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Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes

Introduction and results

1.1. The model. The Keller-Segel equation, introduced by Patlak [START_REF] Patlak | Random walk with persistence and external bias[END_REF] and Keller and Segel [START_REF]Initiation of slime mold aggregation viewed as an instability[END_REF], is a model for chemotaxis. It describes the collective motion of cells which are attracted by a chemical substance and are able to emit it. In its simplest form it is a conservative drift/diffusion equation for the density f t (x) ≥ 0 of cells (particles) with position x ∈ R 2 at time t ≥ 0 coupled with an elliptic equation for the chemo-attractant concentration. By making the chemo-attractant concentration explicit in terms of the cell density, one obtains the following closed equation:

(1)

∂ t f t (x) + χdiv x ((K ⋆ f t )(x)f t (x)) = ∆ x f t (x),
where χ > 0 is the sensitivity of cells to the chemo-attractant and where

(2)

K(x) = -x 2π|x| 2 .
In the whole paper, we adopt the convention that K(0) = 0. This equation preserves mass and f t (x)/ R 2 f 0 (y)dy solves the same equation with χ replaced by χ R 2 f 0 (y)dy. We thus may assume without loss of generality that R 2 f 0 (x)dx = 1.

As is well-known, we have formally d dt R 2 xf t (x)dx = 0 and d dt R 2 |x| 2 f t (x)dx = 4χ/(2π). Consequently, introducing V t := R 2 |x -R 2 yf t (y)dy| 2 f t (x)dx, it holds that d dt V t = 4χ/(2π). Since V t is nonnegative, some kind of blow-up necessarily occurs before time 2πV 0 /(χ -8π) when χ is larger than the critical value 8π.

Concerning the well-posedness theory, let us mention Jäger and Luckhaus [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF], Blanchet, Dolbeault and Perthame [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF], Dolbeault and Schmeiser [START_REF] Dolbeault | The two-dimensional Keller-Segel model after blow-up[END_REF] and Egaña and Mischler [START_REF] Egaña | Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolicelliptic case[END_REF]. In particular, the existence of solutions is verified in [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] (for sufficiently smooth initial conditions), these solutions being local (in time) if χ > 0 is large and global if χ > 0 is small. The existence of a unique strong (in some precise sense) solution when χ < 8π is shown in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] (existence) and [START_REF] Egaña | Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolicelliptic case[END_REF] (uniqueness), still for reasonable initial conditions. The main tool is the free energy and its relation with its time derivative. By passing to the limit in a sequence of regularized Keller-Segel equations where the kernel K is replaced by a bounded kernel and by introducing defect measures to take into account blow-up, the existence of generalized weak solutions to [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] is checked in [START_REF] Dolbeault | The two-dimensional Keller-Segel model after blow-up[END_REF], even when χ ≥ 8π. The blow-up phenomenon has been investigated by Herrero and Velazquez [START_REF] Herrero | Singularity patterns in a chemotaxis model[END_REF][START_REF] Velazquez | Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions[END_REF][START_REF] Velazquez | Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions[END_REF]. We refer to Horstmann [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber[END_REF][START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II, Jahresber[END_REF] and Perthame [START_REF] Perthame | PDE models for chemotactic movements: parabolic, hyperbolic and kinetic[END_REF] for review papers on this model. 1.2. Weak solutions. We denote by P(R 2 ) the set of probability measures on R 2 and we set P 1 (R 2 ) = {f ∈ P(R 2 ) : m 1 (f ) < ∞}, where m 1 (f ) = R 2 |x|f (dx). We will use the following notion of weak solutions. Definition 1. Let χ > 0 and T ∈ (0, ∞] be fixed. We say that a measurable family (f t ) t∈[0,T ) of probability measures on R 2 is a weak solution to (1) on [0, T ) if the following conditions hold true:

(a) for all t ∈ [0, T ),

t 0 R 2 R 2 |x -y| -1 f s (dy)f s (dx)ds < ∞; (b) for all φ ∈ C 2 b (R 2 ), all t ∈ [0, T ), R 2 φ(x)f t (dx) = R 2 φ(x)f 0 (dx) + t 0 R 2 ∆φ(x)f s (dx)ds + χ t 0 R 2 R 2
K(xy) • ∇φ(x)f s (dy)f s (dx)ds.

Of course, (a) implies that everything makes sense in (b). Performing a symmetrization in the last term leads to another weak formulation of (1) which requires less stringent integrability conditions, but which is not suitable in view of the following probabilistic interpretation.

1.3. The associated trajectories. We now introduce a natural probabilistic interpretation of the Keller-Segel equation. Definition 2. Let χ > 0 and T ∈ (0, ∞] be fixed. We say that a R 2 -valued continuous process (X t ) t∈[0,T ) adapted to some filtration (F t ) t∈[0,T ) solves the nonlinear SDE (3) on [0, T ) if, for f t := L(X t ), it holds that (a)

t 0 R 2 R 2 |x -y| -1 f s (dy)f s (dx)ds < ∞ for all t ∈ [0, T ); (b) there is a 2-dimensional (F t ) t∈[0,T ) -Brownian motion (B t ) t∈[0,T ) such that for all t ∈ [0, T ) (3) X t = X 0 + √ 2B t + χ t 0 (K ⋆ f s )(X s )ds.
The main idea is that (X t ) t∈[0,T ) represents the time-evolution of the position of a typical cell, in an infinite system of cells undergoing the dynamics prescribed by the Keller-Segel equation. The following remark immediately follows from the Itô formula. Remark 3. Let χ > 0 be fixed. For (X t ) t∈[0,T ) solving the nonlinear SDE (3), the family (f t = L(X t )) t∈[0,T ) is a weak solution to the Keller-Segel equation [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF].

1.4. The particle system. We next consider a natural discretization of the nonlinear SDE: we consider N ≥ 2 particles (cells) with positions X 1,N t , . . . , X N,N t solving (recall that K(0) = 0) (4)

X i,N t = X i 0 + √ 2B i t + χ N N j=1 t 0 K(X i,N s -X j,N s )ds.
More precisely, a solution on [0, T ) is a continuous (R 2 ) N -valued process (X i,N t ) i=1,...,N,t∈[0,T ) adapted to some filtration (F t ) t∈[0,T ) if the initial conditions X i 0 , i = 1, . . . , N are i.i.d. with common law f 0 ∈ P(R 2 ) and if there is a 2N -dimensional (F t ) t∈[0,T ) -Brownian motion (B 1 t , . . . , B N t ) t≥0 such that (4) holds true for all t ∈ [0, T ) and all i = 1, . . . , N .

Of course, such a particle system is not clearly well-defined, due to the singularity of K. Moreover, the singularity is visited, as shown by the following statement. Proposition 4. For any N ≥ 2, any χ > 0, any f 0 ∈ P(R 2 ), any t 0 > 0 and any solution (if it exists) (X i,N t ) i=1,...,N,t∈[0,t0] to (4),

P ∃ s ∈ [0, t 0 ], ∃ 1 ≤ i < j ≤ N : X i,N s = X j,N s > 0.
However, we expect that particles are almost independent (for N large) and look like N copies of the solution to the nonlinear SDE, at least in the subcritical case χ ∈ (0, 8π) or locally in time in the supercritical case χ ≥ 8π. This problem seems important, both from a physical point of view, as a step to the rigorous derivation of the Keller-Segel equation, and from a numerical point of view. 1.5. Main results. We first check that the particle system (4) exists when χ is (very) subcritical.

Theorem 5. Let N ≥ 2 and χ ∈ (0, 2πN/(N -1)) be fixed, as well as f 0 ∈ P 1 (R 2 ). There exists a solution (X i,N t ) t∈[0,∞),i=1,...,N to (4). Furthermore, the family {(X i,N t ) t∈[0,∞) , i = 1, . . . , N } is exchangeable and for any α ∈ ((N -1)χ/(2πN ), 1), any T > 0,

E T 0 |X 1,N s -X 2,N s | α-2 ds ≤ (2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T ) α α(2α -(N -1)χ/(πN )) . (5) 
As already mentioned, such a result is not obvious, since K is singular and since its singularity is visited. The main point is to observe that (5) a priori holds true for some α < 1. This will imply that that E[|K(X 1,N s -X 2,N s )|] should be controlled (with some margin since α -2 < -1). This will be sufficient to prove existence by compactness. The formal computation is as follows: by the Itô formula, for α ∈ (0, 1),

d|X 1,N t -X 2,N t | α = √ 2α|X 1,N t -X 2,N t | α-2 (X 1,N t -X 2,N t ) • (dB 1 t -dB 2 t ) (6) + 2α 2 |X 1,N t -X 2,N t | α-2 dt - αχ πN |X 1,N t -X 2,N t | α-2 dt + αχ 2πN |X 1,N t -X 2,N t | α-2 (X 1,N t -X 2,N t ) • N i=3 X i,N t -X 1,N t |X i,N t -X 1,N t | 2 + X 2,N t -X i,N t |X 2,N t -X i,N t | 2 dt.
The second term in the right-hand side is the Itô correction due to diffusion, the third term is the contribution of the interaction between the particles 1 and 2 and the last term is the contribution of the interactions with between particles 1, 2 and the rest of the system. By exchangeability and Hölder's inequality, the expectation of the last term in the right-hand side is greater than

-[α(N -2)χ/(πN )]E[|X 1,N t -X 2,N t | α-2 ].
The assumption χ < 2πN/(N -1) ensures us that the Itô correction dominates the drift contribution. More precisely choosing α ∈ (χ(N -1)/(2πN ), 1), integrating in time and taking expectations, one obtains

α 2α - χ(N -1) πN t 0 E[|X 1,N s -X 2,N s | α-2 ]ds ≤ E[|X 1,N t -X 2,N t | α ].
The right-hand side is easily bounded, uniformly in N , using the oddness of K, whence [START_REF] Egaña | Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolicelliptic case[END_REF]. A similar computation was performed by Osada in [29, Lemma 3.2] for systems of stochastic vortices.

Next, and this is the main result of the paper, we show some tightness/consistency as N → ∞ in the (very) subcritical case χ < 2π. Such a result follows quite easily from the the bound [START_REF] Egaña | Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolicelliptic case[END_REF], which is uniform in N (when χ < 2π). We endow C([0, ∞), R 2 ) with the topology of uniform convergence on compact time intervals, and P(C([0, ∞), R 2 )) with the associated weak convergence topology. Finally, we endow C([0, ∞), P(R 2 )) with the topology of uniform convergence on compact time intervals associated with the weak convergence topology in P(R 2 ). Theorem 6. Let χ ∈ (0, 2π) be fixed, as well as f 0 ∈ P 1 (R 2 ). For each N ≥ 2, consider the particle system (X i,N t ) t∈[0,∞),i=1,...,N built in Theorem 5, as well as the empirical measure

µ N = N -1 N 1 δ (X i,N t
) t∈[0,∞) , which a.s. belongs to P(C([0, ∞), R 2 )). For each t ≥ 0, we also set

µ N t = N -1 N 1 δ X i,N t
, which a.s. belongs to P(R 2 ).

(i) The sequence {µ N , N ≥ 2} is tight in P(C([0, ∞), R 2 )).
(ii) Any (possibly random) weak limit point µ of (µ N ) N ≥2 is a.s. the law of a solution to the nonlinear SDE (3) with initial law f 0 .

(iii) In particular, we can find a subsequence N k such that (µ N k t ) t≥0 goes in law, as k → ∞, in C([0, ∞), P(R 2 )), to some (µ t ) t≥0 , which is a.s. a weak solution to (1) starting from µ 0 = f 0 .

We are quite satisfied, since this result seems to be the first result concerning the convergence of the true particle system (without cutoff) to the Keller-Segel equation. However, there are two main limitations. First, this result should more or less always hold true in the subcritical case χ ∈ (0, 8π). Second, we are not able to prove the convergence, we have only compactness/consistency. This is due to the fact that we are not able to prove that our limit point (µ t ) t≥0 a.s. belongs to the class of weak solutions in which uniqueness is known to hold true. Thanks to Egaña and Mischler [START_REF] Egaña | Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolicelliptic case[END_REF], it would suffice to show that (µ t ) t≥0 satisfies the free energy dissipation inequality, which is slightly stronger than the requirement (µ

t ) t≥0 ∈ ∩ p≥1 L 1 loc ([0, ∞), L p (R 2 
)) a.s. We believe this is a very difficult problem.

We next prove that, when χ < 2πN , the particle system always exists until 3 particles encounter. In view of (6), this is not surprising. Indeed, the assumption χ < 2πN ensures us that the Itô correction still dominates the contribution of the interaction between the particles 1 and 2. Moreover, it is not very hard to control the last term of (6) until a 3-particle collision occurs. Theorem 7. Let χ > 0, N > max{2, χ/(2π)} be fixed, as well as f 0 ∈ P 1 (R 2 ) such that f 0 ({x}) = 0 for all x ∈ R 2 . There exists a solution (X i,N t ) t∈[0,τN ),i=1,...,N to (4), with

τ N = sup ℓ≥1 inf t ≥ 0 : ∃ i, j, k pairwise different such that |X i,N t -X j,N t | + |X j,N t -X k,N t | + |X k,N t -X i,N t | ≤ 1/ℓ . The family {(X i,N t
) t∈[0,τN ) , i = 1, . . . , N } is exchangeable and for any α ∈ (χ/(2πN ), 1), a.s., for all t ∈ [0, τ N ),

t 0 |X 1,N s -X 2,N s | α-2 ds < ∞. (7) Finally, it holds that (i) τ N = ∞ a.s. if χ ≤ 8π(N -2)/(N -1) and (ii) τ N < ∞ a.s. if χ > 8π(N -2)/(N -1).
This result thus in particular shows the global existence for the particle system in the subcritical case χ < 8π for all N large enough. This result seems to be new, as well as our method to check it, which is quite specific to the model. As we will see in the proof of Lemma 15-Step 2, for any subsystem I ⊂ {1, . . . , N }, the process implies that for all |I| = 3, . . . , N , the dimension (|I| -1)(2 -(χ|I|)/(4πN )) is greater than 2, so that R I t does never reach 0: there are no collisions involving more than two particles. Of course, the situation is actually much more complicated, since we have to justify that of all I, we can indeed neglect the contribution of the interaction with the other particles.

R I t = 2 -1 i∈I |X i,N t -XI t | 2 , where XI t = |I| -1 i∈I X i,N t ,
Remark 8. When χ ∈ (0, 8π), we thus show that, for N large enough, the particles labelled 1, 2, 3 do a.s. never encounter. To extend the tightness/consistency result of Theorem 6 to some χ ∈ [2π, 8π), we believe that a quantitative and uniform (in N ) version of this fact might be sufficient.

Finally, we study the case of two particles N = 2. The average of the two positions is a twodimensional Brownian motion and their difference D t follows an autonomous SDE with singular drift driven by a Brownian motion, which can be seen as a natural two-dimensional generalization of a Bessel process of dimension (2χ/(4π)). We show that the equation for D t (as well as (4)) is nonsense when χ ≥ 4π, in that there cannot exist global solutions. But this is only a small problem related to the fact that a Bessel process with dimension δ ∈ (0, 1] does not solve a classical SDE, while its square does (see Revuz and Yor [32, Exercise 1.26 p 451]). We thus reformulate the equation in an adequate sense and in such a way it has a unique solution (in law). We also prove that this solution is stuck at 0 when χ ≥ 8π, while it reaches 0 but escapes instantaneously when χ ∈ (0, 8π). 1.6. References. Approximating a large particle system by a partial differential equation (for deriving the PDE) or a partial differential equation by a large particle system (to compute numerically the solution of the PDE) is now a classical topic, called propagation of chaos. This notion was introduced by Kac [START_REF] Kac | Foundations of kinetic theory[END_REF] as a step to the rigorous justification of the Boltzmann equation. When the interaction is regular, the situation is now well-understood, some important contributions are due to McKean [START_REF] Mckean | Propagation of chaos for a class of non-linear parabolic equations[END_REF], Sznitman [START_REF] Sznitman | Topics in propagation of chaos[END_REF], Méléard [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF], Mischler and Mouhot [START_REF] Mischler | Kacs Program in Kinetic Theory[END_REF], etc. The main idea is that one can generally prove true quantified convergence when the interaction is Lipschitz continuous and tightness/consistency (and true unquantified convergence if the PDE is known to have a unique solution) when the coefficients are only continuous. Of course, each PDE is specific and these are only formal rules.

The case of singular interactions is much more complicated. In dimension one, let us mention the works of Bossy-Talay [START_REF] Bossy | Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation[END_REF] and Jourdain [START_REF] Jourdain | Diffusion processes associated with nonlinear evolution equations for signed measures[END_REF] which concern the viscous Burgers equation and more general scalar conservation laws (where particles interact through the Heaviside function) and of Cepa-Lépingle [START_REF] Cepa | Brownian particles with electrostatic repulsion on the circle: Dysons model for unitary random matrices revisited[END_REF] on the very singular Dyson model.

A model closely related to the one studied in the present paper is the 2d-vortex model, that approximates the vorticity formulaltion of the 2d-incompressible Navier-Stokes equation. The PDE is the same as (1) and the particle system is the same as (4), replacing everywhere the kernel K, see [START_REF] Bossy | Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation[END_REF], by the Biot and Savart kernel x ⊥ /(2π|x| 2 ). This kernel is as singular as K, but the interaction is of course not attractive, so that the situation is simpler. In particular, there is no blow-up for the PDE and Osada [START_REF] Osada | A stochastic differential equation arising from the vortex problem[END_REF] has shown that the particle system is well-posed and that particles do never collide. Osada [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF][START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF] has also proved the (true but unquantified) convergence of the particle system to the solution of the PDE when χ is sufficiently small (in our notation), and this limitation has been recently removed in [START_REF] Fournier | Propagation of chaos for the 2D viscous vortex model[END_REF]. The method developed in [START_REF] Fournier | Propagation of chaos for the 2D viscous vortex model[END_REF] relies on a control of the Fisher information of the law of the particle system provided by the dissipation of its entropy. It has been applied to a subcritical Keller-Segel equation by Godinho-Quininao [START_REF] Godinho | Propagation of chaos for a sub-critical Keller-Segel model[END_REF], where K is replaced by -x/(2π|x| 1+α ) with some α ∈ (0, 1) and to the Landau equation for moderately soft potentials in [START_REF] Fournier | Propagation of chaos for the Landau equation with moderately soft potentials[END_REF]. Let us finally mention the propagation of chaos results for some particle systems with deterministic dynamics by Marchioro-Pulvirenti [START_REF] Marchioro | Hydrodynamics in two dimensions and vortex theory[END_REF] (for the 2d-Euler equation) by Hauray-Jabin [START_REF] Hauray | Particle approximation of Vlasov equations with singular forces: Propagation of chaos[END_REF] (for some singular Vlasov equations) and by Jourdain-Reygner [START_REF] Jourdain | A multitype sticky particle construction of Wasserstein stable semigroups solving one-dimensional diagonal hyperbolic systems with large monotonic data[END_REF] (for diagonal hyperbolic systems).

