(L−1
Xs

(ei,jXs +Xse
>
i,j))k,l(dMs)k,l.

We get from (27) that

〈d(M̂s)i,j , d(M̂s)i′,j′〉 =
1

2
Tr
[
L−1
Xs

(ei,jXs +Xse
>
i,j)(ei′,j′Xs +Xse

>
i′,j′)

]
ds,

〈d(M̂s)i,j , dNs〉 = Tr[L−1
Xs

(ei,jXs +Xse
>
i,j)]ds = δi,jds.
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From the central limit theorem for martingales, (M̂T√
T
, NT√

T
) converges in law under Pθ towards

a centered Gaussian vector (Ĝ, Ĥ) taking values inMd × R such that

Eθ(Ĝi,jĜi′,j′) =
1

2
Eθ
[
Tr
[
L−1
X∞

(ei,jX∞ +X∞e
>
i,j)(ei′,j′X∞ +X∞e

>
i′,j′)

]]
(38)

Eθ(Ĝi,jĤ) = δi,j and Eθ(Ĥ2) = Q
−1
∞ .

We thus have the following Laplace transform for c ∈Md, λ ∈ R,

Eθ[exp(Tr[c>Ĝ] + λĤ)] = exp

(
1

4
Eθ[Tr[L−1

X∞
(cX∞ +X∞c

>)(cX∞ +X∞c
>)]] + λTr[c] +

1

2
λ2Q

−1
∞

)
.

(39)

By using Slutsky’s Theorem, we get from (35) that
(√

T (b̂T − b, α̂T − α)
)
converges in law

under Pθ when T → +∞ to the centered Gaussian vector

(G, H) =
(
L̂−1
∞ (Ĝ−Q∞ĤId), 2Q∞

(
Ĥ − Tr[L̂−1

∞ (Ĝ−Q∞ĤId)]
))

.

Now, we use that L̂−1
∞ (Id) = 1

1−Q∞ Tr[R
−1
∞ ]
R
−1
∞ and that L̂∞ is self-adjoint to get for c ∈Md,

Tr[c>G] = Tr[L̂−1
∞ (c)>Ĝ]− Q∞Ĥ Tr[c>R

−1
∞ ]

1−Q∞Tr[R
−1
∞ ]

, H =
2Q∞

1−Q∞Tr[R
−1
∞ ]

(Ĥ − Tr[R
−1
∞ Ĝ])].

From (39), we obtain after some calculations (37), using in particular that form ∈Md, s ∈ Sd,

Eθ[Tr[L−1
X∞

((m+ s)X∞ +X∞(m+ s)>)((m+ s)X∞ +X∞(m+ s)>)]] (40)

= Eθ[Tr[L−1
X∞

(mX∞ +X∞m
>)(mX∞ +X∞m

>)]] + 2 Tr[s(mR∞ +R∞m
>)] + 2 Tr[s2R∞]

and taking m = L̂−1
∞ (c) and s = −λ 2Q∞

1−Q∞ Tr[R
−1
∞ ]
R
−1
∞ .

Remark 2.1. It is interesting to compare Theorems 2.1 and 2.3 and see that the asymptotic
variance of

√
T (α̂T−α) is the same in both cases. Instead, for the estimation of the symmetric

part of b, we can check that the asymptotic variance is greater when we do not know a priori
that b is symmetric. For c ∈ Sd, we have c = 1

2 [L̂−1
∞ (c)R∞+R∞L̂−1

∞ (c)>]−Q∞Tr[L̂−1
∞ (c)]Id

and c = L−1
R∞,Q∞

(c)R∞ + R∞L−1
R∞,Q∞

(c) − 2Q∞Tr[L−1
R∞,Q∞

(c)]Id. Multiplying by R−1
∞ , we

get

Tr[L̂−1
∞ (c)] =

Tr[cR
−1
∞ ]

1−Q∞Tr[R
−1
∞ ]

= 2 Tr[L−1
R∞,Q∞

(c)],

and then L̂−1
∞ (c) = 2L−1

R∞,Q∞
(c) + ∆ with ∆R∞ +R∞∆> = 0. This gives from (40)

1

4
Eθ[Tr[L−1

X∞
(L̂−1
∞ (c)X∞ +X∞L̂−1

∞ (c)>)(L̂−1
∞ (c)X∞ +X∞L̂−1

∞ (c)>)]]

+
Tr[cR

−1
∞ ]Q∞

1−Q∞Tr[R
−1
∞ ]

(
1

2

Tr[cR
−1
∞ ]

1−Q∞Tr[R
−1
∞ ]
− Tr[L̂−1

∞ (c)]

)
=2 Tr[L−1

R∞,Q∞
(c)2R∞] +

1

4
Eθ[Tr[L−1

X∞
(∆X∞ +X∞∆>)(∆X∞ +X∞∆>)]]− 2Q∞Tr[L−1

R∞,Q∞
(c)]2

= Tr[L−1
R∞,Q∞

(c)c] +
1

4
Eθ[Tr[L−1

X∞
(∆X∞ +X∞∆>)(∆X∞ +X∞∆>)]] ≥ Tr[L−1

R∞,Q∞
(c)c],

since L−1
X∞

is a self-adjoint positive operator.
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2.3 The MLE estimator of b

When α ∈ [d− 1, d+ 1), we are no longer able to study the convergence of the MLE of α. It
is however still possible to get the speed of convergence of the MLE of b.

Theorem 2.4. Assume that −b ∈ S+,∗
d and α > d − 1. For T > 0, we consider b̂T defined

by (18). Then, under Pθ,
√
T (b̂T − b) converges in law to a centered Gaussian vector G on

Sd with the following Laplace transform Eθ [exp (Tr[cG])] = exp
(

Tr[cL−1
R∞

(c)]
)
, c ∈ Sd.

Assume that −(b+ b>) ∈ S+,∗
d and α > d− 1. For T > 0, we consider b̂T defined by (16).

Then, under Pθ,
√
T (b̂T − b) converges in law to a centered Gaussian vector G on Md with

the following Laplace transform: for c ∈Md, Eθ
[
exp

(
Tr[c>G]

)]
= exp

(
1

4
Eθ[Tr[L−1

X∞
(Ľ−1
∞ (c)X∞ +X∞Ľ−1

∞ (c)>)(Ľ−1
∞ (c)X∞ +X∞Ľ−1

∞ (c)>)]]

)
,

with Ľ∞(c) = Eθ[L̄X∞(Y )].

Proof. We could prove the result for (18) by using the explicit Laplace transform Proposi-
tion 5.1. Here, we use the same arguments as before based on the ergodic property. From (18),
we have

√
T (b̂T − b) = L−1

RT
T

(
1√
T

(XT − x− bRT −RT b− αTId)
)

= L−1
RT
T

(
MT√
T

)
.

As in the proof of Theorem 2.1, MT√
T

converges in law to the centered Gaussian vector G̃

defined by (28). Slutsky’s theorem and (19) give then the convergence of
√
T (b̂T − b) to

G = L−1
R∞

(
G̃
)
, whose Laplace transform is given by Lemma B.4.

Similarly, we get from (16) that
√
T (b̂T−b) = Ľ−1

T (M̂T /
√
T ) with ĽT (Y ) = 1

T

∫ T
0 L̄Xs(Y )ds.

We easily check that Tr[ĽT (Y )Y ] ≥ Tr[L̂T (Y )Y ] and Tr[Ľ∞(Y )Y ] ≥ Tr[L̂∞(Y )Y ] for
Y ∈ Md. Therefore, ĽT and Ľ∞ are positive definite and thus invertible. Besides, the
ergodic theorem gives that Ľ−1

T converges almost surely to Ľ∞. The result follows from (39)
and the self-adjoint property of Ľ∞.

3 Statistical Inference of the Wishart process: some noner-
godic cases

This section studies the convergence of the MLE in the case b = b0Id with b0 > 0. When
b0 = 0 and α > d + 1, we are able to describe the rate of convergence of the MLE of (b, α)
given by (15), when b is known to be symmetric. When b0 > 0 and α > d − 1, we can
also obtain the rate of convergence of the MLE of b given by (18). Last, when b is known
a priori to be diagonal, the MLE of b has a simpler form and we can describe precisely its
convergence.

3.1 The global MLE of θ = (b, α) when b = 0

The following result provides the asymptotic behavior of the estimator of the couple when
α > d+ 1 and b = 0 in (4).
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Theorem 3.1. Assume that b = 0 and α > d+ 1. Let (b̂T , α̂T ) be the MLE defined by (15).
Then, (T (b̂T − b),

√
log(T )(α̂T − α)) converges in law under Pθ when T → +∞ to(

L−1
R0

1

(
X0

1 − αId
)
, 2

√
α− (d+ 1)

d
G

)
,

where X0
t = αtId +

∫ t
0

√
X0
sdWs + dW>s

√
X0
s is a Wishart process with the same parameters

but starting from 0, R0
t =

∫ t
0 X

0
sds and G ∼ N (0, 1) is an independent standard Normal

variable.

Proof. From (15) and (26), we obtain
√

log(T )(α̂T − α) = −2 T Tr[b̂T ]√
log(T )

log(T )QT + 2 log(T )QT
NT√
log(T )

T b̂T = L−1
RT
T2 ,QT

(
XT
T −

x
T − (QTZT + 1 + d)Id

)
,

and we are interested in studying the convergence in law of
(

NT√
log(T )

, XTT , RT
T 2

)
. By Theo-

rem 4.1 in [29], for µ > 0 and T > 1,

dP
dPθ

= exp

(
µNT√
log(T )

− µ2

2QT log(T )

)

defines a change of probability and (Xt)t∈[0,T ] is a Wishart process with degree α + µ√
log(T )

under P. Let λ1, λ2 ∈ S+,∗
d and

AT = Eθ

[
exp

(
µNT√
log(T )

− µ2

2QT log(T )

)
exp

(
−Tr

[
λ2

T
XT

]
− Tr

[
λ1

T 2
RT

])]
.