In the above mentioned works, some true convergence is derived. Here, we obtain only a tightness/consistency result, but the singularity is really strong and attractive. Concerning the Keller-Segel equation, we are not aware of papers dealing with the convergence of the true particle system without any cutoff. Stevens [START_REF] Sznitman | Topics in propagation of chaos[END_REF] studies a physically more convincing particle system with two kinds of particles (for bacteria and chemo-attractant particles). She proves the convergence of this particle system when the kernel K is regularized. In [START_REF] Haškovec | Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system[END_REF], Haškovec and Schmeiser also prove some results for a regularized kernel of the form K ε (x) = -x/[|x|(|x| + ε)]. Finally, Godinho-Quininao [START_REF] Godinho | Propagation of chaos for a sub-critical Keller-Segel model[END_REF] study the case where K is replaced by -x/(2π|x| 1+α ) for some α ∈ (0, 1). 1.7. Plan of the paper. In the next section, we prove (5) for a regularized particle system. This is the main tool for the proofs of Theorem 5 (existence for the particle system when χ ∈ (0, 2π)) and Theorem 6 (tightness/consistency as N → ∞ when χ ∈ (0, 2π)) given in Section 3, as well as for checking Theorem 7 (local or global existence for the particle system in the general case) in Section 4. We establish Proposition 4 (positive probability of collisions) in Section 5. Section 6 is devoted to a detailed study of the case N = 2. Finally, we quickly and formally discuss in Section 7 how to build an relevant N -particle system when χ ≥ 8π(N -2)/(N -1) and we explain why it seems to be a difficult problem.

A regularized particle system

Let f 0 ∈ P 1 (R 2 ), χ > 0 and N ≥ 2 be fixed. We consider a family X i 0 , i = 1, . . . , N of f 0 -distributed random variables and a family (B i t ) t≥0 , i = 1, . . . , N of 2-dimensional Brownian motions, all these random objects being independent. For ε ∈ (0, 1), we define the regularized version K ε of K as

K ε (x) = -x 2π(|x| 2 + ε 2 ) . ( 8 
)
This kernel is globally Lipschitz continuous, so that the particle system (9)

X i,N,ε t = X i 0 + √ 2B i t + χ N N j=1 t 0 K ε (X i,N,ε s -X j,N,ε s )ds
is strongly and uniquely well-defined. These particles are furthermore clearly exchangeable. The following estimates are crucial for our study.

Proposition 9. For f 0 ∈ P 1 (R 2 ), N ≥ 2 and ε ∈ (0, 1), we consider the unique solution (X i,N,ε t ) t≥0,i=1,...,N to [START_REF] Godinho | Propagation of chaos for a sub-critical Keller-Segel model[END_REF].

(i) For all t ≥ 0, E[(1 + |X 1,N,ε t | 2 ) 1/2 ] ≤ f 0 , 1 + |x| 2 + 2t.
(ii) For all α ∈ (0, 1), all T > 0, all η ∈ (0, ε],

2α - χ πN E T 0 (|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) α/2-1 ds ≤ (2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T ) α α + (N -2)χ πN E T 0 (|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) (α-1)/2 (|X 1,N,ε s -X 3,N,ε s | 2 + ε 2 ) -1/2 ds .
Proof. We start with point (i). Using the Itô formula (with φ(x) = (1

+ |x| 2 ) 1/2 whence ∇φ(x) = (1 + |x| 2 ) -1/2 x and ∆φ(x) = (1 + |x| 2 ) -3/2 (2 + |x| 2
) and taking expectations, we find

E[(1 + |X 1,N,ε t | 2 ) 1/2 ] =E[(1 + |X 1 0 | 2 ) 1/2 ] + E t 0 2 + |X 1,N,ε t | 2 (1 + |X 1,N,ε t | 2 ) 3/2 ds + χ N j =1 E t 0 X 1,N,ε s (1 + |X 1,N,ε s | 2 ) 1/2 • K ε (X 1,N,ε s -X j,N,ε s )ds .
By exchangeability and oddness of K ε , for j ∈ {2, . . . , N },

E t 0 X 1,N,ε s (1 + |X 1,N,ε s | 2 ) 1/2 • K ε (X 1,N,ε s -X j,N,ε s )ds = 1 2 E t 0 X 1,N,ε s (1 + |X 1,N,ε s | 2 ) 1/2 - X j,N,ε s (1 + |X j,N,ε s | 2 ) 1/2 • K ε (X 1,N,ε s -X j,N,ε s )ds
This last expectation is non-positive since for x, y ∈ R 2 , the inequality

|x| 4 + |y| 4 ≥ 2|x| 2 |y| 2 implies (|x| 2 (1 + |y| 2 ) 1/2 + |y| 2 (1 + |x| 2 ) 1/2 ) 2 ≥ (|x||y|((1 + |y| 2 ) 1/2 + (1 + |x| 2 ) 1/2 )) 2 , whence (x(1 + |y| 2 ) 1/2 -y(1 + |x| 2 ) 1/2 ) • (x -y) ≥ 0 and thus (x(1 + |x| 2 ) -1/2 -y(1 + |y| 2 ) -1/2 ) • (x -y) ≥ 0. Hence E[(1 + |X 1,N,ε t | 2 ) 1/2 ] = E[(1 + |X 1 0 | 2 ) 1/2 ] + E t 0 2 + |X 1,N,ε t | 2 (1 + |X 1,N,ε t | 2 ) 3/2 ds ≤ E[(1 + |X 1 0 | 2 ) 1/2 ] + 2t.
as desired. To prove point (ii), we fix α ∈ (0, 1) and start from

X 1,N,ε t -X 2,N,ε t = X 1 0 -X 2 0 + √ 2(B 1 t -B 2 t ) + χR 12 t + χS 12 t ,
where

R 12 t = N -1 N j=3 t 0 [K ε (X 1,N,ε s -X j,N,ε s ) -K ε (X 2,N,ε s -X j,N,ε s
)]ds and where S 12

t = 2N -1 t 0 K ε (X 1,N,ε s -X 2,N,ε s )ds. We next fix η ∈ (0, ε], introduce φ η (x) = (|x| 2 + η 2 ) α/2
and use the Itô formula to write

E[φ η (X 1,N,ε T -X 2,N,ε T )] =E[φ η (X 1 0 -X 2 0 )] + E T 0 2∆φ η (X 1,N,ε s -X 2,N,ε s )ds + χE T 0 ∇φ η (X 1,N,ε s -X 2,N,ε s ) • (dR 12 s + dS 12 s ) .
Since η ∈ (0, 1), we have

φ η (x -y) ≤ [ √ 2((1 + |x| 2 ) 1/2 + (1 + |y| 2 ) 1/2 ))] α , whence E[φ η (X 1,N,ε T - X 2,N,ε T )] ≤ (2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T ) α by (i). Since furthermore E[φ η (X 1 0 -X 2 0 )] ≥ 0, E T 0 2∆φ η (X 1,N,ε s -X 2,N,ε s )ds (10) ≤(2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T ) α -χE T 0 ∇φ η (X 1,N,ε s -X 2,N,ε s ) • (dR 12 s + dS 12 s ) .
Using exchangeability and recalling the definition of

R 12 t , -E T 0 ∇φ η (X 1,N,ε s -X 2,N,ε s ) • dR 12 s ≤ 2(N -2) N E T 0 |∇φ η (X 1,N,ε s -X 2,N,ε s )||K ε (X 1,N,ε s -X 3,N,ε s )|ds . But ∇φ η (x) = α(|x| 2 +η 2 ) α/2-1 x, whence |∇φ η (x)| ≤ α(|x| 2 +η 2 ) α/2-1/2 . Furthermore, |K ε (x)| ≤ (|x| 2 + ε 2 ) -1/2 /(2π). Hence -E T 0 ∇φ η (X 1,N,ε s -X 2,N,ε s ) • dR 12 s (11) 
≤ (N -2)α πN E T 0 (|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) α/2-1/2 (|X 1,N,ε s -X 3,N,ε s | 2 + ε 2 ) -1/2 ds .
Recalling the definition of S 12 t and using that

|K ε (x)| ≤ (|x| 2 + η 2 ) -1/2 /(2π), -E T 0 ∇φ η (X 1,N,ε s -X 2,N,ε s ) • dS 12 s ≤ α πN E T 0 (|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) α/2-1 ds . ( 12 
)
Finally, we observe that ∆φ η (x) = α(|x| 2 + η 2 ) α/2-2 (α|x| 2 + 2η 2 ) ≥ α 2 (|x| 2 + η 2 ) α/2-1 . Inserting this into (10) and using [START_REF] Haškovec | Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system[END_REF] and [START_REF] Hauray | Particle approximation of Vlasov equations with singular forces: Propagation of chaos[END_REF], we find

2α 2 E T 0 (|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) α/2-1 ds (13) ≤(2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T ) α + αχ πN E T 0 (|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) α/2-1 ds + (N -2)αχ πN E T 0 (|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) (α-1)/2 (|X 1,N,ε s -X 3,N,ε s | 2 + ε 2 ) -1/2 ds .
The conclusion immediately follows.

Tightness and consistency in the (very) subcritical case

The aim of this section is to prove Theorems 5 and 6. In the whole section, f 0 ∈ P 1 (R 2 ) is fixed. First, we deduce from Proposition 9 an estimate saying that in some sense, particles do not meet too much, uniformly in N ≥ 2 and ε ∈ (0, 1) when χ < 2π.

Corollary 10. For each N ≥ 2, each χ ∈ (0, 2πN/(N -1)) and each ε ∈ (0, 1), consider the unique solution (X i,N,ε t ) t≥0,i=1,...,N to [START_REF] Godinho | Propagation of chaos for a sub-critical Keller-Segel model[END_REF]. For all T > 0 and all α ∈ (χ(N -1)/(2πN ), 1),

E T 0 |X 1,N,ε s -X 2,N,ε s | α-2 ds ≤ (2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T ) α α(2α -(N -1)χ/(πN ))
.

Proof. We thus fix α ∈ (χ(N -1)/(2πN ), 1). By Hölder's inequality and exchangeability, we have, for any η ∈ (0, ε],

E[(|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) (α-1)/2 (|X 1,N,ε s -X 3,N,ε s | 2 + ε 2 ) -1/2 ] ≤ E[(|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) α/2-1 ].
Applying Proposition 9-(ii), we thus find 2α -

(N -1)χ πN T 0 E[(|X 1,N,ε s -X 2,N,ε s | 2 + η 2 ) α/2-1 ]ds ≤ (2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T ) α α .
It suffices to let η ց 0 to complete the proof.

Such an estimate easily implies tightness.

Lemma 11. For each N ≥ 2, each ε ∈ (0, 1), consider the unique solution (X i,N,ε t

) t∈[0,∞),i=1,...,N to [START_REF] Godinho | Propagation of chaos for a sub-critical Keller-Segel model[END_REF].

(i) For N ≥ 2 fixed, if χ < 2πN/(N -1), the family {(X 1,N,ε t ) t≥0 , ε ∈ (0, 1)} is tight in C([0, ∞), R 2 ). (ii) If χ < 2π, the family {(X 1,N,ε t ) t≥0 , N ≥ 2, ε ∈ (0, 1)} is tight in C([0, ∞), R 2 ).
Proof. We first prove (ii) and thus suppose that χ < 2π. Since C([0, ∞), R 2 ) is endowed with the topology of the uniform convergence on compact time intervals, it suffices to prove that for all

T > 0, {(X 1,N,ε t ) t∈[0,T ] , N ≥ 2, ε ∈ (0, 1)} is tight in C([0, T ], R 2 ). Let thus T > 0 be fixed and recall that X 1,N,ε t = X 1 0 + √ 2B 1 t + J 1,N,ε t
, where

J 1,N,ε t := χ N N j=2 t 0 K ε (X 1,N,ε s -X j,N,ε s )ds.
Observing that the laws of X 1 0 and (B 1 t ) t∈[0,T ] do not depend on N ≥ 2 nor on ε > 0, it suffices to prove that the family {(J 1,N,ε t ) t∈[0,T ] , N ≥ 2, ε ∈ (0, 1)}, is tight in C([0, T ], R 2 ). To do so, we fix α ∈ (χ/(2π), 1), and we use Hölder's inequality to write, for 0 ≤ s < t ≤ T ,

|J 1,N,ε t -J 1,N,ε s | ≤ χ 2πN N j=2 t s |X 1,N,ε u -X j,N,ε u | -1 du ≤|t -s| (1-α)/(2-α) χ 2πN N j=2 t s |X 1,N,ε u -X j,N,ε u | α-2 du 1/(2-α) ≤Z N,ε T |t -s| β , where β = (1 -α)/(2 -α) > 0 and where Z N,ε T := (χ/(2πN )) N j=2 [1 + T 0 |X 1,N,ε u -X j,N,ε u | α-2 du]. Indeed, x 1/(2-α) ≤ 1 + x because α ∈ (0, 1
). But we immediately deduce from Corollary 10 and exchangeability that sup ε∈(0,1),N ≥2 E[Z N,ε T ] < ∞, so that there is a constant C T , not depending on ε ∈ (0, 1) nor on N ≥ 2 such that for all A > 0,

P(Z N,ε T > A) ≤ C T /A. Since J 1,N,ε 0 = 0 a.s., we conclude that for all A > 0, for all N ≥ 2, all ε ∈ (0, 1), P[(J 1,N,ε t ) t∈[0,T ] / ∈ K A ] ≤ C T /A,
where K A is the set of all functions γ : [0, T ] → R 2 such that γ(0) = 0 and for all 0

≤ s < t ≤ T , |γ(t)-γ(s)| ≤ A|t-s| β . The Ascoli theorem ensures us that K A is a compact subset of C([0, T ], R 2 ) for all A > 0. Since lim A→∞ sup N ≥2,ε∈(0,1) P[(J 1,N,ε t ) t∈[0,T ] / ∈ K A ] = 0, the proof of (ii) is complete.
The proof of (i) is exactly the same: the only difference is that N is fixed so that we can choose α ∈ (χ(N -1)/(2πN ), 1).

We now prove the existence of the particle system without cutoff in the very subcritical case.

Proof of Theorem 5. We divide the proof in two steps. Recall that χ < 2πN/(N -1).

Step 1. For each ε ∈ (0, 1), we consider the unique solution (X i,N,ε t ) t∈[0,∞),i=1,...,N to [START_REF] Godinho | Propagation of chaos for a sub-critical Keller-Segel model[END_REF]. By Lemma 11-(i), we know that the family

{(X 1,N,ε t ) t≥0 , ε ∈ (0, 1)} is tight in C([0, ∞), R 2 ). By exchangeability, we of course deduce that {(X 1,N,ε t , . . . , X N,N,ε t ) t≥0 , ε ∈ (0, 1)} is tight in C([0, ∞), (R 2 ) N ) and consequently that {((X 1,N,ε t , B 1 t ), . . . , (X N,N,ε t , B N t )) t≥0 , ε ∈ (0, 1)} is tight in C([0, ∞), (R 2 × R 2 ) N ) (
this last assertion only uses that the law of (B 1 t , . . . , B N t ) t≥0 does not depend on ε). It is thus possible to find a decreasing sequence ε k ց 0 such that the family ((

X 1,N,ε k t , B 1 t ), . . . , (X N,N,ε k t , B N t )) t≥0 converges in law in C([0, ∞), (R 2 × R 2 ) N ) as k → ∞.
By the Skorokhod representation theorem, we can realize this convergence almost surely. All this shows that we can find, for each

k ≥ 1, a solution ( X1,N,ε k t , . . . , XN,N,ε k t ) t≥0 to (5), as- sociated to some Brownian motions ( B1,N,ε k t , . . . , BN,N,ε k t ) t≥0 , in such a way that the sequence (( X1,N,ε k t , B1,N,ε k t ), . . . , ( XN,N,ε k t , BN,N,ε k t )) t≥0 a.s. goes to some ((X 1,N t , B 1 t ), . . . , (X N,N t , B N t )) t≥0 in C([0, ∞), (R 2 × R 2 ) N ) as k → ∞.
Let us observe at once that the family {(X i,N t ) t≥0 , i = 1, . . . , N } is exchangeable and that, by Corollary 10 and the Fatou Lemma, for all T > 0 and

α ∈ (χ(N -1)/(2πN ), 1), max E T 0 |X 1,N s -X 2,N s | α-2 ds , sup k E T 0 | X1,N,ε k s -X2,N,ε k s | α-2 ds (14) ≤ (2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T ) α α(2α -(N -1)χ/(πN ))
.