By Proposition 5.1, we have

AT = E
[
exp

(
−Tr

[
λ2

T
XT

]
− Tr

[
λ1

T 2
RT

])]
=

1

det[V ]
α+µ/

√
log(T )

2

exp
(
− 1

2T
Tr
[
V ′V −1x

])
→

T→+∞

1

det[V ]
α
2

, (41)

where

V = (
√

2λ1)−1 sinh(
√

2λ1)2λ2 + cosh(
√

2λ1), V ′ = 2 cosh(
√

2λ1)λ2 +
√

2λ1 sinh(
√

2λ1).
(42)

We note that this limit does not depend on µ and is the Laplace transform of (X0
1 , R

0
1) by

Proposition 5.1.
We now use that 1

QT log(T ) →
T→+∞

d
α−(d+1) a.s., see Lemma C.2 and we define

ÃT = Eθ [exp(ξT )] and ξT =
µNT√
log(T )

− µ2d

2(α− (d+ 1))
− Tr

[
λ2

T
XT

]
− Tr

[
λ1

T 2
RT

]
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that is finite by using equation (73) of Lemma C.2 since ξT 6 µNT√
log(T )

. We have

AT = ÃT + Eθ
[{

exp

(
µ2d

2(α− (d+ 1))
− µ2

2QT log(T )

)
− 1

}
exp (ξT )

]
.

The Cauchy-Schwarz inequality gives

(AT − ÃT )2 6 Eθ

[{
exp

(
µ2d

2(α− (d+ 1))
− µ2

2QT log(T )

)
− 1

}2
]
Eθ [exp (2ξT )] .

Since QT log(T ) is positive for T > 1 and converges a.s. to α−(d+1)
d , the first expectation

goes to 0 while the second one is bounded by using again (73). Therefore, AT − ÃT →
T→+∞

0,

and we get

Eθ

[
exp

(
µNT√
log(T )

− Tr

[
λ2

T
XT

]
− Tr

[
λ1

T 2
RT

])]
→

T→+∞

exp
(

µ2d
2(α−(d+1))

)
det[V ]

α
2

.

Thus,
(

NT√
log(T )

, XTT , RT
T 2

)
converges in law to (

√
d

α−(d+1)G,X
0
1 , R

0
1), where G ∼ N (0, 1) is

independent of X0. From (25), we have

QTZT + 1 + d = 2
1√

log(T )
log(T )QT

NT√
log(T )

+ α,

and therefore QTZT + 1 + d converges in probability to α. Slutsky’s theorem gives then the
following convergence in law: as T → +∞,(

NT√
log(T )

,
XT

T
,
RT
T 2

, QTZT + 1 + d,QT log(T )

)
⇒

(√
d

α− (d+ 1)
G,X0

1 , R
0
1, α,

α− (d+ 1)

d

)
.

(43)
This gives the claimed convergence for (α̂T , b̂T ) due to the continuity property given in
Lemma B.1.

Theorem 3.2. Assume that b = 0 and α = d+ 1. Let (b̂T , α̂T ) be the MLE defined by (15).
Then, (T (b̂T − b), log(T )(α̂T − α)) converges in law under Pθ when T → +∞ to(

L−1
R0

1

(
X0

1 − αId
)
,

4

dτ1

)
,

where X0
t = αtId +

∫ t
0

√
X0
sdWs + dW>s

√
X0
s is a Wishart process with the same parameters

but starting from 0, R0
t =

∫ t
0 X

0
sds and τ1 = inf{t > 0, Bt = 1} where B is a standard

Brownian motion independent from W .

Proof. The proof follows the same line as the one of Theorem 3.1, but we now write

log(T )(α̂T − α) = −2
T Tr[b̂T ]

log(T )
log(T )2QT + 2 log(T )2QT

NT

log(T )
,
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while we still have T b̂T = L−1
RT
T2 ,QT

(
XT
T −

x
T − (QTZT + 1 + d)Id

)
. By Theorem 4.1 in [29],

for µ > 0 and T > 1, dPdP = exp
(
µNT

log(T ) −
µ2

2QT log(T )2

)
defines a change of probability, and we

define for λ1, λ2 ∈ S+,∗
d ,

AT = Eθ
[
exp

(
µNT

log(T )
− µ2

2QT log(T )2

)
exp

(
−Tr

[
λ2

T
XT

]
− Tr

[
λ1

T 2
RT

])]
.

By Proposition 5.1, we have

AT =
1

det[V ]
α+µ/log(T )

2

exp
(
− 1

2T
Tr
[
V ′V −1x

])
→

T→+∞

1

det[V ]
α
2

,

where V and V ′ are defined by (42).
We now use that NT

log(T ) →
d
2 in probability, see Lemma C.2, and define

ÃT = Eθ [exp(ξT )] , ξT =
µd

2
− µ2

2QT log(T )2
− Tr

[
λ2

T
XT

]
− Tr

[
λ1

T 2
RT

]
and have

AT = ÃT + Eθ
[{

exp

(
µNT

log(T )
− µd

2

)
− 1

}
exp (ξT )

]
.

We note that exp(ξT ) 6 exp
(
µd
2

)
. By using Lemma C.2 and the uniform integrability (74),

we get that AT − ÃT →
T→+∞

0 and therefore

Eθ
[
exp

(
− µ2

2QT log(T )2
− Tr

[
λ2

T
XT

]
− Tr

[
λ1

T 2
RT

])]
→

T→+∞

exp(−µd/2)

det[V ]
α
2

.

Therefore,
(
XT
T , RT

T 2 , QT log(T )2
)
converges in law to

(
X0

1 , R
0
1,
(

2
d

)2 1
τ1

)
, where τ1 is indepen-

dent of X0. We observe that QTZT = 1
log(T )QT log(T )2 ZT

log(T ) . Lemma C.2 and Slutsky’s
theorem gives(

NT

log(T )
,
XT

T
,
RT
T 2

, QTZT + 1 + d,QT log(T )2

)
⇒

(
d

2
, X0

1 , R
0
1, d+ 1,

(
2

d

)2 1

τ1

)
, (44)

which gives the claim by using the formulas for T b̂T and log(T )(α̂T − α).

3.2 The MLE of b

Until the end of this section we consider that α > d − 1 is known and study the speed of
convergence of the estimator of b defined by (18).

3.2.1 Case b = 0.

Theorem 3.3. Assume that b = 0 and α > d − 1. For T > 0, let b̂T be defined by (18).
When T → +∞, T (b̂T − b) converges in law under Pθ to L−1

R0
1

(
X0

1 − αId
)
, where (X0

t )t>0 is

the solution to X0
t = αtId +

∫ t
0

√
X0
sdWs + dW>s

√
X0
s and R0

t =
∫ t

0 X
0
sds.
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Proof. From (18), we have T b̂T = L−1
RT
T2

(
XT
T −

x
T − αId

)
. Let V and V ′ be defined by (42).

Similarly to (41), we have by Proposition 5.1 for λ1, λ2 ∈ S+,∗
d

Eθ
[
exp

(
−Tr

[
λ2

T
XT

]
− Tr

[
λ1

T 2
RT

])]
=

1

det[V ]
α
2

exp
(
− 1

2T
Tr
[
V ′V −1x

])
→

T→+∞

1

det[V ]
α
2

.

This gives the convergence in law of
(
XT
T , RT

T 2

)
to (X0

1 , R
0
1) and then the claimed result.

3.2.2 Case b = b0Id, b0 > 0.

In this case b = b0Id with b0 > 0. In order to identify the speed of convergence and the limit
law, we use the Laplace transform approach. We have the following result,

Theorem 3.4. Assume that b = b0Id, b0 > 0, and α > d − 1. For T > 0 let b̂T defined by
(18). When T → +∞, exp(b0T )(b̂T − b) converges in law under Pθ to L−1

X

(√
XG̃ + G̃

√
X
)

where X ∼WISd

(
x

2b0
, α, 0, Id;

1
4b20

)
and G̃ is an independent d-square matrix whose elements

are independent standard Normal variables.

The proof of this results relies on the explicit calculation of the Laplace transform of
(XT , RT ) and is postponed to Subsection 5.2.

Obviously, the case b = b0Id is very particular. One would like to consider more general
nonergodic cases or ideally to be able to state a general convergence results of b̂T towards b
for any b ∈ Sd. Despite our efforts, we have not been able to get such a result. The reason
why we can handle the ergodic case and the nonergodic case b = b0Id with b0 > 0 is that the
convergence of all the matrix terms occurs at the same speed, namely 1/

√
T for the ergodic

case, 1/T for b = 0 and e−b0T when b0 > 0. In the other cases, there is no such a simple
scalar rescaling. Heuristically, there may be different speeds of convergence that are difficult
to disentangle because of the different matrix products. To get an idea of this, we present
now the case of the estimation of b when b is known to be a diagonal matrix. In this case,
we obtain different speed of convergence for each diagonal terms.

3.2.3 The MLE of b when b is known a priori to be diagonal.

We assume that α > d−1 is known and that b is a diagonal matrix, i.e. b = diag(b1, · · · , bd).
We want to estimate the diagonal elements by maximizing the likelihood. We denote θ0 = (0, α).
As in (17), we have

Lθ,θ0T = exp
(Tr[bXT ]− Tr[bx]

2
− 1

2

∫ T

0
Tr[b2Xs]ds−

αT

2
Tr[b]

)
.