Step 2. We introduce

F t = σ((X i,N s , B i s ) i=1,...,N,s∈[0,t]
). Of course, (X i,N t ) i=1,...,N,t≥0 is (F t ) t≥0adapted. The family (X i,N 0 ) i=1,...,N is of course i.i.d. and f 0 -distributed (because this is the case of (X i,N,ε k 0 ) i=1,...,N for all k ≥ 1) and (B i s ) i=1,...,N,s∈[0,t] is obviously a 2N -dimensional Brownian motion (because this is the case of (B i,N,ε k s ) i=1,...,N,s≥0 for all k ≥ 1). We now show that

(B i s ) i=1,...,N,s∈[0,t] is a 2N -dimensional (F t ) t≥0 -Brownian motion. Let thus t > 0, φ : C([0, ∞), (R 2 ) N ) and ψ : C([0, t], (R 2 × R 2 ) N ) be continuous and bounded. We have to check that E[ψ((X i,N s , B i s ) i=1,...,N,s∈[0,t] )φ((B i t+s -B i t ) i=1,...,N,s≥0 ))] = E[ψ((X i,N s , B i,N s ) i=1,...,N,s∈[0,t] )]E[φ((B i t+s -B i t ) i=1,...,N,s≥0 ))
]. This immediately follows from the fact that for all k ≥ 1,

E[ψ(( Xi,N,ε k s , Bi,N,ε k s ) i=1,...,N,s∈[0,t] )φ(( Bi,N,ε k t+s -Bi,N,ε k t ) i=1,...,N,s≥0 ))] = E[ψ(( Xi,N,ε k s , Bi,N,ε k s ) i=1,...,N,s∈[0,t] )]E[φ(( Bi,N,ε k t+s -Bi,N,ε k t ) i=1,...,N,s≥0 ))],
which holds true because ( Xi,N,ε k t ) i=1,...,N,t≥0 is a strong solution to [START_REF] Godinho | Propagation of chaos for a sub-critical Keller-Segel model[END_REF] and is thus adapted to the filtration

F k t = σ((X i 0 , B i,N,ε k s ) i=1,...,N,s≥0 ).
Step 3. It only remains to check that for each

i ∈ {1, . . . , N }, each t ≥ 0, X i,N t = X i,N 0 + √ 2B i t + (χ/N ) N j=1 t 0 K(X i,N s -X j,N s )ds. We of course start from the identity Xi,N,ε k t = Xi,N,ε k 0 + √ 2 Bi,N,ε k t + (χ/N ) N j=1 t 0 K ε k ( Xi,N,ε k s -Xj,N,ε k s
)ds and pass to the limit as k → ∞, e.g. in probability. The only difficulty is to prove that J ij k (t) tends to J ij (t), where

J ij k (t) = t 0 K ε k ( Xi,N,ε k s -Xj,N,ε k s )ds and J ij (t) = t 0 K(X i,N s -X j,N s )ds.
We introduce, for η ∈ (0, 1),

J ij k,η (t) = t 0 K η ( Xi,N,ε k s -Xj,N,ε k s )ds and J ij η (t) = t 0 K η (X i,N s -X j,N s )ds.
For α ∈ (0, 1) and k sufficiently large so that ε k < η, we have

(15) |K η (x) -K ε k (x)| + |K η (x) -K(x)| ≤ η 2 π|x|(|x| 2 + η 2 ) ≤ η 1-α |x| α-2 π .
We thus deduce from ( 14) that, for α ∈ (χ(N -1)/(2πN ), 1), there exists C α,t < +∞ such that

E[|J ij (t) -J ij η (t)|] + lim sup k E[|J ij k (t) -J ij k,η (t)|] ≤ C α,t η 1-α .
Next, since K η is continuous and bounded and since

( Xi,N,ε k s ) s≥0 goes a.s. to (X i,N s ) s≥0 , it holds that J ij k,η (t) → J ij η (t) a.s. and in L 1 for each η > 0. Writing E[|J ij (t) -J ij k (t)|] ≤ E[|J ij (t) -J ij η (t)|] + E[|J ij η (t) -J ij k,η (t)|] + E[|J ij k,η (t) -J ij k (t)|], we conclude that lim sup k→∞ E[|J ij (t) -J ij k (t)|] ≤ C α,t η 1-α . Since η ∈ (0, 1
) can be chosen arbitrarily small, we deduce that indeed, J ij k (t) tends to J ij (t) in L 1 as k → ∞. Following some ideas of [8, Proposition 6.1], we now give the Proof of Theorem 6. For each N ≥ 2, we consider the particle system (X i,N t ) t∈[0,∞),i=1,...,N built in Theorem 5, and we set

µ N = N -1 N 1 δ (X i,N t
) t∈[0,∞) , which a.s. belongs to P(C([0, ∞), R 2 )). For each t ≥ 0, we also set

µ N t = N -1 N 1 δ X i,N t
, which a.s. belongs to P(R 2 ).

Step 1. For each N ≥ 2, (X i,N t

) t∈[0,∞),i=1,...,N has been obtained as a limit point (in law), of (X i,N,ε t

) t∈[0,∞),i=1,...,N as ε → 0. By Lemma 11-(ii), the family {(X 1,N t ) t≥0 , N ≥ 2} is thus tight in C([0, ∞), R 2 ).
As is well-known, see Sznitman [START_REF] Sznitman | Topics in propagation of chaos[END_REF]Proposition 2.2], this implies that the family {µ N , N ≥ 2} is tight in P(C([0, ∞), R 2 )) (because for each N ≥ 2, the system is exchangeable). This proves point (i).

Step 2. We now consider a (not relabelled for notational simplicity) subsequence of µ N going in law to some µ and show that µ a.s. belongs to S := {L((X t ) t≥0 ) : (X t ) t≥0 solution to the nonlinear SDE (3) with initial law f 0 }, recall Definition 2. This will prove point (ii).

Step 2.1. Consider the identity map γ

= (γ t ) t≥0 : C([0, ∞), R 2 ) → C([0, ∞), R 2 ).
Using the classical theory of martingale problems, we realize that

Q ∈ P(C([0, ∞), R 2 ))) belongs to S as soon as, setting Q t = Q • γ -1 t ∈ P(R 2 ) for each t ≥ 0, (a) Q 0 = f 0 ; (b) T 0 R 2 R 2 |x -y| -1 Q s (dy)Q s (dx)ds < ∞ for all T > 0; (c) for all 0 < t 1 < • • • < t k < s < t, all ϕ 1 , . . . , ϕ k ∈ C b (R 2 ), all ϕ ∈ C 2 b (R 2 ), F (Q) := Q(dz)Q(dz)ϕ 1 (z t1 ) . . . ϕ k (z t k ) ϕ(z t ) -ϕ(z s ) -χ t s K(z u -zu ) • ∇ϕ(z u )du - t s ∆ϕ(z u )du = 0.
Indeed, let (X t ) t≥0 be Q-distributed, so that L(X t ) = Q t for all t ≥ 0. Then (a) says that X 0 is f 0 -distributed, (b) is nothing but the requirement (a) of Definition 2, and (c) tells us that for all

ϕ ∈ C 2 b (R 2 ), ϕ(X t ) -ϕ(X s ) -χ t 0 K(X s -zs ) • ∇ϕ(X s )Q(dz)ds - t 0 ∆ϕ(X s )ds is a martingale in the filtration (F t ) t≥0 generated by (X t ) t≥0 . This classically implies the existence of a 2-dimensional (F t ) t≥0 -Brownian motion (B t ) t≥0 such that X t = X 0 + √ 2B t + χ t 0 K(X s - zs )Q s (dz)ds for all t ≥ 0. It finally suffices to observe that for all x ∈ R 2 and all s ≥ 0, K(x - zs )Q(dz) = (K ⋆ Q s )(x).
We now prove that µ a.s. satisfies these three points. For each t ≥ 0, we set

µ t = µ • γ -1 t .
Step 2.2. Since µ N 0 is the empirical measure of N i.i.d. f 0 -distributed random variables and since µ 0 is the limit (in law) of µ N 0 , we obviously have that µ 0 = f 0 a.s., i.e. µ a.s. satisfies (a).

Step 2.3. Using Corollary 10 and exchangeability, we see that for any α ∈ (χ/(2π), 1), any T > 0, there is a finite constant C α,T such that for all m > 0, all N ≥ 2,

E T 0 R 2 R 2 (m ∧ |x -y| α-2 )µ N s (dy)µ N s (dx)ds ≤ mT N + 1 N 2 i =j E T 0 |X i,N s -X j,N s | α-2 ds ≤ mT N + C α,T .
Since µ N goes in law to µ, the LHS converges to

E T 0 R 2 R 2 (m ∧ |x -y| α-2
)µ s (dy)µ s (dx)ds as N → ∞. Letting m increase to infinity and using the monotone convergence theorem, we find that

E T 0 R 2 R 2 |x -y| α-2 µ s (dy)µ s (dx)ds ≤ C α,T .
Since α < 1, this of course implies that µ a.s. satisfies (b).

Step 2.4. From now on, we consider some fixed F : P(C([0, ∞), R 2 )) → R as in point (c) and we check that F (µ) = 0 a.s.

Step 2.4.1. Here we prove that for all N ≥ 2, ( 16)

E (F (µ N )) 2 ≤ C F N .
To this end, we recall that ϕ ∈ C 2 b (R 2 ) is fixed and we apply the Itô formula to (4):

O N i (t) :=ϕ(X i,N t ) - χ N N j=1 t 0 ∇ϕ(X i,N s ) • K(X i,N s -X j,N s )ds - t 0 ∆ϕ(X i,N s )ds =ϕ(X i 0 ) + √ 2 t 0 ∇ϕ(X i,N s ) • dB i s .
By definition of F (recall that K(0) = 0 by convention),

F (µ N ) = 1 N N i=1 ϕ 1 (X i,N t1 ) . . . ϕ k (X i,N t k )[O N i (t) -O N i (s)] = √ 2 N N i=1 ϕ 1 (X i,N t1 ) . . . ϕ k (X i,N t k ) t s ∇ϕ(X i,N s ) • dB i s .
Then [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] follows from some classical stochastic calculus argument, using that 0

< t 1 < • • • < t k < s < t, that ϕ 1 , .
. . , ϕ k , ∇ϕ are bounded and that the Brownian motions B 1 , . . . , B N are independent.

Step 2.4.2. Next we introduce, for η ∈ (0, 1), F η defined as F with K replaced by the smooth and bounded kernel K η , recall [START_REF] Fournier | Propagation of chaos for the 2D viscous vortex model[END_REF]. Then one easily checks that Q → F η (Q) is continuous and bounded from P(C([0, ∞), R 2 )) to R. Since µ N goes in law to µ, we deduce that for any η ∈ (0, 1),

E[|F η (µ)|] = lim N E[|F η (µ N )|].
Step 2.4.3. We now prove that for all N ≥ 2, all η ∈ (0, 1), all α ∈ (χ/(2π), 1),

E[|F (µ) -F η (µ)|] + sup N ≥2 E[|F (µ N ) -F η (µ N )|] ≤ C α,F η 1-α .
Using that all the functions (including the derivatives) involved in F are bounded and that we have [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II, Jahresber[END_REF], we get the existence of a finite constant C F such that

|K η (x) -K(x)| ≤ η 1-α |x| α-2 1 {x =0} /π by
|F (Q) -F η (Q)| ≤C F η 1-α t 0 |z u -zu | α-2 1 {zu =zu} du Q(dz)Q(dz) =C F η 1-α t 0 R 2 R 2 |x -y| α-2 1 {x =y} Q u (dy)Q u (dx)du.
The conclusion then follows from Step 2.3. combined with the estimate

E T 0 R 2 R 2 |x -y| α-2 1 {x =y} µ N s (dy)µ N s (dx)ds ≤ 1 N 2 i =j E T 0 |X i,N s -X j,N s | α-2 ds ≤ C α,T
deduced from Corollary 10 and exchangeability.

Step 2.4.4. For any η ∈ (0, 1), we write

E[|F (µ)|] ≤E[|F (µ) -F η (µ)|] + lim sup N |E[|F η (µ)|] -E[|F η (µ N )|]| + lim sup N E[|F η (µ N ) -F (µ N )|] + lim sup N E[|F (µ N )|].
By Steps 2.4.1 and 2.4.2, the fourth and second terms on the right-hand side are zero. We thus deduce from Step 2.4.

3 that E[|F (µ)|] ≤ C α,F η 1-α . Since η ∈ (0, 1
) can be chosen arbitrarily small, we conclude that E[|F (µ)|] = 0, whence F (µ) = 0 a.s. as desired.

Step 3. It only remains to check point (iii). Consider the (not relabelled) subsequence µ N going to µ in P(C([0, ∞), R 2 )) as in Step 2. This implies that (µ N t ) t≥0 goes to (µ t ) t≥0 in C([0, ∞), P(R 2 )). By Step 2, µ is a.s. the law of a solution to the nonlinear SDE [START_REF] Cepa | Brownian particles with electrostatic repulsion on the circle: Dysons model for unitary random matrices revisited[END_REF]. As seen in Remark 3, this implies that a.s., (µ t ) t≥0 is a weak solution to the Keller-Segel equation (1).

(Local) existence for the particle system in the general case

The aim of this section is to prove Theorem 7. We thus fix χ > 0 and f 0 ∈ P 1 (R 2 ). We introduce the domain, for ℓ ≥ 1 and N ≥ 2,

D N ℓ := {(x 1 , . . . , x N ) ∈ (R 2 ) N : |x i -x j |+|x j -x k |+|x k -x i | > 1/
ℓ for all i, j, k pairwise different}, and we consider the Lipschitz continuous function Φ

N ℓ : (R 2 ) N → [0, 1] defined by Φ N ℓ (x 1 , . . . , x N ) = 0 ∨ 2ℓ min i,j,k distinct {|x i -x j | + |x j -x k | + |x k -x i |} -1 ∧ 1, which satisfies 1 D N ℓ ≤ Φ N ℓ ≤ 1 D N 2ℓ .
As usual, the random variables X i 0 , i = 1, . . . , N are i.i.d. with common law f 0 and independent of the i.i.d. 2-dimensional Brownian motions (B i t ) t≥0 , i = 1, . . . , N . For ε ∈ (0, 1) and ℓ ≥ 1, the particle system

(17) X i,N,ε,ℓ t = X i 0 + √ 2B i t + χ N N j=1 t 0 K ε (X i,N,ε,ℓ s -X j,N,ε,ℓ s )Φ N ℓ ((X k,N,ε,ℓ s ) k=1,...,N )ds
is strongly well-posed, since K ε and Φ N ℓ are bounded and Lipschitz continuous. For a fixed ℓ ≥ 1, we can show as in Corollary 10 that particles do not meet too often.

Lemma 12. Fix χ > 0 and consider, for each N ≥ 2, ε ∈ (0, 1) and ℓ ≥ 1, the unique solution (X i,N,ε,ℓ t ) t≥0,i=1,...,N to [START_REF] Jourdain | Diffusion processes associated with nonlinear evolution equations for signed measures[END_REF].

(i) For all t ≥ 0, all ℓ > 0, all ε ∈ (0, 1), E[(1 + |X 1,N,ε,ℓ t | 2 ) 1/2 ] ≤ f 0 , 1 + |x| 2 + 2t.
(ii) For all T > 0, all α ∈ (0, 1), all ℓ > 0, there is a constant C T,α,ℓ (depending also on χ and f 0 ) such that for all ε ∈ (0, 1), all N > χ/(2απ),

E T 0 |X 1,N,ε,ℓ s -X 2,N,ε,ℓ s | α-2 ds ≤ 1 + C T,α,ℓ 2α - χ πN (α-2)/(1-α)
.

Proof. First, (i) can be checked exactly as Proposition 9-(i), using only that Φ N ℓ is nonnegative and does break the exchangeability. We now prove (ii) and thus fix α ∈ (0, 1). Proceeding exactly as in the proof of Proposition 9-(ii), see [START_REF] Herrero | Singularity patterns in a chemotaxis model[END_REF], we find that for all η ∈ (0, ε],

2α 2 I N,ε,ℓ η,α,T ≤ A α,T + χα πN J N,ε,ℓ η,α,T + (N -2)χα πN K N,ε,ℓ η,α,T ,
where

A α,T = (2 √ 2 f 0 , 1 + |x| 2 + 4 √ 2T )
α and where

I N,ε,ℓ η,α,T =E[ T 0 (|X 1,N,ε,ℓ s -X 2,N,ε,ℓ s | 2 + η 2 ) α/2-1 ds], J N,ε,ℓ η,α,T =E T 0 (|X 1,N,ε,ℓ s -X 2,N,ε,ℓ s | 2 + η 2 ) α/2-1 Φ N ℓ ((X k,N,ε,ℓ s ) k=1,...,N )ds , K N,ε,ℓ η,α,T =E T 0 (|X 1,N,ε,ℓ s -X 2,N,ε,ℓ s | 2 + η 2 ) (α-1)/2 (|X 1,N,ε,ℓ s -X 3,N,ε,ℓ s | 2 + ε 2 ) -1/2 Φ N ℓ ((X k,N,ε,ℓ s ) k=1,...,N )ds . Since Φ N ℓ ≤ 1, we obviously have J N,ε,ℓ η,α,T ≤ I N,ε,ℓ η,α,T . We next note that for u, v > 0, u (α-1)/2 v -1/2 ≤ (1 + u -1/2 )(1 + v -1/2 ) ≤ (1 + max{u, v} -1/2 )(1 + u -1/2 + v -1/2 ) and that, for x = (x 1 , . . . , x N ) ∈ (R 2 ) N , Φ N ℓ (x) > 0 implies that x ∈ D N 2ℓ , whence |x 1 -x 2 | + |x 1 -x 3 | + |x 2 -x 3 | ≥ 1/(2ℓ) and thus max{|x 1 -x 2 |, |x 1 -x 3 |} ≥ 1/(8ℓ). Consequently, since η ∈ (0, ε], (|x 1 -x 2 | 2 + η 2 ) (α-1)/2 (|x 1 -x 3 | 2 + ε 2 ) -1/2 Φ N ℓ (x) ≤[1 + max{η 2 + |x 1 -x 2 | 2 , η 2 + |x 1 -x 3 | 2 } -1/2 ] × [1 + (η 2 + |x 1 -x 2 | 2 ) -1 + (η 2 + |x 1 -x 3 | 2 ) -1 ]1 {x∈D N 2ℓ } ≤(1 + 8ℓ)[1 + (|x 1 -x 2 | 2 + η 2 ) -1/2 + (|x 1 -x 3 | 2 + η 2 ) -1/2 ].
This implies that

K N,ε,ℓ η,α,T ≤(1 + 8ℓ)E T 0 1 + (|X 1,N,ε,ℓ s -X 2,N,ε,ℓ s | 2 + η 2 ) -1/2 + (|X 1,N,ε,ℓ s -X 3,N,ε,ℓ s | 2 + η 2 ) -1/2 ds ≤(1 + 8ℓ)T + 2(1 + 8ℓ)E T 0 (|X 1,N,ε,ℓ s -X 2,N,ε,ℓ s | 2 + η 2 ) -1/2 ds ≤(1 + 8ℓ)T + 2(1 + 8ℓ)T (1-α)/(2-α) [I N,ε,ℓ η,α,T ] 1/(2-α
) by the Hölder inequality. All in all, we have checked that 2α -

χ πN I N,ε,ℓ η,α,T ≤ B α,T,ℓ + C α,T,ℓ [I N,ε,ℓ η,α,T ] 1/(2-α) ,
where

B α,T,ℓ = A α,T /α + (1 + 8ℓ)T χ/π and C α,T,ℓ = 2(1 + 8ℓ)T (1-α)/(2-α) χ/π.
Separating the cases I N,ε,ℓ η,α,T ≤ 1 and I N,ε,ℓ η,α,T > 1, we easily conclude that

I N,ε,ℓ η,α,T ≤ 1 + B α,T,ℓ + C α,T,ℓ (2-α)/(1-α) 2α - χ πN (α-2)/(1-α)
.

It finally suffices to let η ց 0 to conclude the proof.

We now deduce some compactness, still for ℓ fixed.

Lemma 13. Fix χ > 0 and consider, for each N ≥ 2, ε ∈ (0, 1) and ℓ ≥ 1, the unique solution (X i,N,ε,ℓ t ) t≥0,i=1,...,N to [START_REF] Jourdain | Diffusion processes associated with nonlinear evolution equations for signed measures[END_REF]. For all ℓ ≥ 1, the family {(X 1,N,ε,ℓ

t ) t≥0 , N > max{2, χ/(2π)}, ε ∈ (0, 1)} is tight in C([0, ∞), R 2 ).
Proof. We fix ℓ ≥ 1 and T > 0. As in the proof of Lemma 11, the only difficulty is to prove that the family

{(J 1,N,ε,ℓ t ) t∈[0,T ],i=1,...,N , N ≥ N 0 , ε ∈ (0, 1) > 0} is tight in C([0, T ], R 2 ), where N 0 = ⌊max{2, χ/(2π)⌋ + 1 and J 1,N,ε,ℓ t = χ N N j=1 t 0 K ε (X i,N,ε,ℓ s -X j,N,ε,ℓ s )Φ N ℓ ((X k,N,ε,ℓ s ) k=1,...,N )ds.
We consider α ∈ (0, 1) such that 2αχ/(πN 0 ) > 0, so that, by Lemma 12,[START_REF] Jourdain | A multitype sticky particle construction of Wasserstein stable semigroups solving one-dimensional diagonal hyperbolic systems with large monotonic data[END_REF] sup

N ≥N0,ε∈(0,1) E T 0 |X 1,N,ε,ℓ s -X 2,N,ε,ℓ s | α-2 ds < ∞.
Using that |Φ N ℓ | ≤ 1, we check as in the proof of Lemma 11 that for all 0 ≤ s < t ≤ T , we have

|J 1,N,ε,ℓ t -J 1,N,ε,ℓ s | ≤ Z N,ε,ℓ T |t -s| β , where β = (1 -α)/(2 -α) and where Z N,ε,ℓ T = χ 2πN N j=2 1 + T 0 |X 1,N,ε,ℓ s -X j,N,ε,ℓ s | α-2 ds .
But [START_REF] Jourdain | A multitype sticky particle construction of Wasserstein stable semigroups solving one-dimensional diagonal hyperbolic systems with large monotonic data[END_REF] and exchangeability imply that sup N ≥N0,ε∈(0,1) E[Z N,ε,ℓ T ] < ∞. We conclude exactly as in the proof of Lemma 11.

We now make ε tend to 0 in the particle system [START_REF] Jourdain | Diffusion processes associated with nonlinear evolution equations for signed measures[END_REF], simultaneously for all ℓ ≥ 1. Lemma 14. Let χ > 0, N > max{2, χ/(2π)} and f 0 ∈ P 1 (R 2 ) be fixed. There exists, on some probability space endowed with some filtration (F t ) t≥0 , a family (X i 0 ) i=1,...,N of i.i.d. f 0 -distributed F 0 -measurable random variables, a 2N -dimensional (F t ) t≥0 -Brownian motion (B i t ) i=1,...,N,t≥0 and, for each ℓ ≥ 1, an (F t ) t≥0 -adapted solution to

(19) X i,N,ℓ t = X i 0 + √ 2B i t + χ N N j=1 t 0 K(X i,N,ℓ s -X j,N,ℓ s )Φ N ℓ ((X k,N,ℓ s ) k=1,...,N )ds.
The family {(X i,N,ℓ t ) t≥0,ℓ≥1 i = 1, . . . , N } is furthermore exchangeable. Moreover, for all ℓ ≥ 1, all t > 0, we have

E[(1 + |X 1,N,ℓ t | 2 ) 1/2 ] ≤ f 0 , 1 + |x| 2 + 2t
and, for all α ∈ (χ/(2πN ), 1),

E t 0 |X 1,N,ℓ s -X 2,N,ℓ s | α-2 ] < ∞.
Finally, we have the following compatibility property: for all ℓ ′ ≥ ℓ ≥ 1, a.s., (X i,N,ℓ t

) i=1,...,N = (X i,N,ℓ ′ t ) i=1,...,N for all t ∈ [0, τ ℓ N )
, where

τ ℓ N = inf{t ≥ 0 : (X i,N,ℓ t ) i=1,...,N / ∈ D N ℓ }.
Proof. We thus fix χ > 0, N > max{2, χ/(2π)} and f 0 ∈ P 1 (R 2 ) and divide the proof in several steps.

Step 1. We know from Lemma 13 that for each ℓ ≥ 1, the family {(X 1,N,ε,ℓ t ) t≥0 , ε ∈ (0, 1)} is tight in C([0, ∞), R 2 ). By exchangeability, {(X i,N,ε,ℓ t ) t≥0,i=1,...,N , ε ∈ (0, 1)} is thus tight in C([0, ∞), (R 2 ) N ), still for each ℓ ≥ 1. Since C([0, ∞), (R 2 ) N ) endowed with the topology of uniform convergence on compact subsets of [0, ∞) is a Polish space, by the Prokhorov theorem, for all η > 0, we can find a compact subset K ℓ η of C([0, ∞), (R 2 ) N )) such that sup ε∈(0,1) P((X i,N,ε,ℓ t

) t≥0,i=1,...,N / ∈ K ℓ η ) ≤ η2 -ℓ . We now introduce K η := ℓ≥1 K ℓ η , which is a compact subset of [C([0, ∞), (R 2 ) N )
] N (endowed with the product topology) by Tychonoff's theorem. It holds that sup ε∈(0,1)

P(((X i,N,ε,ℓ t ) t≥0,i=1,...,N ) ℓ≥1 / ∈ K η ) ≤ ℓ≥1 sup ε∈(0,1) P((X i,N,ε,ℓ t ) t≥0,i=1,...,N / ∈ K ℓ η ) ≤ η.
Consequently, the family {((X i,N,ε,ℓ t

) t≥0,i=1,...,N ) ℓ≥1 , ε ∈ (0, 1)} is tight in [C([0, ∞), (R 2 ) N )] N . Finally, we conclude that the family {(((X i,N,ε,ℓ t ) t≥0,i=1,...,N ) ℓ≥1 , (B i t ) t≥0,i=1,...,N ), ε ∈ (0, 1)} is tight in [C([0, ∞), (R 2 ) N )] N × C([0, ∞), (R 2 ) N ).
Step 2. We now use the Skorokhod representation theorem: we can find a sequence ε k ց 0 and a sequence ((( Xi,N,ε k ,ℓ t

) t≥0,i=1,...,N ) ℓ≥1 , ( Bi,k t ) t≥0,i=1,...,N ) going a.s. in [C([0, ∞), (R 2 ) N )] N × C([0, ∞, (R 2 ) N ) to some (((X i,N,ℓ t ) t≥0,i=1,...,N ) ℓ≥1 , (B i t ) t≥0,i=1,...,N
) and such that, for each ℓ ≥ 1, each k ≥ 1, ( Xi,N,ε k ,ℓ t ) t≥0,i=1,...,N solves [START_REF] Jourdain | Diffusion processes associated with nonlinear evolution equations for signed measures[END_REF] with the Brownian motions ( Bi,k t ) t≥0,i=1,...,N and some i.i.d. f 0 -distributed initial conditions ( Xi,N,ε k 0 ) i=1,...,N (not depending on ℓ ≥ 1). The exchangeability of {(X i,N,ℓ t ) t≥0,ℓ≥1 , i = 1, . . . , N } is inherited from that of {( Xi,N,ε k ,ℓ t ) t≥0,ℓ≥1 , i = 1, . . . , N }. Next, Lemma 12 and the Fatou Lemma imply that for all t ≥ 0, all ℓ ≥ 1,

max E[(1 + |X 1,N,ℓ t | 2 ) 1/2 ], sup k≥1 E[(1 + |X 1,N,ε k ,ℓ t | 2 ) 1/2 ] ≤ f 0 , 1 + |x| 2 + 2t
and that, for all α ∈ (χ/(2πN ), 1), all T > 0, all ℓ ≥ 1,

E T 0 |X 1,N,ℓ s -X 2,N,ℓ s | α-2 ds + sup k≥1 T 0 |X 1,N,ε k ,ℓ s -X 2,N,ε k ,ℓ s | α-2 ds < ∞.
Step 3. We introduce

F t = σ((X i,N,ℓ s , B i s ) i=1,...,N,s∈[0,t] ), to which (X i,N,ℓ t ) t≥0,i=1,...,N is of course adapted for each ℓ ≥ 1. We clearly have X i,N,ℓ 0 = X i,N,ℓ ′ 0 for all i = 1, . . . , N and all ℓ, ℓ ′ ≥ 1 (because Xi,N,ε k ,ℓ 0 = Xi,N,ε k ,ℓ ′ 0
for all k ≥ 1, all i = 1, . . . , N and all ℓ, ℓ ′ ≥ 1). We thus may define X i 0 := X i,N,ℓ 0 for all i = 1, . . . , N , for any value of ℓ. The family (X i 0 ) i=1,...,N consists of i.i.d. f 0 -distributed random variables (because it is the limit of such objects). Finally, one checks as in the proof of Theorem 5-Step 2 (B i t ) t≥0,i=1,...,N is 2N -dimensional (F t ) t≥0 -Brownian motion.

Step 4. It is checked exactly as in the proof of Theorem 5-Step 3 that for each ℓ ≥ 1, (X i,N,ℓ t ) t≥0,i=1,...,N solves [START_REF] Kac | Foundations of kinetic theory[END_REF]: it suffices to pass to the limit in probability as k → ∞ in the equation satisfied by ( Xi,N,ε k ,ℓ t ) t≥0,i=1,...,N , using the estimates proved in Step 2 and that Φ N ℓ is continuous.

Step 5. It only remains to prove the compatibility property. We introduce, for ℓ ≥ 1 and k ≥ 1,

τ ℓ,k N := inf{t ≥ 0 : ( Xi,N,ε k ,ℓ t ) i=1,...,N / ∈ D N ℓ } and τ ℓ N := inf{t ≥ 0 : (X i,N,ℓ t ) i=1,...,N / ∈ D N ℓ }.
Since ( Xi,N,ε k ,ℓ t ) t≥0,i=1,...,N goes a.s. to (X i,N,ε k ,ℓ t ) t≥0,i=1,...,N in C([0, ∞), (R 2 ) N ) and since (D N ℓ ) c is an closed subset of (R 2 ) N , we deduce that τ ℓ N ≤ lim inf k→∞ τ ℓ,k N . But for all ℓ ′ ≥ ℓ ≥ 1, we have ( Xi,N,ε k ,ℓ t ) i=1,...,N = ( Xi,N,ε k ,ℓ ′ t ) i=1,...,N on the time interval [0, τ ℓ,k N ] for any k ≥ 1: this follows from the pathwise uniqueness for [START_REF] Kac | Foundations of kinetic theory[END_REF] and from the fact that Φ

N ℓ = Φ N ℓ ′ = 1 on D N ℓ . Using finally that ( Xi,N,ε k ,ℓ t , Xi,N,ε k ,ℓ ′ t ) t≥0,i=1,...,N goes a.s. to (X i,N,ℓ t , X i,N,ℓ ′ t ) t≥0,i=1,...,N in C([0, ∞), (R 2 ) N × (R 2 ) N ), we conclude that indeed, (X i,N,ℓ t ) i=1,...,N = (X i,N,ℓ ′ t ) i=1,...,N on [0, τ ℓ N ].
Finally, we let ℓ increase to infinity.

Proof of Theorem 7. We fix χ > 0, N > max{2, χ/(2π)} and f 0 ∈ P 1 (R 2 ) such that f 0 ({x}) = 0 for all x ∈ R 2 . We consider the objects built in Lemma 14: the filtration (F t ) t≥0 , the 2N -dimensional (F t ) t≥0 -Brownian motion (B i t ) i=1,...,N,t≥0 , the (F t ) t≥0 -adapted solution (X i,N,ℓ t ) t≥0,i=1,...,N , for each ℓ ≥ 1, to [START_REF] Jourdain | Diffusion processes associated with nonlinear evolution equations for signed measures[END_REF], and associated stopping times τ ℓ N . Using the compatibility property, we deduce that τ ℓ N is a.s. increasing (as a function of ℓ) and we define τ N = sup ℓ≥1 τ ℓ N . Still using the compatibility property, we deduce that for all t ∈ [0, τ N ), all ℓ such that τ

ℓ N ≥ t, all ℓ ′ ≥ ℓ, (X i,N,ℓ t ) i=1,...,N = (X i,N,ℓ ′ t ) i=1,...,N . Hence for t ∈ [0, τ N ), we can define (X i,N t ) i=1,...,N as (X i,N,ℓ t ) i=1,...,N for any choice of ℓ such that τ ℓ N ≥ t. Since Φ N ℓ ((X i,N,ℓ t ) i=1,...,N ) = 1 for t ∈ [0, τ ℓ N ]
, by the definitions of Φ ℓ N and of τ ℓ N , we conclude that indeed, (X i,N t

) t∈[0,τN ),i=1,...,N solves (4) with the Brownian motions (B i t ) i=1,...,N,t≥0 , and that

τ ℓ N = inf{t ≥ 0 : (X i,N t ) i=1,...,N / ∈ D N ℓ }, so that τ N = sup ℓ≥1 inf {t ≥ 0 : (X i,N t ) i=1,...,N / ∈ D N ℓ }
as in the statement. The exchangeability and (F t ) t≥0 -adaptation of the family {(X i,N t ) t∈[0,τN ) , i = 1, . . . , N } is of course inherited from {(X i,N,ℓ t ) t≥0,ℓ≥1 , i = 1, . . . , N }. We also have a.s., for all t ∈ [0, τ N ), all α ∈ (χ/(2πN ), 1),

t 0 |X 1,N s -X 2,N s | α-2 ds = t 0 |X 1,N,ℓ s -X 2,N,ℓ s | α-2 ds
as soon as ℓ is large enough so that τ ℓ N ≥ t. This last quantity is a.s. finite by Lemma 14 again. It remains to decide whether τ N is finite or infinite. For I ⊂ {1, . . . , N } with cardinality |I| ≥ 2 and t ∈ [0, τ N ), let XI

t = |I| -1 i∈I X i,N t and R I t = 2 -1 i∈I |X i,N t -XI t | 2 .
First assume that χ > 8π(N -2)/(N -1). Consider I N = {1, . . . , N }. A direct computation using the Itô formula (see [START_REF] Karatzas | Brownian motion and Stochastic Calculus[END_REF] in the proof of Lemma 15 below, the last term obviously vanishes when

I = I N ) shows that (R IN t ) t∈[0,τN ) is a squared Bessel process with dimension (N -1)(2 - χ/4π) < 2, restricted to [0, τ N ).
But a squared Bessel process with dimension smaller than 2 a.s. reaches zero in finite time, see [32, page 442]. We conclude that on the event {τ N = ∞}, R IN reaches zero in finite time, which of course implies that τ N < ∞. Thus P(τ N = ∞) = 0 as desired.

Assume next that χ ≤ 8π(N -2)/(N -1). Observe that for (x 1 , x 2 , x 3 ) ∈ (R 2 ) 3 and x = (

x 1 + x 2 + x 3 )/3, |x 1 -x 2 | + |x 2 -x 3 | + |x 3 -x 1 | ≥ (|x 1 -x 2 | 2 + |x 2 -x 3 | 2 + |x 3 -x 1 | 2 ) 1/2 = √ 3(|x 1 -x| 2 + |x 2 -x| 2 + |x 3 -x| 2 ) 1/2 .
Consequently, for ℓ ≥ 1,

P(τ N < ∞) = P(τ N < ∞, τ ℓ N ≤ τ N ) = P τ N < +∞, min i,j,k distinct inf t∈[0,τN ) (|X i t -X j t | + |X j t -X k t | + |X k t -X i t |) ≤ 1 ℓ ≤ P τ N < +∞, min I : |I|=3 inf t∈[0,τN ) R I t ≤ 1 6ℓ 2 .
This last quantity tends to 0 as ℓ → ∞ thanks to the following Lemma, whence P(τ N < ∞) = 0.

Lemma 15. Let N ≥ 3 and χ ∈ (0, 8π(N -2)/(N -1)]. Consider (X i,N t

) t∈[0,τN ),i=1,...,N built in the previous proof. For I ⊂ {1, . . . , N } with cardinality |I| ≥ 2 and t ∈ [0, τ N ), let XI

t = |I| -1 i∈I X i,N t and R I t = 2 -1 i∈I |X i,N t -XI t | 2 . For all I ⊂ {1, . . . , N } with |I| ≥ 3, P τ N < ∞, inf t∈[0,τN ) R I t = 0 = 0.
Proof of Lemma 15. We divide the proof in several steps.