By differentiating this with respect to bi, 1 6 i 6 d, we get

∂biL
θ,θ0
T

Lθ,θ0T

=
1

2

(
(XT )i,i − xi,i − αtId − 2bi

∫ T

0
(Xs)i,ids

)
,

and therefore the MLE of b is given by

(b̂T )i =
(XT )i,i − xi,i − αT

2(RT )i,i
. (45)
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We therefore obtain

(b̂T )i − bi =
(XT )i,i − xi,i − αT − 2bi(RT )i,i

2(RT )i,i
. (46)

Let us observe that this estimator is precisely the one obtained by Ben Alaya and Kebaier [5]
for the CIR process. This is not very surprising since we know from (4), (2) and b diagonal
that there exists independent Brownian motions βi, 1 6 i 6 d such that

d(Xt)i,i = (α+ 2bi(Xt)i,i)dt+ 2
√

(Xt)i,idβ
i
t.

Thus, the diagonal elements follow independent CIR processes, and the observation of the
non diagonal elements does not improve the ML estimation. We can obtain the asymp-
totic convergence by applying Theorem 1 in [4], up to a small correction in the nonergodic
case which is given by our Theorem 3.4 in dimension d = 1. This yields to the following
proposition.

Proposition 3.1. Let α > d − 1 and b a diagonal matrix. Let εt = diag(ε1t , · · · , εdt ) be a
diagonal matrix with

εit =

 t−
1
2 if bi < 0

t−1 if bi = 0
exp(−bit) if bi > 0

Then, under Pθ, ε−1
T diag((b̂T )1− b1, · · · , (b̂T )d− bd) converges in law to a diagonal matrix D

made with independent elements. Each diagonal element Di is distributed as follows:

∀i ∈ {1, · · · , d}, Di =
law



√
−2bi
α G if bi < 0

X0
1−α

2R0
1

if bi = 0
G√

X
xi,i/(2bi)

1/(4b2
i
)

, if bi > 0

where Xx
t = x+ αt+ 2

∫ t
0

√
Xx
s dWs, R0

t =
∫ t

0 X
0
sds, and G ∼ N (0, 1) is independent of X.

4 Optimality of the MLE

In parametric estimation theory, a fundamental role is played by the local asymptotic nor-
mality (LAN) property since the work of Le Cam [24]. This general concept developed by
Le Cam is extended later by Le Cam and Yang [25] and Jeganathan [22] to local asymp-
totic mixed normality (LAMN) and local asymptotic quadraticity (LAQ) properties. These
notions are mainly dedicated to study the asymptotic efficiency of estimators of a given para-
metric model. The aim of this section is to check the validity of either LAN, LAMN or
LAQ properties for the global model in order to get the asymptotic efficiency of our max-
imum likelihood estimators studied in the previous section. Here we prove these properties
only for the global model θ = (b, α) when b is known to be symmetric. The same technique
applies for all the other cases considered in this paper where we have been able to obtain the
corresponding local asymptotic property.
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Let us consider the Wishart process (Xt)t>0 ∈ S+
d with parameters θ := (b, α), with

α ≥ d+ 1 and b ∈ Sd.{
dXt = [αI + bXt +Xtb] dt+

√
XtdWt + dW>t

√
Xt, t > 0

X0 ∈ S+
d .

(47)

We recall that Pθ denotes the distributions induced by the solutions of (47) on canonical
space C(R+,S+

d ) with the natural filtration FXt := σ(Xs, s ≤ t) and Pθ,t = Pθ |FXt denotes
the restriction of Pθ on the filtration Ft.

For α̃ ≥ d+ 1 and b̃ ∈ S+
d , we set θ̃ = (b̃, α̃),

Ht =
α̃− α

2
(
√
Xt)
−1 + (b̃− b)

√
Xt,

and we introduce the log-likelihood function

`θT (θ̃) = log

(
dPθ̃,T
dPθ,T

)
=

∫ T

0
Tr[HsdWs]−

1

2

∫ T

0
Tr[HsH

>
s ]ds (48)

The process (W̃t = Wt −
∫ t

0 H
>
s ds, t ≤ T ) is a d × d-Brownian motion under Pθ̃,T . In

the sequel, let us introduce the quantity δT := (δ1,T , δ2,T ) ∈ R2 where for i ∈ {1, 2} the
localizing rates satisfy |δi,T | → 0 when T → ∞. For all u := (u1, u2) ∈ R × Sd, we define
δT · u := (δ1,Tu1, δ2,Tu2) ∈ R× Sd. Now, we rewrite (48) with θ̃ = θ + δT · u

`θT (θ + δT · u) =

∫ T

0
Tr

[
δ1,Tu1(

√
Xs)

−1

2
dWs + δ2,Tu2

√
XsdWs

]
−1

2

∫ T

0
Tr [δ2,Tu2Xsδ2,Tu2] ds− T

2
δ1,Tu1 Tr [δ2,Tu2]

−1

8

∫ T

0
(δ1,Tu1)2 Tr

[
(Xs)

−1
]
ds.

Hence, by using the definitions (13), (23) and (24) of the martingales processes (Nt)t≥0 and
(Mt)t≥0 and the processes (Rt)t≥0 and (Qt)t≥0, it is easy to check that

`θT (θ + δT · u) =
1

2

(
δ1,Tu1NT + Tr

[
δ2,Tu2MT

])
− 1

2
Tr [δ2,Tu2RT δ2,Tu2]

−T
2
δ1,Tu1 Tr [δ2,Tu2]− 1

8
(δ1,Tu1)2(QT )−1

= ΛT (u)− 1

2
ΓT (u), (49)

where ΛT (u) = 1
2

(
δ1,Tu1NT + Tr

[
δ2,Tu2MT

])
is a linear random function with respect to

u ∈ R× S+
d with quadratic variation

ΓT (u) = δ2
2,T Tr[u2

2RT ] + Tδ1,T δ2,Tu1 Tr [u2] +
1

4
δ2

1,Tu
2
1Q
−1
T .
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4.1 Case −b ∈ S+
d and α > d+ 1

We first consider α > d+ 1. In this ergodic case, we set δi,T = T−1/2 for i ∈ {1, 2}, and we
get from (19) and (21)

ΓT (u)
a.s.−→ Γ∞(u) := Tr

[
u2

2R∞
]

+ u1 Tr [u2] +
1

4
u2

1 Tr
[
(Q∞)−1

]
, as T → +∞. (50)

This yields the validity of the so called Raykov type condition. Hence, according to Theorem 1
in [28], relations (49) and (50) ensure the validity of the local asymptotic normality (LAN)
property, that is under Pθ we have

(ΛT (u),ΓT (u))⇒
(

Γ
1/2
∞ (u)Z,Γ∞(u)

)
, as T →∞, (51)

with Z a standard normal real random variable. It is worth noting that the above convergence
can also be obtained using the proof of Theorem 2.1. In fact, we have already proven that
under Pθ (

NT√
T
,
MT√
T

)
⇒ (G̃, H̃) (52)

where (G̃, H̃) is a centered Gaussian vector taking values in R× S+
d such that

Eθ(G̃i,jG̃k,l) =
[
δjl(R∞)i,k + δjk(R∞)i,l + δil(R∞)j,k + δik(R∞)j,l

]
,

Eθ(G̃i,jH̃) = 2δi,j and Eθ(H̃2) = Q
−1
∞ .

Therefore, LAN property (51) follows from relations (50) and (52).
We now consider the case α = d+ 1 and set δ1,T = T−1 and δ2,T = T−1/2. By using (33),

we get that under Pθ,

(ΛT (u),ΓT (u))⇒
(
−u1

2
Tr[b] + Tr

[
u2

√
R∞G̃

]
,Tr[u2

2R∞] +
1

4
u2

1τ−Tr[b]

)
, as T →∞,

where τ−Tr[b]
is defined as in Theorem 2.2 and G̃ is an independent matrix, whose elements

G̃i,j , 1 6 i, j 6 d, are independent standard normal variables. Hence, according to Le Cam
and Yang [25] and Jeganathan [22] this last convergence yields the LAQ property for this
ergodic case.

4.2 Case b = 0 and α > d+ 1

We first assume α > d+ 1. From (47) with b = 0 and (23), we have MT = XT − x− αIdT .
From (43), it follows that as T →∞(

NT√
log(T )

,
MT

T
,
RT
T 2

,
Q−1
T

log(T )

)
⇒

(√
d

α− (d+ 1)
G,X0

1 − αId, R0
1,

d

α− (d+ 1)

)
,

where X0
1 and R0

1 are defined as in Theorem 3.1. Thus, in the same way as in the previous
case if we set δ1,T = 1√

log(T )
and δ2,T = T−1, then (ΛT (u),ΓT (u)) converges in law under Pθ

to(
1

2

√
d

α− (d+ 1)
u1G+

1

2
Tr
[
u2(X0

1 − αId)
]
,Tr

[
u2

2R
0
1

]
+

u2
1d

4(α− (d+ 1))

)
, as T →∞.
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This ensures the validity of the LAQ property in this non-ergodic case.
When α = d+ 1, we use the notation of Theorem 3.2 and get from (44)(

NT

log(T )
,
MT

T
,
RT
T 2

,
Q−1
T

log(T )2

)
⇒

(
d

2
, X0

1 − αId, R0
1,

(
d

2

)2

τ1

)
.

With δ1,T = 1
log(T ) and δ2,T = T−1, we get that (ΛT (u),ΓT (u)) converges in law under Pθ to(
d

4
u1 +

1

2
Tr[u2(X0

1 − αId)],Tr
[
u2

2R
0
1

]
+
d2u2

1

8
τ1

)
, as T →∞.

This gives again the LAQ property.

5 The Laplace transform and its use to study the MLE

5.1 The Laplace transform of (XT , RT )

We present our main result on the joint Laplace transform of (XT , RT ), that can be of
independent interest. This Laplace transform is given by Bru [7], eq. (4.7) when b = 0 and
has been recently studied and obtained explicitly by Gnoatto and Grasselli [17]. Here, we
present another proof that enables us to get the Laplace transform for any α > d− 1, as well
as a more precise result concerning its set of convergence, see Remarks 5.1 and 5.2 below for
a further discussion.

Proposition 5.1. Let α > d− 1, x ∈ S+
d , b ∈ Sd and X ∼ WISd(x, α, b, Id). Let v, w ∈ Sd

be such that
∃m ∈ Sd,

v

2
−mb− bm− 2m2 ∈ S+

d and
w

2
+m ∈ S+

d . (53)

Then, we have for t > 0

E
[

exp
(
− 1

2
Tr[wXt]−

1

2
Tr[vRt

])]
=

exp
(
− α

2 Tr[b]t
)

det[Vv,w(t)]
α
2

exp
(
− 1

2
Tr
[
(V ′v,w(t)Vv,w(t)−1 + b)x

])
, (54)

with

Vv,w(t) =

( ∞∑
k=0

t2k+1 ṽk

(2k + 1)!

)
w̃ +

∞∑
k=0

t2k
ṽk

(2k)!
, ṽ = v + b2, and w̃ = w − b.

If besides ṽ = v + b2 ∈ S+,∗
d , we have Vv,w(t) = (

√
ṽ)−1 sinh(

√
ṽt)w̃ + cosh(

√
ṽt) and then

V ′v,w(t) = cosh(
√
ṽt)w̃ + sinh(

√
ṽt)
√
ṽ.

Before proving this result, we recall the following fact:

∀x, y ∈ S+
d , Tr[xy] > 0, (55)

which is clear once we have observed that Tr[xy] = Tr[
√
xy
√
x] and

√
xy
√
x ∈ S+

d . We also
recall a result on matrix Riccati equations, see Dieci and Eirola [11] Proposition 1.1.
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Lemma 5.1. Let b̃ ∈ Sd and δ̃ ∈ S+
d . Let ξ denote the solution of the following matrix

Riccati differential equation

ξ′ + 2ξ2 = b̃ξ + ξb̃+ δ̃, ξ(0) ∈ Sd. (56)

If ξ(0) ∈ S+
d , the solution ξ is well-defined for any t > 0 and satisfies ξ(t) ∈ S+

d .

Proof of Proposition 5.1. Let T > 0 be given. We first assume w, v ∈ S+
d , which ensures that

E
[
exp

(
−1

2 Tr[wXT + vRT ]
)]
<∞. We consider the martingale

Mt = E
[
exp

(
−1

2
Tr[wXT + vRT ]

) ∣∣∣∣Ft] , t ∈ [0, T ].

Due to the affine structure, we are looking for smooth functions β : R+ → R, γ, δ : R+ → Sd
such that

Mt = exp (β(T − t) + Tr[γ(T − t)Xt] + Tr[δ(T − t)Rt]) .

We necessarily have β(0) = 0, γ(0) = −w/2 and δ(0) = −v/2. Itô’s formula gives

dMt

Mt
=
{
− β′(T − t)− Tr[γ′(T − t)Xt]− Tr[δ′(T − t)Rt] + Tr[γ(T − t)(αId + bXt +Xtb)]

+ Tr[δ(T − t)Xt] + 2 Tr[γ(T − t)2Xt]
}
dt+ Tr[γ(T − t)(

√
XtdWt + dW>t

√
Xt)].

Since M is a martingale, the drift term should vanish almost surely. The drift term being
a (deterministic) affine function of (Xt, Rt), we obtain the following system of differential
equations:

δ′ = 0, (57)

− γ′ + γb+ bγ + 2γ2 + δ = 0, (58)
− β′ + αTr[γ] = 0. (59)

The first equation gives δ(t) = −v/2. The second equation is a matrix Riccati differential
equation. We now consider ξ = m−γ with m satisfying (53). It solves (56) with b̃ = b+ 2m,
δ̃ = −bm −mb − 2m2 + v/2 and ξ(0) = m + w/2. We know then by Lemma 5.1 that ξ is
well defined for any t > 0 and stays in S+

d . In particular, γ is well defined for any t > 0.
We set γ̃ = γ + 1

2b. We have γ2 = γ̃2 − 1
2(bγ̃ + γ̃b) + 1

4b
2 and thus γ̃ solves the following

matrix Riccati differential equation:

γ̃′ = 2γ̃2 − 1

2
ṽ, γ̃(0) = −1

2
w̃, with ṽ = v + b2 and w̃ = w − b.

We set M(t) =

[
M1(t) M2(t)
M3(t) M4(t)

]
= exp

(
t

[
0 −ṽ/2
−2Id 0

])
∈M2d and get by Levin [26]

that

γ̃(t) =

[
M2(t)− 1

2
M1(t)w̃

] [
M4(t)− 1

2
M3(t)w̃

]−1

.

We check that the matrix M4(t)− 1
2M3(t)w̃ is indeed invertible. In fact, let

τ = inf

{
t > 0, det

[
M4(t)− 1

2
M3(t)w̃

]
= 0

}
.
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We have τ > 0 and for t ∈ [0, τ), d
dt [M4(t)− 1

2M3(t)w̃] = −2
[
M2(t)− 1

2M1(t)w̃
]
and thus

d

dt
det

[
M4(t)− 1

2
M3(t)w̃

]
= −2 det

[
M4(t)− 1

2
M3(t)w̃

]
Tr[γ̃(t)].

This gives det
[
M4(t)− 1

2M3(t)w̃
]

= exp(−2
∫ t

0 Tr[γ̃(s)]ds) > 0, and we necessary get τ = +∞
since γ and thus γ̃ is well defined for t > 0.

Since[
0 −ṽ/2
−2Id 0

]2k

=

[
ṽk 0
0 ṽk

]
and

[
0 −ṽ/2
−2Id 0

]2k+1

=

[
0 −ṽk+1/2
−2ṽk 0

]
,

we get

M1(t) = M4(t) =
∞∑
k=0

t2kṽk

(2k)!
, M2(t) = −1

2

∞∑
k=0

t2k+1ṽk+1

(2k + 1)!
, M3(t) = −2

∞∑
k=0

t2k+1ṽk

(2k + 1)!
.

If ṽ = v + b2 ∈ S+,∗
d ,

√
ṽ is well defined and we have M1(t) = M4(t) = cosh(t

√
ṽ),

M2(t) = −1
2

√
ṽ sinh(t

√
ṽ) and M3(t) = −2(

√
ṽ)−1 sinh(t

√
ṽ). Now, we define

V (t) = M4(t)− 1

2
M3(t)w̃ =

( ∞∑
k=0

t2k+1 ṽk

(2k + 1)!

)
w̃ +

∞∑
k=0

t2k
ṽk

(2k)!
.

Since V ′(t) = −2M2(t) +M1(t)w̃, we obtain that

γ̃(t) = −1

2
V ′(t)V (t)−1 and thus γ(t) = −1

2

(
V ′(t)V (t)−1 + b

)
.

Last, we have β′(t) = −1
2αTr[V ′(t)V (t)−1]− 1

2αTr[b] and we obtain that

β(t) = −1

2
α log(det[V (t)])− 1

2
αTr[b]t,

since d det[V (t)]
dt = det[V (t)] Tr[V ′(t)V (t)−1].

It remains to show that we indeed have (54) for v and w satisfying (53). We define

Et =
exp(β(T−t)+Tr[γ(T−t)Xt]+Tr[− v

2
Rt])

exp(β(T )+Tr[γ(T )x]) . By Itô’s formula, we have

dEt
Et

= Tr[γ(T − t)(
√
XtdWt + dW>t

√
Xt)].

This is a positive local martingale and thus a supermartingale which gives E[ET ] 6 1, and we
want to prove that this is a martingale. To do so, we use the argument presented by Rydberg
in [34]. For L > 0, we define

τL = inf{t > 0,Tr[Xt] > L},

and πL(x) = x1Tr[x]6L + L
Tr[x]x1Tr[x]>L for x ∈ S+

d . We consider (ELt , t ∈ [0, T ]) the solution
of

dELt = ELt Tr[γ(T − t)(
√
πL(Xt)dWt + dW>t

√
πL(Xt))], EL0 = 1.
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We clearly have E[ELT ] = 1. Besides, under PL given by dPL
dP
∣∣
FT

= ELT , the process

dWL
t = dWt − 2

√
πL(Xt)γ(T − t)dt, t ∈ [0, T ],

is a matrix Brownian motion. Since Et = ELt for t 6 τL, we have E[ET ] = E[ELT 1τL>T ]+E[ET1τL6T ].
By Lebesgue’s theorem, we get E[ET1τL6T ] →

L→+∞
0. On the other hand, E[ELT 1τL>T ] = PL(τL > T ).

Let us consider the Wishart process X̃ starting from x such that

dX̃t =
[
αId + (b+ 2γ(T − t))X̃t + X̃t(b+ 2γ(T − t))

]
dt+

√
X̃tdWt + dW>t

√
X̃t.

We also define τ̃L = inf{t ∈ [0, T ],Tr[X̃t] > L} with convention inf ∅ = +∞. The process X̃
solves the same SDE on [0, τ̃L ∧ T ] under P as X on [0, τL ∧ T ] under PL. We therefore have

PL(τL > T ) = P(τ̃L > T ) →
L→+∞

1,

which finally gives E[ET ] = 1.

Corollary 5.1. Let Y ∼ WISd(y, α, b, a) be a Wishart process with parameters α > d − 1,
y ∈ S+

d , a, b ∈Md satisfying

ba>a = a>ab> and a invertible. (60)

Let v, w ∈ Sd be such that

∃m ∈ Sd,
1

2
awa> +m ∈ S+

d and
ava>

2
− ab>a−1m−m(a>)−1ba> − 2m2 ∈ S+

d . (61)

Then, we have

E
[
exp

(
−1

2
Tr

[
wYT + v

∫ T

0
Ysds

])]
=

exp
(
− α

2 Tr[b]t
)

det[Vv,w(t)]
α
2

exp
(
− 1

2
Tr
[
(V ′v,w(t)Vv,w(t)−1 + (a>)−1ba>)(a>)−1ya−1

])
,

with Vv,w(t) =
(∑∞

k=0 t
2k+1 ṽk

(2k)!