Step 1. Since the initial conditions (X i,N 0 ) 1≤i≤N are independent and f 0 -distributed with f 0 ({x}) = 0 for all x ∈ R 2 , they are a.s. pairwise distinct and for all I ⊂ {1, . . . , N } with |I| ≥ 2, P(R I 0 > 0) = 1. Also, by definition of τ N , we have a.s. R I t > 0 for all t ∈ [0, τ N ) and all |I| ≥ 3. For all |I| ≥ 3 and t ∈ [0, τ N ), let

β I t = t 0 1 2R I s i∈I (X i,N s -XI s ) • dB i s .
This process can easily be extended into a one-dimensional Brownian motion (β I t ) t≥0 . In the remaining of the step, we check that for t ∈ [0, τ N ), [START_REF] Karatzas | Brownian motion and Stochastic Calculus[END_REF] 

dR I t = 2 R I t dβ I t + (|I| -1) 2 - χ|I| 4πN dt + χ N i∈I j / ∈I (X i,N t -XI t ) • K(X i,N t -X j,N t )dt.
We work on [0, τ N ). Sarting from (4) and setting BI

t = |I| -1 i∈I B i t , d(X i,N t -XI t ) = √ 2d(B i -BI ) t + χ N j =i K(X i,N t -X j,N t ) -|I| -1 Z I t dt,
where

Z I t = k∈I j =k K(X k,N t -X j,N t
). Using the Itô formula, we thus find

d|X i,N t -XI t | 2 =2 √ 2(X i,N t -XI t ) • (dB i t -d BI t ) + 4 |I| -1 |I| dt + 2χ N (X i,N t -XI t ) • j =i K(X i,N t -X j,N t ) -|I| -1 Z I t dt
and thus

dR I t = √ 2 i∈I (X i,N t -XI t ) • (dB i t -d BI t ) + 2(|I| -1)dt + χ N i∈I (X i,N t -XI t ) • j =i K(X i,N t -X j,N t ) -|I| -1 Z I t dt
We now observe that i∈I (X i,N t

-XI t ) • (dB i t -d BI t ) = i∈I (X i,N t -XI t ) • dB i t = 2R I t dβ I t and that i∈I (X i,N t -XI t )Z I t = 0, so that dR I t = 2 R I t dβ I t + 2(|I| -1)dt + χ N i∈I j =i (X i,N t -XI t ) • K(X i,N t -X j,N t )dt
To conclude the proof of [START_REF] Karatzas | Brownian motion and Stochastic Calculus[END_REF], it suffices to note that i,j∈I,j =i XI t • K(X i,N t -X j,N t ) = 0 and that i,j∈I,j =i

X i,N t • K(X i,N t -X j,N t ) = 1 2 i,j∈I,j =i (X i,N t -X j,N t ) • K(X i,N t -X j,N t ) = - |I|(|I| -1) 4π .
Step 2: A key observation. We see in [START_REF] Karatzas | Brownian motion and Stochastic Calculus[END_REF] that, up to the third-term in the right-hand side, the process R I evolves like the square of a Bessel process of dimension (|I| -1)(2 -χ|I|/(4πN )). As we will show in a few lines, the condition χ ∈ (0, 8π(N -2)/(N -1)] implies that Since by [32, page 442] a squared Bessel process of dimension δ ≥ 2 a.s. never reaches zero, we expect that indeed, for any |I| ≥ 3, R I a.s. never reaches zero.

To check [START_REF]Initiation of slime mold aggregation viewed as an instability[END_REF], observe that φ(x) = (x -1)(2χx/(4πN )) is concave, so that we only have to verify that φ(3) ≥ 2 and φ(N ) ≥ 2. First, φ(N ) ≥ 2 is equivalent to our condition that χ ≤ 8π(N -2)/(N -1). Next, φ(3) ≥ 2 is equivalent to χ ≤ 4πN/3. Finally, it is not hard to verify that, N ≥ 3 being an integer, we always have 8π(N -2)/(N -1) ≤ 4πN/3.

Step 3. We now prove by backward induction that for all n = 3, . . . , N , ( 22)

∀ I ⊂ {1, . . . , N } with |I| = n, P τ N < ∞, inf t∈[0,τN ) R I t = 0 = 0.
We first observe that ( 22) is clear when n = N . Indeed, |I| = N implies that I = {1, . . . , N }, so that the third term in the right-hand side of (20) vanishes and (R I t ) t∈[0,τN ) is a (true) squared Bessel process with dimension (N -1)(2χ/(4π)) ≥ 2 restricted to [0, τ N ). Hence inf [0,τN ) R I t > 0 a.s. on the event {τ N < ∞}.

We now assume that [START_REF] Khoshnevisan | Exact rates of convergence to Brownian local times[END_REF] holds for some n ∈ {4, . . . , N } and check that it also holds for n -1. We thus consider some fixed I ⊂ {1, . . . , N } with cardinality n -1. We have to prove that a.s. on {τ N < ∞}, inf [0,τN ) R I t > 0. For each j ∈ {1, . . . , N } \ I, we introduce I j = I ∪ {j}.

Step 3.1. We claim that for each j ∈ {1, . . . , N } \ I, each (x 1 , . .

. , x N ) ∈ (R 2 ) N , setting xI = (n -1) -1 i∈I x i and xIj = n -1 i∈I j x i , (2n -3) min k∈I |x k -x j | 2 ≥ n i∈Ij |x i -xIj | 2 -3(n -1) i∈I |x i -xI | 2 .
We fix k ∈ I and start from |x k -

x j | 2 = i∈I |x i -x j | 2 -i∈I,i =k |x i -x j | 2 whence, since i∈I,i =k |x i -x j | 2 ≤ 2(n -2)|x k -x j | 2 + 2 i∈I,i =k |x i -x k | 2 , (2n -3)|x k -x j | 2 ≥ i∈I |x i -x j | 2 -2 i∈I,i =k |x i -x k | 2 .

But one easily checks that 2 max k∈I i∈I

,i =k |x i -x k | 2 ≤ i,k∈I |x i -x k | 2 , whence (2n -3) min k∈I |x k -x j | 2 ≥ i∈I |x i -x j | 2 - i,k∈I |x i -x k | 2 = 1 2 i,k∈Ij |x i -x k | 2 - 3 2 i,k∈I |x i -x k | 2 .
The claim then follows from the facts that i,k∈Ij |x i -

x k | 2 = 2n i∈I j |x i -xIj | 2 and that i,k∈I |x i -x k | 2 = 2(n -1) i∈I |x i -xI | 2 .
Step 3.2. We now fix a > 0 and b = a/3. Step 3.1 implies that when min j / ∈I R Ij t ≥ a and R I t ≤ b, we have

(23) min k∈I,j / ∈I |X k,N t -X j,N t | 2 ≥ 2an 2n -3 - 6(n -1)b 2n -3 = 2a 2n -3 , whence max k∈I,j / ∈I |K(X k,N t -X j,N t )| ≤ √ 2n -3 2π √ 2a .
Hence one may bound the third term in the right-hand side of (20) from below:

1 {min j / ∈I R I j t ≥a,R I t ≤b} χ N i∈I j / ∈I (X i,N t -XI t ) • K(X i,N t -X j,N t ) (24) ≥ - χ √ 2n -3 2πN √ 2a i∈I j / ∈I |X i,N t -XI t | ≥ -c R I t , with c := (N + 1 -n)χ (2n -3)(n -1)/(2πN √ a).
Let us now define the stopping time

σ a = inf t ∈ [0, τ N ) : min j / ∈I R Ij t < a
with convention inf ∅ = τ N and introduce the process (R I,a t ) t∈[0,τN ) defined by R I,a t = R I t for t ∈ [0, σ a ) and, when σ a < τ N , by being the unique solution, for t ∈ [σ a , τ N ), to

R I,a t =R I σa + 2 t σa R I,a s dβ I s + (|I| -1) 2 - χ|I| 4πN (t -σ a ).
The existence of a pathwise unique solution to this equation follows from [32, Theorem 3.5 p 390]. We deduce from (20) that this process satisfies, for all t ∈ [0, τ N ),

R I,a t =R I 0 + 2 t 0 R I,a s dβ I s + (|I| -1) 2 - χ|I| 4πN t + χ N t 0 1 {s<σa} i∈I j / ∈I (X i,N s -XI s ) • K(X i,N s -X j,N s )ds.
Step 3. 

   R I,b t = R I 0 ∧ b + 2 t 0 R I,b s dβ I s + (|I| -1) 2 -χ|I| 4πN t -c t 0 R I,b
s ds -L t (L s ) s≥0 is an adapted increasing process such that L 0 = 0 and t 0 (b -R I,b s )dL s = 0 will be checked in Step 4 using that |I| ≥ 3. We take this for granted and show that a.s., for all t ∈ [0, τ N ), R I,a 

-R I,a 0 = R I 0 ∧ b -R I 0 ≤ 0, we find (R I,b t -R I,a t ) + ≤ 2 t 0 1 {R I,b s >R I,a s } R I,b s -R I,a s dβ I s - t 0 1 {R I,b s >R I,a s } dL s + t 0 1 {R I,b s >R I,a s } -c R I,b s - χ N 1 {s<σa} i∈I j / ∈I (X i,N s -XI s ) • K(X i,N s -X j,N s ) ds.
Since L is an increasing process, the second term on the right-hand side is nonpositive. The third term on the right-hand side is also nonpositive, because s < σ a implies that R I,a s = R I s , so that R I,b s > R I,a s implies that R I s ≤ b, whence, using [START_REF] Mckean | Propagation of chaos for a class of non-linear parabolic equations[END_REF] and the definition of σ a , for all s

∈ [0, τ N ) such that R I,b s > R I,a s , - χ N 1 {s<σa} i∈I j / ∈I (X i,N s -XI s ) • K(X i,N s -X j,N s ) ≤ c R I s = c R I,a s < c R I,b s .
We conclude that a.s., for all t ∈ [0, τ N ),

(R I,b t -R I,a t ) + ≤2 t 0 1 {R I,b s >R I,a s } R I,b s -R I,a s dβ I s . ( 26 
)
We next introduce M t :=

t 0 1 {s<τN ,R I,b s >R I,a s } ( R I,b
s -R I,a s )dβ I s , which is a true martingale (because the integrand is clearly bounded by √ b), which is a.s. nonnegative for all times by ( 26) and which starts from 0: we classically conclude that a.s., M t vanishes for all t ≥ 0. Coming back to [START_REF] Mischler | Kacs Program in Kinetic Theory[END_REF], we deduce that (R I,b t -R I,a t ) + ≤ 2M t = 0 a.s. for all t ∈ [0, τ N ), which ends the step.

Step 3.4. We now conclude the induction. For any a > 0 and b = a/3, using that (R I t ) t∈[0,σa) = (R I,a t ) t∈[0,σa) and the definition of σ a ,

P τ N < ∞, inf t∈[0,τN ) R I t = 0 ≤ P τ N < ∞, σ a = τ N , inf t∈[0,τN ) R I t = 0 + P τ N < ∞, σ a < τ N = P τ N < ∞, σ a = τ N , inf t∈[0,τN ) R I,a t = 0 + P τ N < ∞, min j / ∈I inf t∈[0,τN ) R Ij t ≤ a ≤ P τ N < ∞, inf t∈[0,τN ) R I,b t = 0 + P τ N < ∞, min j / ∈I inf t∈[0,τN ) R Ij t ≤ a .
Since the continuous process (R I,b t ) t≥0 does not reach 0, the first term in the right-hand side is 0. We thus can let a tend to 0 to get

P τ N < ∞, inf t∈[0,τN ) R I t = 0 ≤ P τ N < ∞, min j / ∈I inf t∈[0,τN ) R Ij t = 0 .
This last quantity vanishes by our induction assumption.

Step 4. To conclude the proof, we still have to check the existence of a solution (R [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF]. For ℓ ≥ 1/b, according to Skorokhod [START_REF] Skorokhod | Stochastic equations for diffusion processes in a bounded region[END_REF], existence and trajectorial uniqueness hold for the reflected (at b) stochastic differential equation with Lipschitz drift and diffusion coefficients 

I,b t ) t≥0 such P(∀t ≥ 0, R I,b t ∈ (0, b]) = 1 to
       R I,b,ℓ t = R I 0 ∧ b + 2 t 0 ℓ -1 ∨ R I,b,ℓ s dβ I s + (|I| -1) 2 -χ|I| 4πN t -c t 0 ℓ -1 ∨ R I,b,ℓ s ds -L ℓ t ∀t ≥ 0, R I,b,ℓ t ≤ b (L ℓ s ) s≥0 is
) s∈[0,t] ) = exp(cβ I t /2 -c 2 t/8
) (which is of course a true martingale), the process W t = β I tct/2 is a onedimensional Brownian motion. We introduce the equation, satisfied by (R I,b t , L l t ) on the timeinterval [0, ν ∞ ), for a squared Bessel process (ρ t , Λ t ) t≥0 of dimension (|I| -1)(2 -χ|I|/(4πN )) driven by W and reflected at the level b,

(27)        ρ t = R I 0 ∧ b + 2 t 0 √ ρ s dW s + (|I| -1) 2 -χ|I| 4πN t -Λ t ∀t ≥ 0, ρ t ≤ b (Λ s ) s≥0 is an adapted increasing process s.t. Λ 0 = 0 and t 0 (b -ρ s )dΛ s = 0.
. To check global existence for this equation, we set η 0 = 0 and define, inductively on k ≥ 0, ρ t to be equal to

• the squared Bessel process R t = 1 {k=0} R I 0 ∧ b + 1 {k≥1} b 3 + 2 t η k R s dW s + (|I| -1) 2 - χ|I| 4πN (t -η k )
on the time interval [η k , ηk+1 ] where ηk+1 = inf{t ≥ η k : R t ≥ 2b/3}, • the solution to the stochastic differential equation with Lipschitz coefficients

R b t = 2b 3 + 2 t ηk+1 b 3 ∨ R b s dW s + (|I| -1) 2 - χ|I| 4πN (t -ηk+1 ) -Λ b t ,
reflected at b on the time interval [η k+1 , η k+1 ] where η k+1 = inf{t ≥ ηk+1 : R b t ≤ b/3}. Since, under Q, the delays (η k+1ηk ) k≥1 are i.i.d. and positive, Q-a.s., ηk goes to ∞ with k by the law of large numbers and ρ t is defined for t ∈ [0, +∞). It is easily checked that the process (Λ) t≥0 defined by the first equality in ( 27) also satisfies the last one.

Reasoning like in the comparison between R I,a and R I,b performed in Step 3.3, we check that the first component of any of two solutions to [START_REF] Osada | A stochastic differential equation arising from the vortex problem[END_REF] is above the other one so that the first components coincide.

We deduce that R I,b t and ρ t coincide for t ∈ [0, ν ∞ ). With the definition of ν ∞ and the continuity of ρ, this implies that {ν ∞ ≤ t} ⊂ {∃s ∈ [0, t] : ρ s = 0}. Since (ρ t ) t≥0 always evolves as a squared Bessel process of dimension (|I| -1)(2 -χ|I|/(4πN )) ≥ 2 under the level b/3, by [32, p 442],

Q(∃s ∈ [0, +∞) : ρ s = 0). For each t ∈ [0, ∞), we deduce that 0 = P(∃s ∈ [0, t] : ρ s = 0) ≥ P(ν ∞ ≤ t) by equivalence of P and Q on σ(R I 0 , (β I s ) s∈[0,t] ). Letting t → ∞, we conclude that P(ν ∞ < ∞) = 0.

Positive probability of collisions

The goal of this section is to establish that in the N -particle system, pairs of particles do collide. The main idea is that for e.g. I = {1, 2}, up to the third term in the right-hand side of (20), the process R I t resembles a squared Bessel process with dimension (2χ/(2πN )) < 2, which a.s. reaches 0 by [32, page 442].

Proof of Proposition 4. We thus consider any fixed N ≥ 2, χ > 0, f 0 ∈ P(R 2 ), t 0 > 0 and any solution (if it exists) (X i,N t ) i=1,...,N,t∈[0,t0] to (4). We work by contradiction and assume that a.s., X i,N s = X j,N s for all s ∈ [0, t 0 ] and all i = j. Then the singularity of K is not visited and the particle system ( 4) is classically strongly well-posed on [0, t 0 ]. Thus for f ⊗N 0 -a.e. (x 1 , . . . , x N ) ∈ (R 2 ) N , there is a unique strong solution (X i,N t ) i=1,...,N,t∈[0,t0] to (4) such that a.s., X i,N 0 = x i for all i and X i,N s = X j,N s for all s ∈ [0, t 0 ] and all i = j. We fix for the rest of the proof an initial condition (x 1 , . . . , x N ) ∈ (R 2 ) N enjoying these properties. All the processes below are defined on the finite time interval [0, t 0 ].

Step 1. By construction, d = min i =j |x i -x j | > 0 and we may of course assume that d = |x 1 -x 2 |. We introduce x := (x 1 + x 2 )/2 and note that min 3≤j≤N |x j -x| ≥ √ 3d/2. Fix 1/2 < a < b < √ 3/2 and consider the stopping time τ = min{τ 1 , τ 2 , τ 3 }, where

τ 1 = inf t ∈ [0, t 0 ] : |X 1,N t -X 2,N t | ≥ 2a + 1 2 d , τ 2 = inf t ∈ [0, t 0 ] : |X 1,N t + X 2,N t -2x| ≥ 2a -1 2 d , τ 3 = inf t ∈ [0, t 0 ] : min j=3,...,N |X j,N t -x| ≤ bd ,
with the convention that inf ∅ = t 0 . We will use that a.s., for all t ∈ [0, τ ], min i=1,2, j=3,...,N

|X i,N t -X j,N t | ≥ (b -a)d.
Indeed, consider e.g. the case i = 1 and j = 3, write

|X 1,N t -X 3,N t | ≥ |X 3,N t -x| -|X 1,N t -x| and use that |X 3,N t -x| ≥ bd and that |X 1,N t -x| ≤ |X 1,N t -X 2,N t |/2 + |X 1,N t + X 2,N t -2x|/2 ≤ (2a + 1)d/4 + (2a -1)d/4 = ad.
Step 2. Consider the exponential martingale defined on [0, t 0 ] by

M t = exp χ √ 2N N i=1 t∧τ 0 1 {i≤2} N j=3 K(X j,N s -X i,N s ) + 1 {i≥3} 2 j=1 K(X j,N s -X i,N s ) • dB i s - χ 2 4N 2 N i=1 t∧τ 0 1 {i≤2} N j=3 K(X j,N s -X i,N s ) + 1 {i≥3} 2 j=1 K(X j,N s -X i,N s ) 2 ds .
This is indeed a true martingale, because K(X j,N s -X i,N s ) is bounded by (2π(b-a)d) -1 on [0, τ ] for each i = 1, 2 and j = 3, . . . , N , see Step 1. Hence P := M t0 • P is a probability measure equivalent to P. In particular, it also holds that P-a.s., X i,N s = X j,N s for all s ∈ [0, t 0 ] and all i = j. The Girsanov theorem tells us that, under P, the processes

W i t := B i t + χ √ 2N t∧τ 0 1 {i≤2} N j=3 K(X i,N s -X j,N s ) + 1 {i≥3} 2 j=1 K(X i,N s -X j,N s ) ds
are independent two-dimensional Brownian motions on [0, t 0 ]. We next introduce

β t = t 0 (X 1,N s -X 2,N s ) |X 1,N s -X 2,N s | • d W 1 s -W 2 s √ 2 and γ t = W 1 t + W 2 t √ 2 .
It is easily seen, computing brackets and using Karatzas and Shreve [20, Theorem 4.13 p 179], that still under P, β is a one-dimensional Brownian motion on [0, t 0 ], γ, W 3 , . . . , W N are twodimensional Brownian motions on [0, t 0 ], and all these processes are independent.