)
w̃ +

∑∞
k=0 t

2k ṽk

(2k)! and

ṽ = ava> + (a>)−1b2a>, and w̃ = awa> − (a>)−1ba>.

Proof. We know that Y =
law

a>Xa with x = (a>)−1ya−1 andX ∼WISd(x, α, (a
>)−1ba>, Id),

see e.g. equation (13) in [1]. We notice that (a>)−1ba> = ab>a−1 ⇐⇒ ba>a = a>ab> and
thus (a>)−1ba> ∈ Sd. We have

E
[
exp

(
−1

2
Tr

[
wYT + v

∫ T

0
Ysds

])]
= E

[
exp

(
−1

2
Tr

[
awa>XT + ava>

∫ T

0
Xsds

])]
,

which gives the result by applying Proposition 5.1.
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By setting m̃ = a−1m(a>)−1, the condition (61) is equivalent to the existence of m̃ ∈ Sd,
such that

1

2
w + m̃ ∈ S+

d and
v

2
− b>m̃− m̃b− 2m̃a>am̃ ∈ S+

d . (62)

The case m = 0 gives back the finiteness of the Laplace transform when v, w ∈ S+
d . If we

take m̃ = −w/2, we get also the finiteness when

v + b>w + wb− wa>aw ∈ S+
d . (63)

Another interesting choice is m = −1
2(a>)−1ba>. We have m ∈ Sd from (60). This choice

gives the finiteness of the Laplace transform when v+b>(a>a)−1b ∈ S+
d and w−(a>a)−1b ∈ S+

d .
Let us note that ṽ = a(v + b>(a>a)−1b)a> so that the first condition is the same as ṽ ∈ S+

d .
Another interesting choice of m is given by the next remark.

Remark 5.1. Proposition 5.1 extends the result of Gnoatto and Grasselli [17] to α > d− 1,
and the sufficient condition (61) that ensures the finiteness of the Laplace transform is also
less restrictive, which is crucial in our study especially in the nonergodic case. In particular,
it does not assume a priori that v+b>(a>a)−1b ∈ S+

d . We can recover the result of [17] as fol-
lows. Let us assume v+b>(a>a)−1b ∈ S+

d and takem = − (a>)−1ba>

2 +1
2

√
a(v + b>(a>a)−1b)a>.

We have m ∈ Sd from (60) and it satisfies ava>

2 − ab>a−1m−m(a>)−1ba>− 2m2 = 0 ∈ S+
d .

Therefore, (61) holds if

w − (a>a)−1b+ a−1
√
a(v + b>(a>a)−1b)a>(a>)−1 ∈ S+

d .

This is precisely the condition stated in [17].

Remark 5.2. It is possible to get similarly the Laplace transform of
(
YT ,

∫ T
0 Ysds

)
when Y

solves
dYt =

[
α+ bYt + Ytb

>
]
dt+

√
Y tdWta+ a>dW>t

√
Y t, Y0 = y ∈ S+

d ,

with a, b satisfying (60) and α − (d − 1)a>a ∈ S+
d . Again, equation (13) in [1] gives

Y =
law

a>Xa, where

dXt =
[
α̂+ b̂Xt +Xtb̂

>
]
dt+

√
XtdWt + dW>t

√
Xt, X0 = x,

with x = (a>)−1ya−1 ∈ Sd, b̂ = (a>)−1ba> ∈ Sd and α̂ = (a>)−1αa−1 ∈ Sd. Repeating the
proof of Proposition 5.1, we observe that the Riccati equation (58) and equation (57) remain
unchanged while (59) is replaced by

β′ = Tr[α̂γ] = −1

2
Tr[α̂V ′(t)V (t)−1]− 1

2
Tr[α̂b̂].

Therefore, we deduce that under the same condition (61), we have

E
[
exp

(
−1

2
Tr

[
wYT + v

∫ T

0
Ysds

])]
= exp(β(T )) exp

(
− 1

2
Tr
[
(V ′v,w(t)Vv,w(t)−1 + (a>)−1ba>)(a>)−1ya−1

])
,
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with β(t) = −1
2

∫ t
0 Tr[(a>)−1αa−1V ′v,w(s)Vv,w(s)−1]ds − t

2 Tr[α(a>a)−1b] and Vv,w(t) defined
as in Corollary 5.1. Thus, the formula is no longer totally explicit. In Gnoatto and Gras-
selli [17], the result is stated with Tr[(a>)−1αa−1 log(Vv,w(t))] instead of the first integral.
However, this replacement does not seem clear to us unless V ′v,w(s) and Vv,w(s) commute for
all s > 0 (this happens when the matrices ṽ and w̃ in Vv,w commute) or α = αa>a by using
the trace cyclic theorem.

Corollary 5.2. Let Y ∼ WISd(y, α, b, a) be a Wishart process with parameters such that
ba>a = a>ab> and a invertible. Then,

∀u ∈ Sd, E
[
exp

(∫ T

0
Tr[u

√
YsdWsa]ds− 1

2

∫ T

0
Tr[auYsua

>]ds

)]
= 1.

Proof. We have 2
∫ T

0 Tr[u
√
YsdWsa]ds = Tr[u(YT−y)]−αT Tr[ua>a]−Tr

[
(ub+ b>u)

∫ T
0 Ysds

]
.

We apply Corollary 5.1 with w = −u and v = ub + b>u + ua>au. Therefore, (63) holds.
We then have w̃ = −(aua> + (a>)−1ba>) and ṽ = w̃2 and the result follows by simple
calculations.

5.2 Study of the MLE of b with the Laplace transform

We consider ε : R+ → R∗+ a (deterministic) decreasing function such that limt→+∞ εt = 0.
From the definition of the MLE of b (18), we get that

1

εT
(b̂T − b) = L−1

ε2TRT
(εT [XT − x− αTId − bRT −RT b]).

Thus, we want to calculate the Laplace transform of (εT [XT −x−αTId− bRT −RT b], ε2TRT )

in order to study the convergence of 1
εT

(b̂T − b). For λ1, λ2 ∈ Sd, we define

E(T, λ1, λ2) := Eθ
[

exp
(
− εT Tr[λ2(XT − x− αTId − bRT −RT b)]− ε2T Tr[λ1RT ]

)]
(64)

= exp (εT Tr[λ2(x+ αTId)])Eθ
[

exp
(
− Tr[εTλ2XT ]− Tr[(ε2Tλ1 − εT (λ2b+ bλ2))RT ]

)]
.

(65)

We now consider λ1, λ2 ∈ Sd such that

λ1 − 2λ2
2 ∈ S

+,∗
d . (66)

We define

vT = 2λ1ε
2
T − 2(bλ2 + λ2b)εT , ṽT = vT + b2, wT = 2λ2εT , w̃T = wT − b, (67)

and have vT + bwT + wT b− w2
T = ε2T (2λ1 − 4λ2

2) ∈ S+,∗
d . Thus, by applying Proposition 5.1

with m = −εTλ2, we get that E(T, λ1, λ2) is finite and given by

E(T, λ1, λ2) =
exp

(
− α

2 Tr[b]T
)

det[VvT ,wT (T )]
α
2

exp
(
− 1

2
Tr
[
(V ′vT ,wT (T )VvT ,wT (T )−1 + b)x

])
× exp

(
εT Tr

[
λ2(x+ αTId)

])
(68)
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with

VvT ,wT (T ) =(
√
ṽT )−1 sinh(

√
ṽTT )w̃T + cosh(

√
ṽTT )

V ′vT ,wT (T ) = cosh(
√
ṽTT )w̃T + sinh(

√
ṽTT )

√
ṽT .

Besides, we have ṽT = (b− 2εTλ2)2 + ε2T (2λ1 − 4λ2
2) ∈ S+,∗

d .
When −b ∈ S+,∗

d and εT = 1/
√
T , we can make explicit calculations and get

lim
T→+∞

E(T, λ1, λ2) = exp(−Tr[λ1R∞]− Tr[2λ2
2R∞]),

which gives another mean to prove Theorem 2.4. Here, we prove Theorem 3.4.

Proof of Theorem 3.4. Here, we focus on the case b = b0Id with b0 > 0 and set εT = e−b0T .
Since the square root function is analytic on the set of positive definite matrices (see e.g.
[33], p. 134) we get that√

ṽT = b0Id − 2εTλ2 +
ε2T
b0

(λ1 − 2λ2
2) +O(ε3T ),

since the squares of each sides coincides up to aO(ε3T ) term. We observe that w̃T = 2εTλ2−b0Id,
and thus

√
ṽT + w̃T =

ε2T
b0

(λ1 − 2λ2
2) +O(ε3T ).

We now write

VvT ,wT (T ) =(
√
ṽT )−1

[
1

2
exp(

√
ṽTT )(

√
ṽT + w̃T ) +

1

2
exp(−

√
ṽTT )(

√
ṽT − w̃T )

]
V ′vT ,wT (T ) =

1

2
exp(

√
ṽTT )(

√
ṽT + w̃T ) +

1

2
exp(−

√
ṽTT )(w̃T −

√
ṽT ).

Since εT exp(
√
ṽTT ) →

T→+∞
Id, we get 1

εT
VvT ,wT (T ) →

T→+∞
1
b0

[
1

2b0
(λ1 − 2λ2

2) + b0Id

]
and

1
εT
V ′vT ,wT (T ) →

T→+∞
1

2b0
(λ1 − 2λ2

2)− b0Id. This yields to

V ′vT ,wT (T )VvT ,wT (T )−1 + b0Id −→
T→+∞

(λ1 − 2λ2
2)

(
1

2b0
(λ1 − 2λ2

2) + b0Id

)−1

.

We also have
exp
(
−α

2
Tr[b0Id]T

)
det[VvT ,wT (T )]

α
2

= 1

det[ε−1
T VvT ,wT (T )]

α
2
→

T→+∞
1

det
[

1
b0

[
1

2b0
(λ1−2λ2

2)+b0Id

]] , and there-

fore

lim
T→+∞

E(T, λ1, λ2) =

exp

(
− 1

2b0
Tr

[
(λ1 − 2λ2

2)
(

1
2b20

(λ1 − 2λ2
2) + Id

)−1
x

])
det
[

1
2b20

(λ1 − 2λ2
2) + Id

] . (69)

We now want to identify the limit. We know that X ∼ WISd

(
x

2b0
, α, 0, Id;

1
4b20

)
has the

following Laplace transform

u ∈ S+
d ,E[exp(−Tr[uX])] =

exp
(
−Tr

[
u(Id + 1

2b20
u)−1 x

2b0

])
det[Id + 1

2b20
u]

.
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Let G̃ denote a d-square matrix independent from X, whose entries are independent and
follow a standard Normal distribution. By Lemma B.4, we have

E[exp(−Tr[λ1X + λ2(
√
XG̃ + G̃

√
X)])] = E[exp(−Tr[(λ1 − 2λ2

2)X])].

Thus, (69) shows the convergence in law of
(
εT (XT − x− αTId − bRT −RT b), ε2TRT

)
to(

X,
√
XG̃ + G̃

√
X
)
under Pθ, which gives the claim of Theorem 3.4.

6 Numerical Study

In this section, we test the convergence of the MLE given by (15) and (18). To do so, we
consider a given large value of T and simulate the Wishart process exactly on the regular time
grid ti = iT

N , i = 0, · · · , N . This can be done by using the method presented in Ahdida and
Alfonsi [1], see also Alfonsi [3]. We take N sufficiently large and approximate the integrals RT
and Q−1

T applying the trapezoidal rule along this time grid. Thus, we will use the estimator
with the exact value of XT and these approximated values of RT and Q−1

T .
This section has three goals. First, we check numerically the convergence results that

we have obtained. Second, we investigate numerically the convergence of the MLE in some
nonergodic cases, where no theoretical result of convergence have been found. Last, we test
the estimation of the parameters of a full Wishart process (1). To do so, we estimate first a
with the quadratic variation and then the parameters α and b by using the MLE (15) on the
process (a>)−1Xa−1.

6.1 Numerical validation of the convergence results

Using the method mentioned above, we have checked the convergence results obtained in
this paper. Namely, we sample M = 10000 independent paths of X in order to draw an
histogram of the properly rescaled value of b̂i,j − bi,j or α̂−α. We do not reproduce all these
graphics here, and present for example in Figure 1 an illustration of the convergence given
by Theorem 3.4.
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(a) Limit law of exp(0.05T )(b− b̂T )1,1.
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(b) Limit law of exp(0.05T )(b− b̂T )1,2.

Figure 1: Asymptotic law of the error for the estimation of θ = b with for: x = ( 0.5 0.1
0.1 0.3 ),

T = 100, N = 10000, α = 4.5 and b = 0.05Id.
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6.2 Experimental convergence in a nonergodic case

In this paragraph, we try to guess the asymptotic behavior of the MLE in a nonergodic
case, where no theoretical convergence result is known. Namely, we observe in Figure 2
the asymptotic estimation error, when b = diag(0.1, 0.005) is diagonal with positive and
distinct terms on its diagonal and when we use the estimator (18). As one might have
guess, the convergence of the diagonal terms seems to be with an exponential rate, with the
exponential speed corresponding to its value. Namely, b̂11 seems to converge to b11 with a
speed of exp(0.1T ) while b̂22 seems to converge to b22 with a speed of exp(0.005T ). More
interesting is the antidiagonal term. One could have imagine that the convergence rate is
the slowest of these two rates. Instead, on our experiment, the convergence of b̂12 towards
b12 seems to happen with the rate exp(0.1T ). We have observed the same behaviour for
other parameter values. Of course, it would be hasty to draw a global conclusion from few
particular experiments. However, it is interesting to note that these numerical tests are a
way to guess or check the convergence rate of the MLE.
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Figure 2: Asymptotic law of the error for the estimation of θ = b with x =( 0.3 0.1
0.1 0.2 ), T = 100,

N = 10000, α = 3.5 and b = diag(0.1, 0.005).

6.3 Estimation of the whole Wishart process

In this last part of the numerical study, we perform the estimation of all the parameters of the
Wishart process (1). We consider a case where a is upper triangular and (a>)−1ba> is sym-
metric. We proceed as follows. First, we sample exactly a discrete path (XiT/N , 0 6 i 6 N).
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Then, we estimate the matrix a>a by using (3), where the quadratic variations are replaced
by their classical approximations and the integrals are replaced by the trapezoidal rule. By
a Cholesky decomposition we get then an estimator â of a. Then, we use the MLE (15) on
the path ((â>)−1XiT/N â

>, 0 6 i 6 N). This gives an estimator of α and (a>)−1ba>, and
therefore an estimator of b. As a comparison, we also calculate similarly the estimator of
α and b when a is known and has not to be estimated. To draw histograms or calculate
empirical expectations, we run M = 10000 independent paths of X.

We consider a sufficiently large value of T and are interested in looking at the convergence
with respect to N . First, we plot the the error on the estimator of a with respect to the
number of time step in Log-Log scale. We observe that the convergence to zero takes place
with experimental rate close to 1/2. This is in line with the general results on the estimation
of the diffusion coefficient, see Dohnal [12] and Genon-Catalot and Jacod [15]. Then, we
focus on the influence of the discretization and the unknown parameter a on the convergence
of the MLE of b and α. In Table 1, we give in function of N the Mean Squared Error
MSE(θ̂N |θ) = E[|θ̂N − θ|2] of the estimator θ̂N , with θ = (b, α). It is estimated with the
empirical expectation. First, we observe that the convergence of the estimator of α is roughly
the same whether we know a or not. This is expected since the estimation of α does not
depend on the estimation of a. Instead, the bias on b is much higher when a is estimated
than when a is known. However, it decreases also faster at an experimental order of 0.7 while
the bias when a is known decreases at an experimental order of 0.45. This latter rate is in
line with the rate of 1/2 obtained in dimension 1 by Ben Alaya and Kebaier [5]. In our case,
it seems that the influence of the estimation of a vanishes around N = 5000. Last, we have
plotted in Figure 4 the limit law of the estimator

√
T (θ̂N − θ) with N = 10000.

This short numerical study shows that the estimator obtained by discretizing the con-
tinuous time estimator is efficient in practice. Of course, it would be nice to obtain general
convergence results in function of T and N , but we leave this for further research.
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Figure 3: Log-Log representation of the empirical expectation of E[Tr[(a − âN )2]]1/2 for
x =( 0.8 0.5

0.5 1 ), T = 100, a =( 1 1
0 2 ), α = 4.5, b =

(−1 0.2
2 −2

)
, where the line is the simple linear

regression i.e. log(E[Tr[(a− âN )2]]1/2) ≈ 2.62− 0.58 log(N).
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Number of time steps 20 50 100 200 500 1000 2000 5000
E[Tr[(a− âN )2]]1/2 1.7671 1.4311 1.1487 0.7913 0.4107 0.2472 0.1514 0.0846

â = a 0.0745 0.0338 0.0181 0.0115 0.0082 0.0069 0.0061 0.0058
MSE(̂bN1,1|b1,1) â = âN 0.7636 0.5266 0.3489 0.1891 0.0624 0.0273 0.0142 0.0085

â = a 0.2554 0.1310 0.0664 0.0372 0.0231 0.0176 0.0153 0.0139
MSE(̂bN2,2|b2,2) â = âN 3.4085 2.8722 2.1159 1.1995 0.3600 0.1264 0.0480 0.0201

â = a 0.0075 0.0033 0.0017 0.0011 0.0008 0.0008 0.0007 0.0007
MSE(̂bN1,2|b1,2) â = âN 0.0442 0.0568 0.0596 0.0352 0.0148 0.0075 0.0039 0.0019

â = a 0.8448 0.3579 0.1993 0.1151 0.0614 0.0416 0.0308 0.0230
MSE(α̂N |α) â = âN 0.8267 0.3496 0.1895 0.1095 0.0617 0.0410 0.0311 0.0234

Table 1: Mean Squared Error for the estimation of θ = (b, α) with respect to N . Same
parameters as Figure 3.
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Figure 4: Asymptotic laws of the error for the estimation of θ = (b, α) for â = âN , N = 10000,
same parameters as Figure 3.
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A Proof of Proposition 1.1

We denote bs = (b+ b>)/2 (resp. ba = (b− b>)/2) the symmetric (resp. antisymmetric) part
of b. We have∫ T

0
Tr[(

√
Xs)

−1dWs] =
1

2
log

(
det[XT ]

det[x]

)
− Tr[b]T − 1

2

∫ T

0
(α− 1− d) Tr[X−1

s ]ds,∫ T

0
Tr[bs

√
XsdWs] =

1

2

∫ T

0
Tr[bs(

√
XsdWs + dW>s

√
Xs)]

=
Tr[bsXT ]− Tr[bsx]

2
− αT

2
Tr[bs]− 1

2

∫ T

0
Tr[bs(bXt +Xtb

>)]dt.

Thus, the only part to calculate is E
[
exp(

∫ T
0 Tr[−ba

√
XsdWs])

∣∣∣∣FXT ], and we setMa
t =

∫ t
0 Tr[ba

√
XsdWs].

We now observe that 〈Tr[AsdWs],Tr[BsdWs]〉 = Tr[AsB
>
s ]ds and are looking for the process

Γ that takes values in Sd and minimizes

〈dMa
t −Tr[Γt(dXt−(αId+bXt+Xtb

>)dt)]〉 =
{
−Tr[baXtb

a] + 2 Tr[Γt(Xtb
a − baXt)] + 4 Tr[Γ2

tXt]
}
dt.