Step 3. We have

X 1,N t -X 2,N t =x 1 -x 2 + √ 2(B 1 t -B 2 t ) + 2χ N t 0 K(X 1,N s -X 2,N s )ds + χ N N j=3 t 0 K(X 1,N s -X j,N s ) -K(X 2,N s -X j,N s ) ds =x 1 -x 2 + √ 2(W 1 t -W 2 t ) + 2χ N t 0 K(X 1,N s -X 2,N s )ds for all t ∈ [0, τ ]. By the Itô formula, Y t = |X 1,N t -X 2,N t | 2 /4 thus solves, still for t ∈ [0, τ ], Y t := d 2 4 + 2 t 0 Y s dβ s + 2 - χ 2πN t.
We also have, for all t ∈ [0, τ ]

X 1,N t + X 2,N t =2x + √ 2(B 1 t + B 2 t ) + χ N N j=3 t 0 K(X 1,N s -X j,N s ) + K(X 2,N s -X j,N s ) ds =2x + √ 2(W 1 t + W 2 t ) =2x + 2γ t ,
and, for all t ∈ [0, τ ] and all i = 3, . . . , N (recall that K(0) = 0),

X i,N t =x i + √ 2B i t + χ N t 0 N j=1 K(X i,N s -X j,N s )ds =x i + √ 2W i t + χ N t 0 N j=3 K(X i,N s -X j,N s )ds.
We introduce ( Ỹt ) t∈[0,t0] the unique strong solution, see [32, Theorem 3.5 p 390], to

Ỹt := d 2 4 + 2 t 0 | Ỹs |dβ s + 2 - χ 2πN t.
We clearly have

(Y t ) t∈[0,τ ] = ( Ỹt ) t∈[0,τ ] . We next consider the system Xi,N t = x i + √ 2W i t + χ N t 0 N j=3 K( Xi,N s -Xj,N s )ds, i = 3, . . . , N, which classically has a unique strong solution ( Xi,N t ) i=3,...,N,t∈[0,σ) up to σ = lim ℓ→∞ inf{t ∈ [0, t 0 ] : min 3≤i<j≤N | Xi,N t -Xj,N t | ≤ 1/ℓ} (convention : inf ∅ = t 0 )
, which is a.s. positive because the initial conditions x 3 , . . . , x N are pairwise different. Clearly, (X i,N t ) i=3,...,N,t∈[0,τ ∧σ) = ( Xi,N t ) i=3,...,N,t∈[0,τ ∧σ) . We conclude this step mentioning that the processes ( Ỹt ) t∈[0,t0] , (γ t ) t∈[0,t0] and ( Xi,N t ) i=3,...,N,t∈[0,σ) are independent under P.

Step 4. For any s 0 ∈ (0, t 0 ), we claim that

Ω 1 ∩ Ω 2 ∩ Ω 3 ⊂ min [0,s0] |X 1,N s -X 2,N s | = 0 ,
where

Ω 1 = min [0,s0] Ỹs = 0, max [0,s0] Ỹs < (2a + 1) 2 d 2 16 , Ω 2 = max [0,s0] |γ s | < (2a -1)d 4 , Ω 3 = σ > s 0 , min s∈[0,s0],j≥3 | Xj,N s -x| > bd . Indeed, on Ω 1 , we have max [0,s0] Ỹs < (2a + 1) 2 d 2 /16, whence, since |X 1,N t -X 2,N t | 2 = 4 Ỹt on [0, τ ], max [0,s0∧τ ] |X 1,N s -X 2,N s | < (2a+1)d/2 and thus τ 1 > s 0 ∧τ . Since X 1,N t +X 2,N t = 2x+2γ t on [0, τ ], we deduce that on Ω 2 , max [0,s0∧τ ] |X 1,N s + X 2,N s -2x| ≤ sup [0,s0∧τ ] 2|γ s | < (2a -1)d/2, whence τ 2 > s 0 ∧ τ . On Ω 3 , since σ > s 0 , we have (X i,N t ) i=3,...,N,t∈[0,τ ∧s0] = ( Xi,N t ) i=3,...,N,t∈[0,τ ∧s0] ,
and thus min s∈[0,s0∧τ ],j≥3 |X j,N s -x| > bd, so that τ 3 > s 0 ∧ τ . As a conclusion, τ > s 0 ∧ τ and

thus τ > s 0 on Ω 1 ∩ Ω 2 ∩ Ω 3 . We deduce that Ω 1 ∩ Ω 2 ∩ Ω 3 ⊂ τ > s 0 , min [0,s0] Ỹs = 0 ⊂ min [0,s0] |X 1,N s -X 2,N s | = 0 , because Ỹt = |X 1,N t -X 2,N t | 2 /4 for all t ∈ [0, τ ].
Step 5. Here we show that we can find s 0 ∈ (0, t 0 ) such that P(Ω 1 ∩ Ω 2 ∩ Ω 3 ) > 0. As seen at the end of Step 3, the events Ω 1 , Ω 2 and Ω 3 are independent (under P). It obviously holds true that P(Ω 2 ) > 0 (for any s 0 > 0) and that P(Ω 3 ) > 0 if s 0 > 0 is small enough because σ > 0 a.s. and by continuity of the sample-paths (at time 0, we have min j≥3 | Xj,N

0 -x| = min j≥3 |x j -x| ≥ √ 3d/2 > bd)
. It thus only remains to verify that P(Ω 1 ) for all s 0 ∈ (0, t 0 ). Since, by the comparison principle stated in [32, Theorem 3.7 p 394], P(Ω 1 ) is non-decreasing with χ, it is enough to check that P(Ω 1 ) > 0 for all s 0 ∈ (0, t 0 ) when χ < 4πN , which we now do.

It holds that Ỹ is a squared Bessel process of dimension δ := 2χ/(2πN ) started at y = d 2 /4 and restricted to the time-interval [0, t 0 ]. We set z = (2a + 1) 2 d 2 /16 and observe that z > y. For x ≥ 0, we also introduce

τ x = inf{t ∈ [0, t 0 ] : Ỹt = x}. Then Ω 1 = {τ 0 < s 0 ∧ τ z }.
For x ≥ 0, we denote by Q x the law of the squared Bessel process of dimension δ starting from x (on the whole time interval [0, ∞)), and by q s (x, u) the density of its marginal at time s > 0, which is a positive function of u on (0, +∞) according to [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]Corollary 4.1 p441]. For all u = v, we define τ u as the first passage time at u and τ uv as the first passage time at v after τ u . It holds that P(Ω 1 ) = Q y (τ 0 < s 0 ∧ τ z ) and what we have to check is that Q y (τ 0 < s 0 ∧ τ z ) > 0 for all s 0 ∈ (0, t 0 ). We first show that Q x (τ 0 < t) > 0 for all t > 0 and all x > 0. Since δ < 2, we know from [32, page 442] that Q x (τ 0 < ∞) = 1 for all x > 0. With the Markov property, we deduce that

1 = n≥0 Q x (τ 0 ∈ (nt/2, (n + 1)t/2]) ≤ Q x (τ 0 ≤ t/2) + +∞ 0 Q u (τ 0 ≤ t/2) n≥1 q nt/2 (x, u) du.
Since, u → q t/2 (x, u) is positive on (0, +∞), this ensures the positivity of

Q x (τ 0 ≤ t/2) + 1 {Qx(τ0≤t/2)=0} +∞ 0 Q u (τ 0 ≤ t/2)q t/2 (x, u)du ≤ Q x (τ 0 ≤ t).
Using the strong Markov property, that 0 < y < z and the monotonicity of

t → Q y (τ 0 ≤ t), Q y (τ z < τ 0 ≤ t) = Q y (τ zy < τ 0 ≤ t) = 1 {τzy<t} Q y (τ 0 ≤ t-s)| s=τzy dQ y ≤ Q y (τ zy < t)Q y (τ 0 ≤ t).
By continuity of the sample-paths, lim s→0 Q y (τ zy < s) = 0 and we can find s 1 ∈ (0, t 0 ) so that for all s 0 ∈ (0, s 1 ], Q y (τ zy < s 0 ) < 1. We conclude that for all s 0 ∈ (0, s 1 ],

Q y (τ 0 ≤ s 0 ∧ τ z ) = Q y (τ 0 ≤ s 0 ) -Q y (τ z < τ 0 ≤ s 0 ) ≥ (1 -Q y (τ zy < s 0 ))Q y (τ 0 ≤ s 0 ) > 0. If now s 0 ∈ [s 1 , t 0 ], we obviously have Q y (τ 0 ≤ s 0 ∧ τ z ) ≥ Q y (τ 0 ≤ s 1 ∧ τ z ) > 0.
This ends the step.

Step 6. We deduce from Steps 4 and 5 that P(min

[0,t0] |X 1,N s -X 2,N s | = 0) > 0. But P and P being equivalent, this implies that P(min [0,t0] |X 1,N s -X 2,N s | = 0) > 0, whence a contradiction.

Two particles system

In this section we consider the particle system (4) with N = 2. Assuming that (X 1 t , X 2 t ) t≥0 solves (4) with N = 2, we easily find that S t = X 1 t + X 2 t and D t = X 1 t -X 2 t solve two autonomous equations, namely S t = S 0 + 2B t and (28)

D t = D 0 + 2W t + χ t 0 K(D s )ds,
with the two independent 2-dimensional Brownian motions

B t = (B 1 t + B 2 t )/ √ 2 and W t = (B 1 t - B 2 t )/ √ 2.
The equation satisfied by (S t ) t≥0 being trivial, only the study of ( 28) is interesting. During the whole section, the initial condition D 0 is only assumed to be a R 2 -random variable indpendent of (W t ) t≥0 . Remark 16. Theorem 5 ensures us existence for (28) when χ < 4π and D 0 is the difference of two i.i.d. integrable random vectors. When χ ≥ 4π, the equation (28) has no global (in time) solution in the usual sense. More precisely, assume that it has a global solution (D t ) t≥0 . Then τ = inf{t ≥ 0 : D t = 0} is a.s. finite and a.s.,

τ +h τ |K(D s )|ds = ∞ for all h > 0.
Proof. Let thus χ ≥ 4π and assume that there is a global solution (D t ) t≥0 to [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF]. By a direct application of the Itô formula, this implies that

R t = |D t | 2 /4 solves R t = R 0 + 2 t 0 |R s |dβ s + (2 -χ/(4π))t, where β t = t 0 1 {Ds =0} |D s | -1 D s • dW s + t 0 1 {Ds=0} d βs is a 1-dimensional Brownian
motion (here β is any one-dimensional Brownian motion independent of (D 0 , W )). According to [32, p 442] combined, when χ > 8π, with the comparison theorem [32, Theorem 3.7 p 394], τ = inf{t ≥ 0 : R t = 0} is a.s. finite. By the strong Markov property (for the process R), the comparison theorem [32, Theorem 3.7 p 394] and since χ ≥ 4π, (R τ +t ) t≥0 can be bounded from above by a squared 1-dimensional Bessel process starting from 0, process with the same law as (|β t | 2 ) t≥0 . For h > 0, by the occupation times formula [32, Corollary 1.6 p 224],

h 0 |β s | -1 ds = R |a| -1 L a h da. But L 0 h > 0 as soon as h > 0 and we know from [32, Corollary 1.8 p 226] that a → L a h is a.s. continuous, so that h 0 |β s | -1 ds = ∞ for all h > 0 a.s. Thus 4π τ +h τ |K(D s )|ds = τ +h τ R -1/2 s ds = ∞ for all h > 0 a.s.
Hence [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF] has no global solution for χ ≥ 4π, while we expect that in some sense, the dynamics it represents is meaningful at least for all χ ∈ (0, 8π). We thus would like to refomulate it, in such a way that it is possible to build global solutions. More precisely, we would like to identify, for any value of χ > 0, the limit, as ε > 0, of the smoothed equation ( 29)

D ε t = D 0 + 2W t + χ t 0 K ε (D ε s )ds,
where K ε was defined in [START_REF] Fournier | Propagation of chaos for the 2D viscous vortex model[END_REF]. The regularized drift coefficient K ε being Lipschitz, existence and trajectorial uniqueness hold for this SDE. We introduce the equation formally satisfied by Z t = |D t | 2 D t for (D t ) t≥0 solution to (28):

(30)

Z t = Z 0 + t 0 σ(Z s )dW s + t 0 b(Z s )ds,
where σ(z) = 2|z| -4/3 (|z| 2 I 2 + 2zz * ) and b(z) = (16 -3χ/(2π))|z| -2/3 z. Here and below, I 2 is the identity matrix and z * is the transpose of z. Here is the main result of this section. 30) has a unique (in law) solution (Z t ) t≥0 such a.s., ∞ 0 1 {Zt=0} dt = 0. Moreover, if χ ∈ (0, 4π), ( 28) has a unique (in law) solution.

Theorem 17. Set Z 0 = |D 0 | 2 D 0 . (i) If χ ∈ (0, 8π), (
(ii) If χ ≥ 8π, (30) has a pathwise unique solution frozen when it reaches 0 (and it a.s. reaches 0).

(iii) In any case, the solution (D ε t ) t≥0 to (29) goes in law, as ε → 0, to (D t ) t≥0 defined by D t = |Z t | -2/3 Z t 1 {Zt =0} and, when χ ∈ (0, 4π), this process (D t ) t≥0 solves [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF] .

In point (i), uniqueness in law cannot hold true without restriction for [START_REF] Patlak | Random walk with persistence and external bias[END_REF]: the time passed at 0 by the solution that we consider is Lebesgue-nul, while it is easy to build a solution by freezing the process when it reaches 0.

The rest of the section is devoted to the proof of this theorem. The following lemma is more or less standard.

Lemma 18. Let χ > 0 be fixed. For each ε ∈ (0, 1), we consider the unique solution (D ε t ) t≥0 to (29) and we put

Z ε t = |D ε t | 2 D ε t . (i) The family {(Z ε t ) t≥0 , ε ∈ (0, 1)} is tight in C([0, ∞), R 2 
). (ii) Any limit point (Z t ) t≥0 is a weak solution to [START_REF] Patlak | Random walk with persistence and external bias[END_REF] and, setting

R t = |Z t | 2/3 /4, it holds that (a) if χ ∈ (0, 8π), then (R t ) t≥0 is a (2 -χ/(4π))-dimensional squared Bessel process; (b) if χ ≥ 8π, then (R t ) t≥0 is a (2 -χ/( 4π 
))-dimensional squared Bessel process frozen when it reaches 0.

Proof. We divide the proof in several steps.

Step 1. Direct applications of the Itô formula show that

Z ε t = Z 0 + t 0 σ(Z ε s )dW s + t 0 b ε (Z ε s )ds, where b ε (z) = 16|z| -2/3 z -2/3 + ε 2 ) -1 z and that R ε t := |D ε t | 2 /4 solves R ε t = R 0 + 2 t 0 R ε s dβ ε s + t 0 2 - χR ε s π(ε 2 + 4R ε s ) ds,
where

β ε t = t 0 1 {D ε s =0} |D ε s | -1 D ε s • dW s . Since sup r≥0 (χr)/[2π √ r(ε 2 + 4r)] = χ/(8πε)
, the Girsanov theorem ensures us that for all T ∈ (0, +∞), the law of (R ε t ) t∈[0,T ] is equivalent to the law of the restriction to the time interval [0, T ] of a 2-dimensional squared Bessel process starting from R 0 . By [32, p 442], we deduce that a.s., for all t > 0, R ε t > 0. As a consequence (β ε t ) t≥0 is a one-dimensional Brownian motion.

Step 2. By trajectorial uniqueness for [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF], for M > 0, on the event {|D 0 | ≤ M }, the solution starting from D 0 coincides with the one starting from D 0 1 {|D0|≤M} . Therefore, by both implications in the Prokhorov theorem, to check that the family {(Z ε t ) t≥0 , ε ∈ (0, 1)} is tight in C([0, ∞), R 2 ) it is enough to do so when D 0 is bounded. The tightness property then easily follows from the Kolmogorov criterion, using that sup ε∈(0,1) |b ε (z)| and |σ(z)| both have at most affine growth: one classically verifies successively that for all ρ ≥ 2 and all T > 0 there is C T,ρ such that for all ε ∈ (0, 1), sup

[0,T ] E[|Z ε t | ρ ] ≤ C T,ρ and E[|Z ε t -Z ε s | ρ |] ≤ C T,ρ |t -s| ρ/2 for all 0 ≤ s ≤ t ≤ T .
Step 3. Using martingale problems, that b and σ are continuous and that b ε converges (uniformly) to b, it is checked without difficulty that any limit point (Z t ) t≥0 (as ε → 0) of the family {(Z ε t ) t≥0 , ε > 0} is indead a (weak) solution to [START_REF] Patlak | Random walk with persistence and external bias[END_REF].

Step 4. Here we assume that χ ∈ (0, 8π) and we prove that (R ε t ) t≥0 goes in law to the squared (2χ/(4π))-dimensional Bessel process. We consider the (2χ/(4π))-dimensional Bessel process (R t ) t≥0 associated to (

β ε t ) t≥0 , that is R t = R 0 + 2 t 0 √ R s dβ ε s + (2 -χ/( 4π 
))t (its law does of course not depend on ε) and we prove that lim ε→0 E[sup [0,T ] |R ε t -R t |] = 0 for all T > 0, which clearly suffices.