We obtain that 2(Xtb
a − baXt) + 4(XtΓt + ΓtXt) = 0 and thus

Γt = L−1
Xt

(
1

2
(baXt −Xtb

a)

)
.

It satisfies Tr[Γt(Xtb
a − baXt)] = −2 Tr[Γt(ΓtXt + XtΓt)] = −4 Tr[Γ2

tXt]. By construction,
we have 〈dMa

t −Tr[Γt(dXt− (αId+ bXt+Xtb
>)dt)],Tr[Γ̃(dXt− (αId+ bXt+Xtb

>)dt)]〉 = 0
for any Γ̃ ∈ Sd. Thus, there exists a Brownian motion β independent of X such that
dMa

t − Tr[Γt(dXt − (αId + bXt + Xtb
>)dt)] =

√
−Tr[baXtba]− Tr[Γt(baXt −Xtba)]dβt. In

fact, both processes (Xt,
∫ t

0

√
−Tr[baXsba]− Tr[Γt(baXs −Xsba)]dβs) and

(Xt,M
a
t −

∫ t

0
Tr[Γs(

√
XsdWs + dW>s

√
Xs)])

solve the same martingale problem for which uniqueness holds. Therefore, we have

E
[
exp

(
−
∫ T

0
Tr[ba

√
XtdWt]

) ∣∣∣∣FXT ]
= exp

(∫ T

0
Tr
[
Γt((αId + bXt +Xtb

>)dt− dXt)
]
− 1

2

∫ T

0
Tr[baXtb

a] + Tr[Γt(b
aXt −Xtb

a)]dt

)
= exp

(
−
∫ T

0
Tr

[
L−1
Xt

(
1

2
(baXt −Xtb

a)

)
dXt

]
−
∫ T

0

1

2
Tr[baXtb

a]dt

+
1

2

∫ T

0
Tr

[
L−1
Xt

(
1

2
(baXt −Xtb

a)

)
(baXt −Xtb

a)

]
dt+

∫ T

0
Tr[baXtb

s]dt

)
,

since Tr
[
L−1
Xt

(
1
2(baXt −Xtb

a)
)]

= 1
2 Tr[X−1

t (baXt −Xtb
a)] = 0 by Lemma B.1 and

Tr[Γt(b
sXt +Xtb

s)] = Tr[bs(ΓtXt +XtΓt)] =
1

2
Tr [bs(baXt −Xtb

a)] = Tr[baXtb
s].
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Using (6) and the previous calculations, we obtain

Lθ,θ0T = exp
(α− α0

4
log

(
det[XT ]

det[x]

)
+

Tr[bsXT ]− Tr[bsx]

2
− 1

2

∫ T

0
Tr[(bs)2Xs]ds

−
∫ T

0
Tr[baXsb

s]ds− α− α0

4

(α+ α0

2
− 1− d

) ∫ T

0
Tr[X−1

s ]ds− αT

2
Tr[b]

+
1

2

∫ T

0
Tr
[
L−1
Xt

(baXt −Xtb
a) dXt

]
− 1

4

∫ T

0
Tr
[
L−1
Xt

(baXt −Xtb
a) (baXt −Xtb

a)
]
dt
)
.

Last, we use L−1
Xt

(bsXt +Xtb
s) = bs and Tr[L−1

Xt
(baXt −Xtb

a) (bsXt +Xtb
s)] = 2 Tr[baXtb

s]
to obtain (7).

B Technical lemmas

Lemma B.1. For X ∈ S+,∗
d and a > 0, let LX,a and LX = LX,0 be the linear appli-

cations defined by (12) on Sd. If aTr[X−1] 6= 1, then LX,a is invertible and we have
Tr[L−1

X,a(Y )] = Tr[X−1Y ]
2(1−aTr[X−1])

. Besides, the map (X,Y, a) 7→ L−1
X,a(Y ) is continuous on

{(X,Y, a) ∈ S+,∗
d × Sd × R+, aTr[X−1] 6= 1}.

Proof. The invertibility of LX,a is equivalent to its one-to-one property. Since X ∈ S+,∗
d ,

there exists an orthogonal matrix OX and a diagonal matrix DX with positive elements such
that X = OXDXO

>
X . We get

Y ∈ ker(LX,a) ⇐⇒ OXDXO
>
XY + Y OXDXO

>
X = 2aTr[Y ]Id

⇐⇒ DX(O>XY OX) = 2aTr[Y ]Id − (O>XY OX)DX . (70)

Since DX is diagonal, we obtain for 1 6 i, k 6 d,
(
(O>XY OX)DX

)
i,k

= (O>XY OX)i,k(DX)k,k

and
(
DX(O>XY OX)

)
i,k

= (DX)i,i(O
>
XY OX)i,k. For k 6= i, (70) gives (O>XY OX)i,k = 0. For

k = i, we get (O>XY OX)i,i(DX)i,i = aTr[Y ] and therefore

Tr[Y ] = Tr[O>XY OX ] = Tr[Y ]a
d∑
i=1

1

(DX)i,i
= Tr[Y ]aTr[X−1].

Since aTr[X−1] 6= 1, we obtain Tr[Y ] = 0 and then (O>XY OX)i,i = 0, which gives Y = 0 and
the invertibility of LX,a. Let c = L−1

X,a(Y ). We have c + X−1cX − 2aTr[c]X−1 = X−1Y ,
which gives 2(1−aTr[X−1]) Tr[c] = Tr[X−1Y ]. Last, the continuity property is obvious since
(X, a) 7→ LX,a is continuous and L 7→ L−1 is continuous on {L : Sd → Sd linear and invertible}.

Lemma B.2. For X ∈ S+,∗
d , LX is self-adjoint and positive definite:

Tr[LX(Y )Y ] ≥ 2λ(X) Tr[Y 2],

where λ(X) > 0 is the lowest eigenvalue of X. Besides, for a < 1/Tr[X−1], LX,a is self-
adjoint and positive definite.
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Proof. For Y,Z ∈ Sd, we have Tr[LX(Y )Z] = Tr[(XY+Y X)Z] = Tr[Y (XZ+ZX)] = Tr[Y LX(Z)]
and Tr[LX(Y )Y ] = 2 Tr[XY 2] ≥ 2λ(X) Tr[Y 2] since X − λ(X)Id ∈ S+

d . The self-adjoint
property is then clear for LX,a, and the positive definiteness comes from Lemma B.1 and the
continuity of the eigenvalues of LX,a with respect to a.

Lemma B.3. For X ∈ S+,∗
d , Y ∈ Md, L̄X(Y ) = L−1

X (Y X + XY >)X is self-adjoint and
positive. The linear application L̄X,a(Y ) = L−1

X (Y X + XY >)X − aTr[Y ]Id is also positive
for a < 1/Tr[X−1], and there is a positive cX,a > 0 such that

Tr[L̄X(Y )>Y ] ≥ cX,a Tr[(L−1
X (Y X +XY >))2].

Proof. Since L−1
X is self-adjoint, we have for Z ∈Md

Tr[L̄X(Y )>Z] = Tr[L−1
X (Y X +XY >)ZX] =

1

2
Tr[L−1

X (Y X +XY >)(ZX +XZ>)]

=
1

2
Tr[(Y X +XY >)L−1

X (ZX +XZ>)] = Tr[Y >L̄X(Z)].

Similarly, Tr[L̄X,a(Y )>Z] = Tr[L̄X(Y )>Z] − aTr[Y ] Tr[Z] = Tr[Y >L̄X,a(Z)]. Besides, we
notice that

Tr[L̄X,a(Y )>Y ] =
1

2

(
Tr[(Y X +XY >)L−1

X (Y X +XY >)]− 2aTr[Y ]2
)

=
1

2

(
Tr[LX,a(L−1

X (Y X +XY >))L−1
X (Y X +XY >)]

)
by Lemma B.1. This gives the claim since LX,a is positive definite by Lemma B.2.

The following lemma gives the Laplace transform of the matrix Normal distribution.

Lemma B.4. Let C ∈ S+,∗
d and C[C] ∈ (Rd)⊗4 defined by

C[C]i,j,k,l = δikCj,l + δilCj,k + δjkCi,l + δjlCi,k. (71)

We introduce the Md-valued random variables G̃ and G ∼ N (0,C[C]) of which compo-
nents are Normal random variables with mean 0 such that

∀i, j, k, l ∈ {1, . . . , d}, E[G̃i,jG̃k,l] = δikδjl, E[Gi,jGk,l] = C[C]i,j,k,l. (72)

We have the following results.

1. For all c ∈ Sd, E
[

exp(−Tr[cG])
]

= exp(2 Tr[c2C]).

2. For C̃ ∈Md such that C̃C̃> = C, C̃G̃ + G̃>C̃> and G have the same law.

3. Let X ∈ S+,∗
d . For c ∈ Sd, E[exp(−Tr[cL−1

X (
√
XG̃ + G̃>

√
X)])] = E[exp(Tr[cL−1

X (c)])
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Proof. We focus on the first point. For all c ∈ Sd, we have

E
[

exp(−Tr[cG])
]

= E
[

exp(−
∑

16i,j6d

ci,jGi,j)
]
.

Moreover,
∑

16i,j6d ci,jGi,j is a Normal random variable and its variance is given by

E
[( ∑

16i,j6d

ci,jGi,j

)2]
=

∑
16i,j,k,l6d

ci,jck,lC[C]i,j,k,l = 4 Tr[c2C].

It follows from the moment generating function of the Normal distribution that

E
[

exp(−Tr[cG])
]

= exp(2 Tr[c2C]).

To prove the second point it is sufficient to notice that Tr[c(C̃G̃ + G̃>C̃>)] = Tr[2cC̃G̃]
and

E
[( ∑

16i,j6d

(cC̃)i,jG̃i,j

)2]
=

∑
16i,j,k,l6d

(cC̃)i,j(cC̃)k,lδikδjl =
∑

16i,j6d

(cC̃)2
i,j = Tr[cC̃C̃>c].

For the third point, we set Z = L−1
X (
√
XG̃+G̃>

√
X) and haveXZ+ZX =

√
XG̃+G̃>

√
X.

We also introduce c̃ = L−1
X (c) and have c̃X +Xc̃ = c. Thus, we obtain

Tr[cZ] = Tr[(c̃X +Xc̃)Z] = Tr[c̃(
√
XG̃ + G̃>

√
X)]

and therefore E[exp(−Tr[cZ])] = exp(2 Tr[c̃2X]) = exp(Tr[c̃(c̃X +Xc̃)]) = exp(Tr[c̃c]).

C Some asymptotic behaviour of Wishart processes

Lemma C.1. Let X ∼ WISd(x, α, b, Id) with b ∈ Sd, x ∈ S+
d and α > d − 1. Then XT

converges in law when T → +∞ if and only if −b ∈ S+,∗
d . In this case, XT converges in law

to WISd(0, α, 0,
√
−b−1; 1/2).

Let X ∼ WISd(x, α, b, Id) with b ∈ Md, x ∈ S+
d and α > d − 1. If −(b + b>) ∈ S+,∗

d ,
q∞ :=

∫∞
0 esbesb

>
ds is well defined and XT converges in law to WISd(0, α, 0,

√
2q∞; 1/2).

Proof. Let us first consider the case −b ∈ S+,∗
d . From Proposition 4 in [2], we have for

v ∈ S+
d ,

E[exp(−Tr[vXT ])] =

exp

(
Tr

[
−v
(
Id + 2

(∫ T
0 e2bsds

)
v
)−1

eTbxeTb
])

det
[
Id + 2

(∫ T
0 e2bsds

)
v
]α/2

→
T→+∞

1

det [Id − b−1v]α/2
,

which is the Laplace transform ofWISd(0, α, 0,
√
−b−1; 1/2). Now, let us consider −b 6∈ S+,∗

d .
Then, there exists an eigenvector v ∈ Rd \ {0} such that bv = λv with λ > 0. Then, we have
d
dtE[v>Xtv] = αv>v + 2λE[v>Xtv], and therefore E[v>XT v] →

T→+∞
+∞.



C SOME ASYMPTOTIC BEHAVIOUR OF WISHART PROCESSES 36

In the case b ∈ Md with −(b + b>) ∈ S+,∗
d , we know that the norm of ebs decays

exponentially to 0 as s → +∞, see e.g. Problem 11.3.6 in Golub and Van Loan [18]. Using
again Proposition 4 in [2], we get that E[exp(−Tr[vXT ])] →

T→+∞
1

det[Id+2q∞v]α/2
.

Lemma C.2. • Assume α > d + 1 and b = 0. Then, Q−1
T

d log(T ) →
T→+∞

1
α−(d+1) a.s. Besides,

ZT
log(T ) converges almost surely to d, and we have

∀µ > 0, sup
T>2

E

[
exp

(
µ√

log(T )
NT

)]
<∞. (73)

• Assume α = d+ 1 and b = 0. Then, as T → +∞,
(

2
d log(T )

)2
Q−1
T converges in law to

τ1 = inf{t > 0, Bt = 1}, where B is a Brownian motion. Besides, ZT
log(T ) = 2NT

log(T ) converges
in probability to d, and we have

∀µ > 0, sup
T>2

E
[
exp

(
µ

log(T )
NT

)]
<∞. (74)

We mention that the results on the convergence for QT are given in Donati-Martin et
al. [13]. However, their proofs is in a working paper by the same authors that we have not
been able to find. For this reason, we present here an autonomous proof.

Proof. We first consider the case α > d + 1. We have dXt = αIddt +
√
XtdWt + dW>t

√
Xt

and thus

d(e−tXet−1) = [αId − e−tXet−1]dt+
√
e−tXet−1dW̃t + dW̃>t

√
e−tXet−1,

with dW̃t = e−t/2d(Wet−1). We observe that W̃ is a matrix Brownian motion, which gives
Y ∼ WISd(x, α,−Id/2, Id), where Yt = e−tXet−1 for t > 0. Using equation (25) to the
process Y , we get

1

t
log

(
det[Yt]

det[Y0]

)
= (α− 1− d)

1

t

∫ t

0
Tr[Y −1

s ]ds− d+
2

t

∫ t

0
Tr[

√
Y −1
s dW̃s]. (75)

Since Y is ergodic and 〈
∫ t

0 Tr[
√
Y −1
s dW̃s]〉 =

∫ t
0 Tr[Y −1

s ]ds, we get that the left hand side con-
verges in probability to zero and the right hand side converges a.s. to (α−1−d)E[Tr[Y −1

∞ ]]−d,
where Y∞ ∼ WISd(0, α, 0,

√
2Id; 1/2) is the stationary law of Y . Therefore, 1

t log
(

det[Yt]
det[Y0]

)
converges a.s. to zero. Since 1

t log
(

det[Yt]
det[Y0]

)
= 1

t log
(

det[e−tXet−1]

det[x]

)
= 1

t log
(

det[Xet−1]

det[x]

)
− d,

we get that ZT
log(T ) = 1

log(T ) log
(

det[XT ]
det[x]

)
converges a.s. to d when T → +∞.

Now, we use (25) taken at time T = et − 1 and Dubins-Schwarz theorem: there is a
Brownian motion β such that for all t > 0,

α− (1 + d)

Qet−1t
+

2βQ−1

et−1

t
=

1

t
log

(
det[Xet−1]

det[x]

)
.

This gives that α−(1+d)
Qet−1t

→
t→+∞

d a.s., and therefore Q−1
T

d log(T ) →
T→+∞

1
α−(d+1) , a.s.
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It remains to prove (73). From (25), we have NT = ZT
2 −

α−1−d
2 Q−1

T ≤ ZT
2 and thus

E
[
exp

(
µ√

log(T )
NT

)]
6 E

[(
det[XT ]
det[x]

) µ

2
√

log(T )

]
< ∞, since the moments of X are bounded.

Again we set t = log(T + 1), and for Λ ∈ [0, 1], we have from (75)

NT =

∫ T

0
Tr[

√
X−1
s dWs] =

∫ t

0
Tr[

√
Y −1
s dW̃s]

= Λ

∫ t

0
Tr[

√
Y −1
s dW̃s] + (1− Λ)

(
1

2
log

(
det[Yt]

det[x]

)
+
d

2
t− α− 1− d

2

∫ t

0
Tr[Y −1

s ]ds

)
.

By Cauchy-Schwarz inequality, we get

E

[
exp

(
µ√

log(T + 1)
NT

)]

≤e
µd(1−Λ)

2

√
tE

1
2

[(
det[Yt]

det[x]

)(1−Λ) µ√
t

]

× E
1
2

[
exp

(
2µΛ√
t

∫ t

0
Tr[

√
Y −1
s dW̃s]− µ(1− Λ)

α− 1− d√
t

∫ t

0
Tr[Y −1

s ]ds

)]
.

We now take Λ = Λt = 1
2εt

(
−1 +

√
1 + 4εt

)
with εt = 2µ

(α−1−d)
√
t
in order to obtain

1
2

(
2µΛt√

t

)2
= µ(1 − Λt)

α−1−d√
t
. We note that for t large enough, Λt ∈ [0, 1]. Besides, we

have Λt =
t→+∞

1 − εt + o(1/t), so that
√
t(1 − Λt) converges to 2µ

α−1−d . From Theorem 4.1

in [29], the second expectation is then equal to 1, while the first one is bounded since Y is
ergodic. This yields to (73).

We now consider the case α = d + 1. We set again t = log(1 + T ) and have T = et − 1.
Thus,

ZT = log

(
det[XT ]

det[x]

)
= log

(
det[etYt]

det[x]

)
= log

(
det[Yt]

det[x]

)
+ dt.

Again, Yt converges in law towards WISd(0, α, 0,
√

2Id; 1/2). Therefore, the ergodic theorem
gives that 1

t log
(

det[Yt]
det[x]

)
converges in probability to 0, which yields to the convergence in

probability of ZT
log(T ) to d. We now turn to the convergence of

(
2

d log(T )

)2
Q−1
T . We know from

Theorem 4.1 in Mayerhofer [29] that for T > 0 and λ > 0,

E
[
exp

(
2λ

d log(1 + T )
NT −

(2λ)2

2d2 log(1 + T )2
Q−1
T

)]
= 1.

From (25), we have NT = ZT /2 and we write

1 =E
[
exp

(
λ− (2λ)2

2d2 log(1 + T )2
Q−1
T

)]
+ E

[
exp

(
− (2λ)2

2d2 log(1 + T )2
Q−1
T

)(
exp

(
2λ

d log(1 + T )
NT

)
− exp(λ)

)]
We now observe that exp

(
− (2λ)2

2d2 log(1+T )2Q
−1
T

)
6 1 and that

E
[
exp

(
2λ

d log(1 + T )
NT

)]
= E

[(
det[XT ]

det[x]

) λ
d log(1+T )

]
= eλE

[(
det[Yt]

det[x]

) λ
dt

]
.
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Since Y has bounded moments and is stationary, supt>1 E
[(

det[Yt]
det[x]

) λ
dt

]
<∞. This gives the

uniform integrability (74) and that

E
[
exp

(
− (2λ)2

2d2 log(1 + T )2
Q−1
T

)(
exp

(
2λ

d log(1 + T )
NT

)
− exp(λ)

)]
→

T→+∞
0.

Therefore, limT→+∞ E
[
exp

(
λ− (2λ)2

2d2 log(1+T )2Q
−1
T

)]
= 1, which gives the desired conver-

gence in law.
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