Since

ε ε 3/2 x -1 dx = log(1/ε)/2, one may construct a family of C 2 nondecreasing convex func- tions ϕ ε : [0, ∞) → [0, ∞), indexed by ε ∈ (0, 1/2) such that ϕ ε (x) = 0 for x ≤ ε 3/2 , ϕ ′ (x) = 1 for
x ≥ ε and ϕ ′′ ε (x) ≤ C1 {ε 3/2 ≤x≤ε} /[x log(1/ε)] for some constant C ∈ (1, +∞) not depending on ε. Such functions are called Yamada functions in the literature. We then observe that R ε t ≥ R t for all t ≥ 0 by the comparison theorem stated in [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]Theorem 3.7 p 394]. Computing R ε t -R t and applying the Itô formula, we obtain that

ϕ ε (R ε t -R t ) =2 t 0 ϕ ′ ε (R ε s -R s )( R ε s -R s )dβ s + χ 4π t 0 ϕ ′ ε (R ε s -R s ) ε 2 ε 2 + 4R ε s ds + 2 t 0 ϕ ′′ ε (R ε s -R s )( R ε s -R s ) 2 ds.
We next remark that

ϕ ′ ε (R ε s -R s ) ε 2 ε 2 + 4R ε s ≤ ϕ ′ ε (R ε s -R s ) ε 2 ε 2 + 4(R ε s -R s ) ≤ 1 {R ε s -Rs≥ε 3/2 } ε 2 ε 2 + 4(R ε s -R s ) ≤ √ ε 4 and that ϕ ′′ ε (R ε s -R s )( R ε s -R s ) 2 ≤ ϕ ′′ ε (R ε s -R s )(R ε s -R s ) ≤ C log(1/ε) ,
whence (the constant C may now change from line to line)

ϕ ε (R ε t -R t ) ≤ 2 t 0 ϕ ′ ε (R ε s -R s )( R ε s -R s )dβ s + χ √ ε 16π t + C log(1/ε) t. (31) 
Taking expectations, we conclude that

E[ϕ ε (R ε t -R t )] ≤ Ct/ log(1/ε). But since ϕ ε (x) ≤ x ≤ ϕ ε (x) + ε, we deduce that E[R ε t -R t ] ≤ ε + Ct/ log(1/ε).
Coming back to [START_REF] Perthame | PDE models for chemotactic movements: parabolic, hyperbolic and kinetic[END_REF], using the Doob inequality and that 0

≤ ϕ ′ ε ≤ 1 and ( R ε s - √ R s ) 2 ≤ R ε s -R s , we conclude that E[sup [0,T ] ϕ ε (R ε t - R t )] ≤ CT / log(1/ε) + C(εT + CT 2 / log(1/ε)) 1/2 and, finally, that E[sup [0,T ] (R ε t -R t )] ≤ ε + CT / log(1/ε) + C(εT + CT 2 / log(1/ε)) 1/2 ,
from which the conclusion follows.

Step 5. Finally, we assume that χ ≥ 8π and we prove that (R ε t ) t≥0 goes in law to the (2-χ/(4π))dimensional squared Bessel process frozen when it reaches 0. We consider the frozen (2χ/(4π))dimensional squared Bessel process associated to (

β ε t ) t≥0 , that is R t = R 0 + 2 t 0 √ R s dβ ε s + (2 - χ/( 4π 
))t for all t ∈ [0, τ ], with τ = inf{t ≥ 0 : R t = 0} and R t = 0 for all t ≥ τ . We will check that for all α > 0, all T > 0, lim ε→0 P(sup [0,T ] |R ε t -R t | > α) = 0 and this will complete the proof. We introduce τ k = inf{t ≥ 0 : R t ≤ 1/k} and observe that τ = sup k≥1 τ k .

Step 5.1. For any α > 0, t ≥ 0 and k ≥ 1, lim ε→0 P(sup [0,t∧τ k ) |R ε s -R s | ≥ α) = 0. Indeed, using that R ε t ≥ R t for all t ≥ 0 by the comparison theorem [32, Theorem 3.7 p 394], that

R ε t -R t = 2 t 0 ( R ε s - √ R s )dβ ε s +(χ/4π) t 0 [ε 2 /(ε 2 +4R ε s )
]ds for all t ∈ [0, τ k ], and that | √ x-√ y| ≤ k 1/2 |x -y|/2 for all x, y ≥ 1/k, it is easily checked, by the Doob inequality, that

E sup [0,t∧τ k ) (R ε s -R s ) 2 ≤ Ck t 0 E sup [0,s∧τ k ) (R ε u -R u ) 2 ds + Cε 4 k 2 t 2 , whence E[sup [0,t∧τ k ) (R ε s -R s ) 2 ] ≤ Cε 4 k 2 t 2 exp(Ckt)
by the Gronwall lemma.

Step 5.2. We write, for α > 0 and k ≥ 1 fixed,

P sup [0,T ] (R ε t -R t ) ≥ α ≤P sup [0,T ∧τ k ] (R ε t -R t ) ≥ α + P τ k < T, R ε τ k > 2/k + P τ k < T, R ε τ k ≤ 2/k, sup [τ k ,T ] R ε t ≥ α .
For the last term, we used that sup

[τ k ,T ] (R ε t -R t ) ≥ α implies that sup [τ k ,T ] R ε t ≥ α because 0 ≤ R t ≤ R ε t . By
Step 5.1, the two first terms tend to 0 as ε → 0 (recall that R τ k = 1/k), whence lim sup

ε→0 P sup [0,T ] (R ε t -R t ) ≥ α ≤ lim sup ε→0 P τ k < T, R ε τ k ≤ 2/k, sup [τ k ,T ] R ε t ≥ α .
Using the strong Markov property for the process R ε as well as its monotony with respect to its initial condition (by the comparison theorem), we deduce that lim sup

ε→0 P sup [0,T ] (R ε t -R t ) ≥ α ≤ lim sup ε→0 P sup [0,T ] R 2/k,ε t ≥ α ,
where

R 2/k,ε t = 2/k + 2 t 0 R 2/k,ε s dβ ε s + t 0 2 - χR 2/k,ε s π(ε 2 + 4R 2/k,ε s ) ds.
We introduce, for r ∈ (0, 1) and ε ∈ (0, 1/2), the solution (S r,ε t ) t≥0 to S r,ε t = r + 2 

t 0 |S r,ε s |dβ ε s + 2ε 2 t 0 (ε 2 + 4|S
P sup [0,T ] (R ε t -R t ) ≥ α ≤ lim sup ε→0 P sup [0,T ] S 2/k,ε t ≥ α ≤ lim sup ε→0 E[sup [0,T ] S 2/k,ε t ] α .
We will verify in the next step that (if r ∈ (0, 1])

(32) E sup [0,T ] S r,ε t ≤ C(1 + T )(r + 1/ log(1/ε)) 1/2 , so that lim sup ε→0 P(sup [0,T ] (R ε t -R t ) ≥ α) ≤ C(1 + T )k -1/2 /α.
Letting k tend to infinity, we conclude that, as desired, lim sup ε→0 P(sup [0,T ] (R ε t -R t ) ≥ α) = 0.

Step 5.3. To show [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], we consider the Yamada function ϕ ε built in Step 4. By the Itô formula,

ϕ ε (S r,ε t ) = ϕ ε (r) + 2 t 0 ϕ ′ ε (S r,ε s ) S r,ε s dβ ε s + t 0 ϕ ′ ε (S r,ε s ) 2ε 2 ε 2 + 4S r,ε s ds + 2 t 0 ϕ ′′ ε (S r,ε s )S r,ε s ds.
Proceeding as in Step 4, we find that

ϕ ε (S r,ε t ) ≤r + 2 t 0 ϕ ′ ε (S r,ε s ) S r,ε s dβ ε s + √ ε 2 t + C log(1/ε) t (33) ≤r + C log(1/ε) t + 2 t 0 ϕ ′ ε (S r,ε s ) S r,ε s dβ s .
Taking expectations, we deduce that [START_REF] Skorokhod | Stochastic equations for diffusion processes in a bounded region[END_REF] and using the Doob inequality and that 0

E[ϕ ε (S r,ε t )] ≤ r + Ct/ log(1/ε), whence E[S r,ε t ] ≤ r + ε + Ct/ log(1/ε). Coming back to
≤ ϕ ′ ε ≤ 1, we conclude that E sup [0,T ] ϕ ε (S r,ε t ) ≤ r + CT log(1/ε) + C rT + εT + T 2 log(1/ε) 1/2 ≤ C(1 + T ) r + 1 log(1/ε) 1/2
because r ∈ (0, 1]. Then [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] follows from the fact that x ≤ ε + ϕ ε (x). This allows us to conclude when χ ≥ 8π.

Proof of Theorem 17 when χ ≥ 8π. The existence of a (weak) solution to (30) follows from Lemma 18, and the solution built there is frozen when it reaches 0. The pathwise uniqueness of such a frozen solution follows from the Lipschitz continuity of coefficients σ, b on R 2 \{0} and can easily be verified using the stopping times τ ℓ = inf{t ≥ 0 : |Z t | ≤ 1/ℓ} and that τ = inf{t ≥ 0 : |Z t | = 0} = sup ℓ≥1 τ ℓ (because t → Z t is a.s. continuous on [0, ∞)). Using Lemma 18, we easily conclude that (Z ε t ) t≥0 goes in law to this (Z t ) t≥0 . Since D ε t = |Z ε t | -2/3 Z ε t and since the map z → |z| -2/3 z1 {z =0} is continuous, we conclude that (D ε t ) t≥0 goes in law, as ε → 0, to (|Z t | -2/3 Z t 1 {Zt =0} ) t≥0 .

To conclude the proof when χ ∈ (0, 8π), the only issue is to check the the uniqueness in law of the solution. We define h 2π (θ) = θ -2π⌊θ/(2π)⌋ ∈ [0, 2π).

Lemma 19. Consider 0 ≤ s 0 < t 0 , a continuous function r : [0, ∞) → R + satisfying that r s0 = r t0 = 0 and r t > 0 for all t ∈ (s 0 , t 0 ) and t s0 (r s ) -1 ds = ∞ for all t ∈ (s 0 , t 0 ). There is a law Γ(s 0 , t 0 , (r s ) s∈[s0,t0] ) on C((s 0 , t 0 ), [0, 2π)) (with the torus topology on [0, 2π)) such that for any filtration (H t ) t≥0 in which we have a 1-dimensional (H t ) t≥0 -Brownian motion (γ t ) t≥0 and a (H t ) t≥0 -adapted process (T t ) t∈(s0,t0) with T t = h 2π (T u + t u (r s ) -1/2 dγ s ) for all s 0 < u < t < t 0 , (T t ) t∈(s0,t0) is independent of H s0 and is Γ(s 0 , t 0 , (r s ) s∈[s0,t0] )-distributed.

Proof of Lemma 19. Existence. Let u 0 ∈ (s 0 , t 0 ) be chosen arbitrarily. We consider a Brownian motion (γ t ) t≥0 , independent of a random variable Θ, uniformly distributed on [0, 2π). We put T t = h 2π (Θ + t u0 (r s ) -1/2 dγ s ) for all t ∈ (s 0 , t 0 ) (with t u0 (r s ) -1/2 dγ s = -u0 t (r s ) -1/2 dγ s when t < u 0 ). Then (T t ) t∈(s0,t0) is clearly continuous for the torus topology and it holds that T t = h 2π (T u + t u (r s ) -1/2 dγ s ) for all s 0 < u < t < t 0 . Furthermore, for each fixed t ∈ (s 0 , t 0 ), by independence between Θ and γ, the conditional law of T t knowing (γ s ) s≥0 is the uniform distribution on [0, 2π), which implies that T t is independent of (γ s ) s≥0 . Finally, we have to verify that setting H t = σ((T s ), (γ s ) s∈[0,t] ), (γ s ) s≥0 is a (H t ) t≥0 -Brownian motion. Let thus t ∈ (s 0 , t 0 ) be fixed. We have to verify that (γ sγ t ) s≥t is independent of (T s , γ s ) s∈(s0,t] . Since T s = h 2π (T t -t s (r u ) -1/2 dγ u ) for all s ∈ (s 0 , t], it holds that σ((T s , γ s ) s∈(s0,t] ) = σ(T t , (γ s ) s∈(s0,t] ) and the conclusion easily follows from the independence between T t and (γ s ) s∈[s0,t0] .

Uniqueness. We thus consider a filtration (H t ) t≥0 in which we have a Brownian motion (γ t ) t≥0 and an adapted process (T t ) t∈(s0,t0) satisfying T t = h 2π (T u + t u (r s ) -1/2 dγ s ) for all s 0 < u < t < t 0 . We will show that for any fixed u 0 ∈ (s 0 , t 0 ), T u0 is uniformly distributed on [0, 2π) and independent of H s0 ∨ σ((γ t ) t≥0 ). Since (T t ) t∈[s0,t0] is σ(T u0 , (γ tγ s0 ) t∈(s0,t0) )-measurable and since (γ t ) t≥0 is a (H t ) t≥0 -Brownian motion, we conclude that (T t ) t∈(s0,t0) is independent of H s0 . Furthermore, the process (T t ) t∈(s0,t0) clearly has the same law as the one built above.

For 0 < ε < η < u 0s 0 , we have T u0 = h 2π (T s0+ǫ + s0+η s0+ǫ (r s ) -1/2 dγ s + u0 s0+η (r s ) -1/2 dγ s ). By assumption, the vector ( s0+η s0+ǫ (r s ) -1/2 dγ s , u0 s0+η (r s ) -1/2 dγ s ) has independent components and is independent of H s0 ∨ σ(T s0+ǫ ). Setting σ ε,η = s0+η s0+ǫ (r s ) -1 ds, we thus have, for any ϕ : R → [0, ∞) continuous and 2π-periodic,

E[ϕ(T u0 ) | H s0 ∨ σ(T s0+ε , (γ s -γ s0+η ) s≥s0+η )] (34) = R ϕ T s0+ε + u0 s0+η (r s ) -1/2 dγ s + σ ε,η x e -x 2 /2 √ 2π dx → (2π) -1 2π 0 ϕ(x)dx
a.s. as ε → 0. This last convergence follows from the facts that lim ε→0 σ ε,η = ∞ and that, setting φ(x) := ϕ(x) -(2π) -1 2π 0 ϕ(y)dy and Φ(x) :=

x 0 φ(y)dy, for all θ ∈ [0, 2π),

R ϕ θ + σx e -x 2 /2 √ 2π dx - 1 2π 2π 0 ϕ(x)dx = 1 √ 2π k∈Z 2π/σ 0 φ(σy)e -(y-(θ+2kπ)/σ) 2 /2 dy = 1 σ √ 2π k∈Z 2π/σ 0 Φ(σy) × (y -(θ + 2kπ)/σ)e -(y-(θ+2kπ)/σ) 2 /2 dy ≤ √ 2π σ sup x∈[0,2π) |ϕ(x)| R |z|e -z 2 /2 dz = 2 √ 2π σ sup x∈[0,2π) |ϕ(x)|.
We used an integration by parts, that Φ(0) = Φ(2π) = 0 and that |Φ(y)| ≤ 2π sup x∈[0,2π) |ϕ(x)| for all y ∈ [0, 2π).

We deduce from (34) that T u0 is uniformly distributed on [0, 2π) and is independent of H s0 ∨ σ((γ sγ s0+η ) s≥s0+η ). Since η > 0 can be chosen arbitrarily small, we conclude that T u0 is independent of H s0 ∨ σ((γ sγ s0 ) s≥s0 ) = H s0 ∨ σ((γ s ) s≥0 ) as desired.

Lemma 20. Assume that χ ∈ (0, 8π). There is uniqueness in law for [START_REF] Patlak | Random walk with persistence and external bias[END_REF] among solutions such that a.s., ∞ 0 1 {Zt=0} dt = 0. Proof. As in the proof of Theorem 17 when χ ≥ 8π, (30) admits a pathwise unique solution until it reaches 0. All the difficulty is thus to prove the uniqueness in law of the solution started at 0. We thus consider, if it exists, a continuous solution (Z t ) t≥0 to [START_REF] Patlak | Random walk with persistence and external bias[END_REF] with Z 0 = 0, adapted to some filtration (F t ) t≥0 in which (W t ) t≥0 is a 2-dimensional Brownian motion, and such that ∞ 0 1 {Zt=0} dt vanishes a.s.

Step 1. We define R t = |Z t | 2/3 /4 and

β t = t 0 1 {Zs =0} |Z s | -1 Z s • dW s , which is clearly a 1- dimensional (F t ) t≥0 -Brownian motion. Here we prove that (35) R t = 2 t 0 R s dβ s + (2 -χ/(4π))t.
Starting from (30) (with Z 0 = 0) and using the Itô formula, we easily find that

|Z t | 2 = 12 t 0 |Z s | 5/3 dβ s + (72 -3χ/π) t 0 |Z s | 4/3 ds.
For η > 0, using again Itô's formula, we find that

(|Z t | 2 + η) 1/3 =η 1/3 + 4 t 0 |Z s | 5/3 (|Z s | 2 + η) -2/3 dβ s + (24 -χ/π) t 0 |Z s | 4/3 (|Z t | 2 + η) -2/3 ds -16 t 0 |Z s | 10/3 (|Z s | 2 + η) -5/3 ds.
Since t 0 1 {Zs=0} ds = 0 a.s. by assumption, the Lebesgue theorem ensures us that the sum of the two last terms in the right-hand side converges a.s. to (8χ/π)t as η → 0. The Itô isometry ensures that the second term in the right-hand side converges in L 2 to 4

t 0 |Z s | 1/3 dβ s . All in all, we find that |Z t | 2/3 = 4 t 0 |Z s | 1/3 dβ s + (8 -χ/π)t.
Dividing by 4 completes the proof of (35).

Step 2. We consider, for each η > 0, a nondecreasing C 2 -function ψ

η : [0, ∞) → [0, ∞) such that ψ(u) = 0 for all u ∈ [0, η/2] and ψ(u) = 1 for all u ≥ η. Observing that ψ η (R t )|Z t | -1 Z t = Ψ η (Z t ) where Ψ η (z) = ψ η (|z| 2/3 /4)|z| -1 z is of class C 2 on R 2 ,
we easily obtain, starting from [START_REF] Patlak | Random walk with persistence and external bias[END_REF] and applying the Itô formula,

ψ η (R t ) Z t |Z t | = t 0 ψ η (R s ) 2Z ⊥ s Z ⊥ s .dW s |Z s | 7/3 - 2Z s |Z s | 5/3 ds + t 0 Z s |Z s | (ψ ′ η (R s )dR s + 2ψ ′′ η (R s )R s ds) (36) 
where, for z ∈ R 2 with respective coordinates z 1 and z 2 , z ⊥ denotes the element of R 2 with respective coordinates -z 2 and z 1 .

Let γ t = t 0 1 {Zs =0} |Z s | -1 Z ⊥ s • dW s . Since β, γ t = t 0 1 {Zs =0} |Z s | -2 Z s • Z ⊥
s ds = 0, the process (γ t ) t≥0 is a 1-dimensional (F t ) t≥0 -Brownian independent of (β t ) t≥0 and thus also of (R s ) s≥0 (because (R s ) s≥0 is σ(R 0 , (β s ) s≥0 )-measurable by pathwise uniqueness for the SDE it solves).

For any 0 < u < t, on the event {inf [u,t] R s > 0}, choosing η ∈ (0, inf [u,t] R s ) in the difference between [START_REF] Velazquez | Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions[END_REF] and the same equation with t replaced by u, we obtain

Z t |Z t | = Z u |Z u | + t u 2 Z ⊥ s |Z s | dγ s |Z s | 1/3 - 2Z s |Z s | 5/3 ds = Z u |Z u | + t u Z ⊥ s |Z s | dγ s √ R s - Z s |Z s | ds 2R s . ( 37 
)
Step 3. For s > 0 such that R s > 0 we define T s ∈ [0, 2π) through the equality |Z s | -1 Z s = e iTs . For s ≥ 0 with R s = 0, we simply put T s = 0. We used the natural identification between R 2 and C : for θ ∈ R, we denote by e iθ (resp. ie iθ ) the 2-dimensional vector with coordinates cos θ and sin θ (resp.sin θ and cos θ). We claim that for all 0 < u < t, on the event {inf [u,t] R s > 0}, it holds that T t = h 2π (T u + Recalling (37) and using a uniqueness argument, we deduce that on the event {inf [u,t] R s > 0},

|Z v | -1 Z v = e iTv whence T v = h 2π (T v ) for all v ∈ [u, t].
Step 4. Here we check that a.s., t+h t R -1 s ds = ∞ for all t ≥ 0 such that R t = 0 and all h > 0. This follows from the fact that for all T > 0, lim uց0 sup t∈[0,T ] [u(1∨log(1/u))] -1/2 | R t+u -√ R t | = √ 2 a.s., see Khoshnevisan [22, (2.1a) p 1299] and recall that (R s ) s≥0 is a squared (2χ/(4π))dimensional Bessel process starting from 0 by Step 1, with 2χ/(4π) > 0.

Step 5. Here we verify that conditionally on (R s ) s≥0 , for any σ((R s ) s≥0 )-measurable finite family 0 < s 1 < t 1 < s 2 < t 2 < • • • < s n < t n such that for all k = 1, . . . , n, R s k = R t k = 0 and R s > 0 on (s k , t k ), the variables {(T s ) s∈(s k ,t k ) , k = 1, . . . , n} are independent and for each k = 1, . . . , n, (T s ) s∈(s k ,t k ) is Γ(s k , t k , (R s ) s∈(s k ,t k ) )-distributed. The function Γ was introduced in Lemma 19.

Let (Z t , g t ) t≥0 denote the canonical process on C([0, ∞), R 2 × R) endowed with the conditional law of (Z t , γ t ) t≥0 knowing (R t ) t≥0 . We define T t ∈ [0, 2π) by |Z t | -1 Z t = e iTt if Z t = 0 and T t = 0 else. We introduce the filtration H t = σ((T s , g s ) s∈[0,t] ). We claim that a.s., (g t ) t≥0 is a (H t ) t≥0 -Brownian motion, because (γ t ) t≥0 is independent of σ((R s ) s≥0 ) and is a Brownian motion in the filtration (F t ) t≥0 to which (T t ) t≥0 is adapted: for all t > 0, all bounded measurable Φ, Ψ, E Φ((γ t+sγ t ) s≥0 )Ψ((γ s , T s ) s∈[0,t] ) (R s ) s≥0 =E Ψ((γ s , T s ) s∈[0,t] )E Φ((γ t+sγ t ) s≥0 ) F t ∨ σ((R s ) s≥0 ) (R s ) s≥0 =E Φ((γ t+sγ t ) s≥0 ) E Ψ((γ s , T s ) s∈[0,t] ) (R s ) s≥0 . Step 6. By Step 1, (R t ) t≥0 is a (2χ/(4π))-dimensional Bessel process starting from 0. By Step 5, the conditional law of (T t 1 {Rt =0} ) t≥0 knowing (R t ) t≥0 is also determined: conditionally on (R s ) s≥0 , for any σ((R s ) s≥0 )-measurable finite family {(s k , t k ), k = 1, . . . , n} of excursions of (R s ) s≥0 , we know the law of (T s ) s∈∪ n k=1 (s k ,t k ) . Since by construction Z t = (4R t ) 3/2 e iTt 1 {Rt =0} , the law of (Z t ) t≥0 is thus entirely characterized.

Fix now

Finally, we can give the Proof of Theorem 17 when χ ∈ (0, 8π). First, the existence of a solution (Z t ) t≥0 to [START_REF] Patlak | Random walk with persistence and external bias[END_REF] such that a.s. ∞ 0 1 {Zt=0} dt = 0 follows from Lemma 18: the solution (Z t ) t≥0 built there satisfies that |Z t | 2/3 /4 is a (2χ/(4π))-dimensional Bessel process, whence ∞ 0 1 {Zt=0} dt = 0 a.s. by [32, p 442]. The uniqueness in law of this solution has been checked in Lemma 20. The convergence of (Z ε t ) t≥0 to (Z t ) t≥0 clearly follows from Lemma 18 and from this uniqueness in law. This implies as in the case χ ≥ 8π that (D ε t ) t≥0 goes in law to (|Z t | -2/3 Z t 1 {Zt =0} ) t≥0 . It remains to verify that when χ ∈ (0, 4π), D t = |Z t | -2/3 Z t 1 {Zt =0} solves [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF] and that uniqueness in law holds true for [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF].

For (D t ) t≥0 a solution to [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF], one easily checks by Itô's formula that Z t = |D t | 2 D t solves [START_REF] Patlak | Random walk with persistence and external bias[END_REF] and that |D t | 2 is a (2χ/(4π))-dimensional Bessel process, whence ∞ 0 1 {Zt=0} dt = 0 a.s. by [32, p 442]. The uniqueness in law for [START_REF] Osada | Propagation of chaos for the two-dimensional Navier-Stokes equation[END_REF] then follows from Lemma 20.

For (Z t ) t≥0 built above, by Itô's formula, for η > 0, By the Itô isometry and the Lebesgue theorem and since a.s. t 0 1 {Zs=0} ds = 0, the second term on the RHS tends to 2W t in L 2 and the third term on the RHS tends to 0 in L 2 . Since |Z t | 2/3 /4 is a (2χ/(4π))-dimensional squared Bessel process and 2χ/(4π) > 1, [32, , a simple computation shows that, when neglecting the interaction with particles with label outside I, R I t behaves like a squared Bessel process of dimension 2(|I| -1) -(χN/4π) i,j∈I,i =j ν i t ν j t ≤ (|I| -1)[2 -Sχ/(4π)], which is nonpositive as soon as S = i∈I ν i t ≥ 8π/χ. Let us mention that once a cluster is formed, its mass necessarily exceeds 8π/χ, so that any collision involving a cluster will be sticky.

(|Z t | 2 + η) -1/3 Z t = (|Z 0 | 2 + η) -1/3 Z 0 + 2
The existence of such a process is not clear. Sticky collisions should not be very hard to treat. The main difficulty is to control reflecting collisions. As explained just above, reflecting collisions only concern particles with masses 1/N , so that the classification given Subsection 7.1 should still be relevant. Thus we believe that the main difficulty is to build a (necessarily nontrivial) local (in time) solution to (4) when χ ≥ 8π and starting from an initial condition where k particles have the same initial positions, for some k ∈ {2, . . . , ⌈8πN/χ⌉ -1}. 7.3. Comments. Observe that this process is different of the one introduced by Haškovec and Schmeiser in [START_REF] Haškovec | Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system[END_REF] where they consider a system of particles with different masses to approximate the singular solution to the Keller-Segel equation. In fact, rather than considering like us the limit ε → 0 of the regularized particle system (9), they first prove propagation of chaos as N → ∞ for a fixed ε > 0 in [START_REF] Haškovec | Convergence of a stochastic particle approximation for measure solutions of the 2D Keller-Segel system[END_REF]. More precisely, they check that for fixed k ≥ 1, the density of (X 1,N,ε t , . . . , X k,N,ε t ) solving (9) (with another regularized kernel K ε ) converges as N → ∞ to k i=1 f ε t (x i ) where (f ε t ) t≥0 solves the regularized Keller-Segel partial differential equation ∂ t f ε t (x) + χdiv x ((K ε ⋆ f ε t )(x)f ε t (x)) = ∆ x f ε t (x). The limiting behaviour of (f ε t ) t≥0 as ε → 0 was studied in [START_REF] Dolbeault | The two-dimensional Keller-Segel model after blow-up[END_REF] and involves a defect measure. Then Haškovec and Schmeiser introduce in [START_REF] Haškovec | Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system[END_REF] a particle system associated with this limit, in which there are heavy particles that occupy a positive proportion of the mass, interact with the other particles, but do not undergo any Brownian excitation.

  behaves like the square of a Bessel process of dimension (|I|-1)(2-(χ|I|)/(4πN )), when neglecting the contribution of the interaction with the other particles. Similar computations for I = {1, . . . , N } were performed by Haškovec and Schmeiser [10, Page 139] and Fatkullin [6, Page 89]. The condition χ ≤ 8π(N -2)/(N -1)
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 3 Recall that a > 0 and b = a/3 are fixed and that c > 0 has been defined in Step 3.2. The existence of a solution (R I,b t ) t≥0 such that P(∀t ≥ 0, R I,b t ∈ (0, b]) = 1 to the SDE reflected at the level b (25)

t≥

  R I,b t . By [32, Lemma 3.3 p 389] with the choice ρ(u) = |u|, the local time at 0 of the continuous semimartingale S t = R I,b t -R I,a t vanishes. Indeed, it suffices that a.s., t 0 (ρ(S s )) -1 d S, S s < ∞, which follows from the fact that d S, S s = 4( R I,b s -R I,a s ) 2 ds ≤ 4|R I,b s -R I,a s |ds = 4ρ(S s )ds. Hence, setting x + = max(x, 0), one has, by Tanaka's formula, for all t ∈ [0, τ N ), (R I,b t -R I,a t ) + =(R I,b 0 -R I,a 0 )

.

  an adapted increasing process such that L ℓ 0 Denoting by ν ℓ = inf{t ≥ 0 : R I,b,ℓ t ≤ 1/ℓ}, we deduce from pathwise uniqueness that forℓ ′ ≥ ℓ, (R I,b,ℓ ′ t , L ℓ ′ t ) t∈[0,ν ℓ ] and (R I,b,ℓ t , L ℓ t ) t∈[0,ν ℓ ] coincideand thus that ℓ → ν ℓ is a.s. increasing. Setting ν ∞ = sup ℓ→∞ ν ℓ , we easily deduce the existence of a solution (R I,b t , L t ) t∈[0,ν∞) to (25) satisfying sup t∈[0,ν∞) R I,b t ≤ b and R I,b t > 0 for all t ∈ [0, ν ∞ ). More precisely, R I,b t = R I,b,ℓ t ≥ 1/ℓ for all ℓ and all t ∈ [0, ν ℓ ). It thus only remains to prove that ν ∞ = ∞ a.s. By the Girsanov theorem, under the probability measure Q defined by dQ dP | σ(R I 0 ,(β I s

  claim, on the event {inf [u,t] R s > 0}, we introduceT v = T u + dγ s , for all v ∈ [u, t]. Since (γ v ) v≥0 is independent of the event {inf [u,t] R s > 0},we can apply the Itô formula: for all v ∈ [u, t], e iTv = e iTu + v u ie iTs dγ s √ R s e iTs ds 2R s .
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  r,ε s |) -1 ds. Such a solution is pathwise unique by [32, Theorem 3.5 p 390] and nonnegative by the comparison theorem [32, Theorem 3.7 p 394]. Again by the comparison theorem, and since χ ≥ 8π, we find that a.s., R

	2/k,ε t	≤ S	2/k,ε t	for all t ≥ 0. Hence
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  k ∈ {1, . . . , n}. It a.s. holds that T t = h 2π (T u + dg s ) for all s k < u < t < t k by Step 3 and that t s k R -1 s ds = ∞ for all t ∈ (s k , t k ) by Step 4. Applying Lemma 19, we find that a.s., (T s) s∈(s k ,t k ) is independent of H s k and is Γ(s k , t k , (R s ) s∈(s k ,t k ) )-distributed. Using that (T s ) s∈(s k ,t k ) is H t k -measurable for each k = 1, . . . , n, the independence easily follows.
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  Exercise 1.26 p 451] ensures that a.s. |Z s | -1/3 ds < ∞. Hence the Lebesgue theorem ensures us that the last term on a single particle being subjected to a Brownian excitation with coefficient √ 2, a cluster with mass k/N is excited by the mean of k Brownian motions with coefficient √ 2, that is, by a Brownian motion with coefficient 2/k. If N t ≥ 2, setting for I ⊂ {1, . . . , N t } with cardinality |I| ≥ 2, XI t = i∈I ν i t X i,N t / i∈I ν i

	and R I t = (N/2) i∈I ν i t |X i,N t	-XI t | 2	t

t 0

the RHS converges a.s. to -(χ/(2π)) t 0 |Z s | -4/3 Z s ds. We conclude that D t = |Z t | -2/3 Z t 1 {Zt =0} solves D t = D 0 + 2W t -(χ/(2π)) t 0 |D s | -2 D s ds, which completes the proof.

7. On the system with N ≥ 3 particles 7.1. Classification of reflecting and sticky collisions. We have seen in the proof of Step 2 that very roughly, the empirical variance of the positions of k particles in the system with N particles resembles a squared Bessel process of dimension δ N,χ (k) = (k -1)(2χk/(4πN )). Fix χ > 0 and N ≥ 3 and consider the regularized particle system [START_REF] Godinho | Propagation of chaos for a sub-critical Keller-Segel model[END_REF], which is always well-posed. We now describe formally the expected behavior of its limit as ε → 0. According to [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]Page 442] and the comparison theorem [32, Theorem 3.7 p 394], the following events should occur:

Let us now study the inequality δ N,χ (k) ≥ 2. We have already seen in the proof of Lemma 15-Step 2 that when χ ∈ (0, 8π

Finally, one easily checks that x - N,4πN/3 = 3 and x + N,4πN/3 = 4. By strict monotonicity of the map χ → δ N,χ (k), we conclude that if χ > 4πN/3, then δ N,χ (k) < 2 for all k ∈ {2, . . . , N }.

Let us next study the inequality δ N,χ (k) ≤ 0, which, for k ∈ {2, . . . , N } is equivalent to k ≥ 8πN/χ. Hence for χ ∈ (0, 8π), δ N,χ (k) > 0 for all k ∈ {2, . . . , N } whereas for χ ∈ [8π, 4πN ), δ N,χ (k) > 0 for all k ∈ {2, . . . , ⌈8πN/χ⌉ -1} and δ N,χ (k) ≤ 0 for all k ∈ {⌈8πN/χ⌉, . . . , N } with the two sets non empty. When χ ≥ 4πN , δ N,χ (k) ≤ 0 for all k ∈ {2, . . . , N }.

When N ≥ 6, we end up with the following picture.

(a) If χ ∈ (0, 8π(N -2)/(N -1)], the regularized particle system should tend to the particle system (4) and the latter should have a unique (in law) solution. Indeed, it holds that δ N,χ (k) ≥ 2 for all k ≥ 3 and that δ N,χ (2) ∈ (0, 2), so that only binary reflecting collisions occur. We have already checked a tightness/consistency result in this spirit in Theorem 7. Only the uniqueness in law remains open.

(b) If χ ∈ (8π(N -2)/(N -1), 8π), the regularized particle system should tend to the particle system (4) and the latter should also have a unique (in law) solution. One may check that k

In this situation, there should be binary reflecting collisions and also reflecting collisions of subsystems of particles with cardinality in {k 0 , N }. To check the existence (and a fortiori uniqueness) of such a process, one has to control the drift term during the collisions with reflection. In the present paper, we are more or less able to contol the drift during a (reflecting) binary collision, but we have not the least idea of what to do during a k-ary reflecting collision with k ≥ 3.

(c) If χ ∈ [8π, 4πN/3], the regularized particle system should tend to a particle system with sticky collisions that we will describe more precisely in the next subsection. One can check that, for k 0 := ⌊x + N,χ ⌋ + 1 > 4 and

. Thus, binary reflecting collisions, as well as k-ary reflecting collisions, for k ∈ {k 0 , k 1 -1}, should occur, as well as sticky collisions of subsytem of k-particles, for k ∈ {k 1 , . . . , N }. Assume e.g. that k 0 = k 1 -1. What might happen is that, at some time, k 0 particles become close to each other, they may collide (with reflection) a few times, then another particle is attracted in the zone, the k 0 + 1 = k 1 particles meet and then remain stuck forever. Such a cluster will move with a very small diffusion coefficient and should collide later with other particles (or clusters) in a sticky way. Of course, such a result would be very interesting but it seems very difficult to prove, because to check the existence of such a process, one would have to control the drift term during the collisions with reflection, as mentioned previously. The sticky collisions should be easier to describe. 7.2. A particle system in the supercritical case. When χ ≥ 8π, the following dynamics should describe the limit of the regularized particle system as ε → 0. Particles are characterized by their masses and their positions. Initially, we start with N particles with masses ν 1 0 , . . . , ν N 0 all equal to 1/N and with some given positions X 1,N 0 , . . . , X N,N 0 . If now at some time t ≥ 0, we have N t particles (N t will be a.s. nonincreasing) with masses ν 1 t , . . . , ν Nt t (such that Nt 1 ν i t = 1), we make the positions evolve according to

until the next collision between at least two of these N t particles. If the sum S of the masses of the particles involved in the collision is smaller than 8π/χ, they should automatically separate instantaneously and we carry on making evolve the system according to (38) (with the same values for the masses and for N t ) until the next collision. If now S exceeds 8π/χ, the particles involved in the collision are replaced by a single particle with mass S, the number of particles is decreased accordingly, the particles are relabeled, and we make evolve the system according to (38) with these new values for N t and for the masses until the next collision.

By construction, the masses take values in {1/N, 2/N, . . . , N/N } and actually in {k/N : k = 1 or 8πN/χ ≤ k ≤ N }. A particle of mass k/N with k ≥ 2 has to be seen as a cluster of k elementary particles. The drift term is thus easily understood: a single elementary particle interacts with the other ones proportionaly to 1/N , so that a cluster consisting of k elementary particles interacts with the other ones proportionally to its mass k/N . The diffusion coefficients are also quite natural: