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Synopsis 11 

Granular materials do not always flow homogeneously like fluids when submitted to external 12 

stress, but often form rigid regions that are separated by narrow shear bands where the 13 

material yields and flows. This shear localization impacts their apparent rheology, which 14 

makes it difficult to infer a constitutive behaviour from conventional rheometric 15 

measurements. Moreover, they present a dilatant behaviour, which makes their study in 16 

classical fixed-volume geometries difficult. These features led numerous groups to perform 17 

extensive studies with inclined plane flows, which were of crucial importance for the 18 

development and the validation of the  I rheology. Our aim is to develop a method to 19 

characterize granular materials with rheometrical tools. Using rheometry measurements in an 20 

annular shear cell, dense granular flows of 0.5 mm spherical and monodisperse beads are 21 

studied. A focus is placed on the comparison between the present results and the 22 

 I rheology. From steady state measurements of the torque and the gap under imposed 23 

shear rate   and normal force NF , we define an inertial number I . We show that, at low I  24 

(small   and/or large NF ), the flow goes to a quasi-static limit, and the response in terms of 25 

dimensionless stress or internal friction coefficient –  – and  solid concentration  –   – 26 

profiles is independent of the inertial number. Upon increasing I  (large   and/or small NF ), 27 

dilation occurs and   decreases while   increases. The observed variations are in good 28 

agreement with previous observations of the literature (Jop et al. 2006; Hatano 2007). These 29 

results show that the constitutive equations  I  and  I  of granular materials can be 30 

measured with a rheometer. 31 
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I. Introduction 32 

Granular matter shows both solid and fluid behavior. Of interest in many industrial processes 33 

and in geophysics, granular flows are the focus of very active researches (Duran 2000). These 34 

materials are very sensitive to various parameters: geometry of the flow, wall roughness, flow 35 

rate, shape and size distribution of the grains, and coupling with the interstitial fluid 36 

(Andreotti et al. 2013). Due to their macroscopic size, the interactions between the grains are 37 

dissipative (friction and inelastic collisions); the energy lost is then transferred to internal 38 

degrees of freedom. The lack of Brownian motion and the dissipative interactions, make the 39 

granular material an intrinsically nonequilibrium system.  40 

In the dry case – without interstitial fluid –, the rheology is solely governed by momentum 41 

transfer and energy dissipation occurring in direct contacts between grains and with the walls. 42 

Despite the seeming simplicity of the system, the behavior of dry granular material is very 43 

rich and extends from solid to gaseous properties depending on the flow regime. In the 44 

absence of a unified framework, granular flows are generally divided into three different 45 

regimes. (i) At low shear, particles stay in contact and interact frictionally with their 46 

neighbours over long periods of time. This “quasi-static” regime of granular flow has been 47 

classically studied using modified plasticity models based on a Coulomb friction criterion 48 

(Schofield & Wroth 1968; Becker and Lippmann 1977). The response in terms of velocity or 49 

solid fraction profiles is independent of the shear rate (Roux & Combe 2002; GDR Midi 50 

2004). Consequently, if the material remains homogeneous, this state only depends on 51 

geometric data (shape and size distribution of the grains) and on the inter-granular friction 52 

coefficient. (ii) Upon increasing the deformation rate, a viscous-like regime occurs and the 53 

material flows more as a liquid (Forterre & Pouliquen 2008). In this intermediate regime, the 54 

particles experience multi-contact interactions. (iii) At very high velocity, a transition occurs 55 

towards a gaseous regime, in which the particles interact through binary collisions 56 

(Goldhirsch 2003; Jenkins and Savage 1983).  57 

For the modelling of dense granular flows, the concept of inertial number I  has been widely 58 

used and investigated with regard to its relationship with dynamic parameters, such as 59 

velocity, stress, and friction coefficient which leads to constitutive relations for granular 60 

flows. Thus, ‘dynamic dilatancy’ law and ‘friction’ law were deduced from discrete 61 

simulation of two dimensional simple shear of a granular material without gravity (da Cruz et 62 

al. 2005). Those results establish that the flow regime and rheological parameters depend on a 63 

single dimensionless number that represents the relative strength of inertia forces with respect 64 
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to the confining pressure, or the combined effect of pressure and shear rate. Indeed, for a 65 

three-dimensional granular medium made up of monodisperse spheres ( d ,   resp. the 66 

particle’s diameter and density) undergoing simple shear flow at a shear rate   under an 67 

applied normal confining stress  , this dimensionless number – inertial number – is defined 68 

as  //dI   . Alternatively, one may use the Savage number which is the square of the 69 

inertial number (Savage & Hutter 1989) or the Coulomb number (Ancey et al. 1999, see also 70 

GDR Midi 2004; Baran & Kondic 2006; Hatano 2007; Luding 2008). Dimensionless number 71 

I  can also be seen as the ratio of  //d , the time scale for grains to rearrange due to the 72 

confining stress  , to the time scale 1  for deformation by the flow. Hence, it characterizes 73 

the local ‘‘rapidity’’ of the flow. Thus it was observed that both dimensionless quantities: the 74 

internal friction coefficient  /  and the solid fraction   are functions of I  (GDR Midi 75 

2004; da Cruz et al. 2005; Hatano 2007). Thereby, the inertial number I  opened a new path 76 

unifying, in a single phenomenological law, many experimental and numerical data in a wide 77 

variety of transient flows from the rotating drum to inclined plane flows, where large flowing 78 

zones form. A local relation between an apparent friction coefficient and I  then successfully 79 

captures many aspects of these rapid granular flows (Savage & Hutter 1989; GDR Midi 2004; 80 

Jop et al. 2006; Forterre & Pouliquen 2008).  81 

Following general results from simulations of planar shear (da Cruz et al. 2005; Iordanoff & 82 

Khonsari 2004), and successful applications to inclined plane flows (Pouliquen & Forterre 83 

2002; Silbert et al. 2003), the experiments of Jop and co-workers (Jop et al. 2006) were 84 

carried out to quantify, for glass beads, the  I rheology from the quasi-static to the rapid 85 

flow regime, corresponding to moderate inertial number (from 0.01 to 0.5) as: 86 

   IIss /1/ 02                                                      (1) 87 

in which 02  and  , Is   are three fitting parameters dependent on material properties. 88 

According to this law, the internal friction coefficient   goes from a minimum value s  for 89 

very low I  up to an asymptotic value 2  when I  increases. The asymptotic value of   at 90 

high inertial number was not obtained by da Cruz and co-workers who observed an 91 

approximately linear increase of the internal friction coefficient from the static internal 92 

friction value: 93 

                       aIs                                                           (2) 94 
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where as  and   are two fitting parameters which depend on material properties. In 3D-95 

simulation studies, Hatano did not either observe the asymptotic value of   at high I : from 96 

410I  to 2.0I , he reported a law in which the friction coefficient increases as a power of 97 

the inertial number (Hatano 2007): 98 

 n

s aI                                                                   (3) 99 

It should be pointed out however that this rheology agrees with earlier scaling relations 100 

stemming back to Bagnold (Bagnold 1954). Bagnold described a mechanism of momentum 101 

transfer between particles in adjacent layers that assumes instantaneous binary collisions 102 

between the particles during the flow. Under this assumption, the inverse strain rate is the 103 

only relevant time scale in the problem leading, for a constant solid fraction  , to constitutive 104 

relations between the shear stress   (resp. normal stress  ) and shear rate   of the form 105 

  2

1

2  fd  (resp.   2

2

2  fd ) where 1f  and 2f  are functions of  the solid fraction   106 

only. Bagnold’s scaling has been verified for dry grains in both collisional and dense flow 107 

regimes (Jenkins & Savage 1983; Lois et al. 1987; Silbert et al. 2001; Lois et al. 2005; da 108 

Cruz et al. 2005). The main difference between the Bagnold and )(I  approaches is that: in 109 

the first case,   is kept constant for one given flow, whereas it varies freely and depends on 110 

the flow in the second case. Indeed, if the pressure is controlled, the solid fraction   is free to 111 

adapt in the system with the evolution of other parameters. If   is fixed however and the 112 

normal pressure measured, this will fix the value of I . Then when   is fixed, the expression 113 

of I  shows that the normal pressure should scale with the square of the shear rate as it was 114 

shown experimentally in annular parallel-plate shear cell (Savage & Sayed 1984). 115 

 116 

The applicability of the  I rheology has been examined by various studies (Jop et al. 117 

2005, 2006; Hatano 2007; Forterre & Pouliquen 2008; Ruck et al. 2008; Aranson et al. 2008; 118 

Peyneau & Roux 2008; Staron et al. 2010; Gaume et al. 2011; Tripathi & Khakhar 2011; 119 

Chialvo et al. 2012; Azéma & Radjai, 2014; Gray & Edwards 2014; Edwards & Gray 2015) 120 

and many simulations and experiments have shown that the rheology is valid for various flow 121 

configurations for different choices of materials, although deviations from this rheology may 122 

take place for very slow (quasi-static) flows with small values of inertial number (Aranson et 123 

al. 2008; Staron et al. 2010; Gaume et al. 2011). Up to now, there is however in the literature, 124 

no experimental data from conventional rheology (rheometer with conventional geometries) 125 

describing the  I rheology of a dry granular material. Indeed, Couette flows of granular 126 
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materials are characterized by the formation of well-defined shear bands that resemble 127 

qualitatively the behavior of a yield stress fluid, and make the interpretation of rheometric 128 

data tricky. For slow flows, shear banding is generally very strong, with shear bands having a 129 

typical thickness of five to ten grain diameters. In this regime of slow flow, the averaged 130 

stresses and flow profiles become essentially independent of the flow rate, so that constitutive 131 

relations based on relating stresses and strain rates are unlikely to capture the full physics 132 

(Schofield & Wroth 1968; Nedderman 1992; Fenistein & van Hecke 2003; Fenistein et al. 133 

2004). Moreover, due to the dilatant behaviour of granular materials, constant solid fraction 134 

  experiments classically made with a Couette shear-cell rheometer are much more difficult 135 

to perform than constant friction coefficient   experiments such as inclined plane flows. 136 

When a granular matter is sheared, the spatial distribution of the shear rate is not always 137 

homogeneous. Often, shear is localized near the system boundaries with a shear localization 138 

width amounting to a few particle diameters. Nevertheless, depending on the boundary 139 

conditions, confining pressure and shear velocity, the bulk of the granular system may exhibit 140 

different behaviours. For high shear velocities and small confining pressures – high I  –, the 141 

granular matter flows homogeneously (Koval et al. 2009). However, at small inertial number, 142 

it was indeed shown that in confined annular flow at small shear velocities and high confining 143 

pressures – small I  –, the shear may be not homogeneous and solid and fluid phases coexist 144 

(Aharonov & Sparks 2002; Jalali et al. 2002). 145 

 146 

In the present work, we show that it is not necessary to develop specific set-ups (such as the 147 

inclined plane) to study dense granular flows. Indeed, we show that a simple annular shear 148 

cell (Carr and Walker 1968, Savage and Sayed 1984) can be adapted to a standard rheometer 149 

to study the rheology of granular materials under controlled confining pressure. It allows us in 150 

particular to obtain the dilatancy law )(I  and also to study very accurately the quasi-static 151 

limit. Thus, from the steady state measurements of the torque and the gap during an imposed 152 

shear flow under an applied normal confining stress  , we report two laws in which the 153 

internal friction coefficient and the solid fraction are functions of a single dimensionless 154 

number: the inertial number I . An effort is then made to compare the present results to the 155 

 I rheology described in the literature. Indeed, we show that at low inertial number I  156 

(small   and/or large  ), the flow goes to the quasi-static limit, and the response in terms of 157 

internal friction coefficient   and solid fraction   profiles is independent of the inertial 158 

number. Upon increasing I  (large   and/or small  ),   decreases while   increases. The 159 
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observed variations are in good agreement with previous observations of the literature. 160 

Importantly, we also show that changing the initial gap size does not significantly affect these 161 

results. This suggests that shear localization is mostly absent in the intermediate dense flow 162 

regime, although it may still occur when the granular material is slowly sheared (in the quasi-163 

static regime). 164 

 165 

II. Materials and methods 166 

To investigate the steady flows of dry granular materials and determine the  I rheology, 167 

three main features are required: (i) to avoid shear banding, (ii) to apply a confining stress in 168 

the velocity gradient direction, and (iii) to allow volume fraction variations. If one wants to 169 

use a rheometer, (i) implies that the use of a Couette cell should be avoided since it is 170 

characterized by a shear stress inhomogeneity that naturally leads to shear-banding. Both the 171 

cone-and-plate and the parallel-plate geometries allow a normal force to be imposed in the 172 

velocity gradient direction; however, the analysis of the cone-and-plate flow can be performed 173 

only at a single gap value, i.e. it cannot be used to characterize a material whose the volume 174 

varies under shear. On the other hand, any gap variation in parallel-plate geometry can be 175 

accounted for in the determination of the shear rate value. Moreover, shear banding should in 176 

principle be avoided in this last geometry since the shear stress is independent of the vertical 177 

position in the gap (Macosko 1993). Nevertheless, the shear rate varies along the radial 178 

position and is equal to zero in the center. One should thus try to avoid the use of the central 179 

zone of the gap. Finally, the material should be confined by lateral walls to make sure that any 180 

gap variation actually leads to a material volume fraction variation. These requirements led us 181 

to develop a home made annular shear cell, inspired by Boyer et al. 2011, in which pressure-182 

imposed measurements can be performed as shown in Figure 1. Annular shear cells have been 183 

extensively used to characterize the flow of pharmaceutical powders and dry granular 184 

materials (Carr and Walker 1968, Savage and Sayed 1984, Schulze 1996; Schwedes 2003).  185 

We use a granular material made of rigid polystyrene beads (from Dynoseeds) of density 186 
3/ 1050 mkg , of diameter d = 0.5 mm (with a standard deviation of 5%). Spherical beads 187 

fill the annular box between two static concentric cylinders with respectively an inner and 188 

outer radii of mmRi  21  and mmRo  45 . The width of the annular trough is about 48d 189 

leading to a ratio of inner to outer wall radii of 0.46. We also used another annular channel 190 

with the same width but with a larger ratio of inner to outer cylinder radii equal to 0.61 191 

( mmRi  38  and mmRo  62 ). We have verified that changing the ratio of inner to outer 192 
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cylinder radii of the annular shear cell does not significantly affect the results. The filling 193 

height (initial gap, 0h ) of the annular box is adjustable from a few grain diameters (typically 194 

5d) to 30d. The cylinders were finished as smoothly as possible to permit the granular 195 

material to slip there as readily as possible.  For that, they are made of polyoxymethylene 196 

(POM) resin which exhibits a low friction coefficient due to the flexibility of the linear 197 

molecular chains. We have measured the friction coefficient at the wall w  between 198 

polystyrene beads and a plane made of POM by measuring with our rheometer the sliding 199 

stress under different normal stresses such as in Jenike’s shear tester (Jenike 1964; Schwedes 200 

2003); it is found to be very small: 05.0w .   201 

 202 

 203 

 204 

Figure 1: (a-b) Cross section of the annular plane shear flow. The shear and pressure are 205 

provided by a ring which is assembled on a Kinexus rheometer by Malvern that is free to 206 

move vertically while maintaining a constant rotation rate or shear rate and imposed pressure. 207 

(c) Rain-filling coupled to tapping to get the denser piling sample (‘D’). 208 

 209 

The experiments were performed initially on a very dense piling 0 0.625, close to the so 210 

called random close packing of 0.637 (Torquato et al. 2000; Camenen et al. 2012) obtained by 211 

combining a rain-filling and tapping the box (Ovarlez et al. 2003) to get a reasonably uniform 212 

packing (Figure 1b). However, we will show below that the steady state obtained when the 213 

material is sheared is the same for an initially looser piling (Figure 2c). Granular beads are 214 

then driven by the ring-shaped upper boundary made of PMMA, which is assembled on a 215 

Kinexus Pro rheometer by Malvern. To avoid wall slip, both the moving upper boundary and 216 

the static lower boundary are serrated, with 0.5 mm ridges which correspond to the size of 217 

grains (Shojaaee et al. 2012). 218 
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 219 

In our rheometer, instead of setting the value of the gap size for a given experiment, as in 220 

previous studies (Schulze 1996; Schwedes 2003) and generally in rheometric measurements, 221 

we impose the normal force (i.e. the confining normal stress) and then, under shear, we let the 222 

gap size vary in order to maintain the desired value of the normal force. We then have access 223 

to instantaneous measurements of the driving torque T and the gap h  for imposed normal 224 

force NF  and shear rate  : in this case, the solid fraction   is not fixed, but adjusts to the 225 

imposed shear. However, it remains important to notice that, in order to keep the imposed 226 

shear rate constant, the rheometer adjusts the rotation velocity   since the gap varies as will 227 

be discussed below.  228 

 229 

A typical measurement is shown in Figure 2, where we start out with a given gap dh 60  , 230 

impose a constant shear rate   and normal force NF  and measure the torque T  and the gap 231 

h  as a function of strain (or time). The system reaches a steady state after a certain amount of 232 

shear strain but we carefully compare the transient dynamics of these quantities, beginning 233 

with freshly poured grains for two preparations, ‘rain piling’ and ‘rain coupled to tapping 234 

piling’ (resp.) which allow us to get the looser (‘L’) piling and the denser (‘D’) piling (resp.) 235 

samples with an initial solid fraction of 0.612 and 0.625 (resp.). 236 

Let us start with the imposed quantities. In both cases, a small variation of the rotation 237 

velocity is seen (Figure 2a). As discussed above, this variation is a signature of the shear-238 

induced gap variations; it ensures that the shear rate is constant at any time or strain (see 239 

inset). We also see that, in both cases, the normal force reaches quickly the stationary targeted 240 

value and remains steady during the whole experiment (Figure 2b). Nevertheless, the short 241 

transient behavior is different: in the looser sample (‘L’), a significant decrease of the normal 242 

force is initially observed while a very sharp increase is observed in the densest piling (‘D’). 243 

The reason is that the densest system initially wants to dilate, and the rheometer response is 244 

not fast enough to allow for this fast dilation at constant normal force. By contrast, the loose 245 

sample initially wants to compact, and again the rheometer response is not fast enough to 246 

allow for this fast compaction at constant normal force.   247 

 248 
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 249 

Figure 2: Comparison between samples from the two different pilings: rain piling (which 250 

allows us to get the looser piling sample ‘L’) and rain piling coupled to tapping (that lets us to 251 

get the denser piling sample ‘D’) of the (a) rotational rate against strain; Inset: the imposed 252 

shear rate vs. strain, (b) imposed normal force as a function of strain, (c) driving torque and 253 

(d) gap size rescaled by the initial gap against strain. The insets in (b-c-d) are the same data 254 

showing the sharp increase/decrease of the normal force, the overshoot of the torque and the 255 

gap change at the beginning of shearing. 256 

 257 

The transient dynamics of the measured quantities (torque and gap size) also shows a clear 258 

difference between the two samples. In Figure 2c, we see that, in the loosest piling (‘L’), the 259 

torque increases before reaching the steady state regime. By contrast, there is an overshoot 260 
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within the densest sample (‘D’), followed by a fast decrease of the torque: the peak strongly 261 

depends on the imposed normal force and/or on the shear rate; the decrease corresponds to the 262 

continuous dilation of the material under shear. Indeed, in the same time, the gap is not fixed, 263 

but adjusts to the imposed shear (Figure 2d). Shear dilation is observed: the measured gap 264 

increases up to a constant value since the average of the initial solid fraction is very close to 265 

the random close packing. In this regime, shearing necessarily implies immediate dilatancy of 266 

the granular media. In contrast, an initially looser sample first compact instead of dilate under 267 

shear: when the system is driven under a fixed normal pressure, the granular packing 268 

undergoes compaction before dilation into the final state once sufficiently compacted (Wroth 269 

1958). 270 

 271 

The most important observation is that the same steady state is reached (same torque and 272 

same solid fraction) for the two initial states. This indicates that the material history has been 273 

erased, and that we are actually studying the material steady response as a function of   and 274 

NF  only. As a consequence, there is no need for the sample preparation for the grains we 275 

study, namely monodisperse spheres (note that this might not be a general result). All the 276 

annular shear cell requires is that the sample is sheared at the required normal pressure until 277 

the critical state is reached. However it is necessary to adopt a reference packing state and 278 

ensure that the piling method used allows us to achieve sufficient repeatability for a given set 279 

materials and system parameters. Hence, we prepare all samples in the same way: a very 280 

dense material, from a rain piling coupled to tapping, is used in all the experiments presented 281 

below (the initial average volume fraction is 0.625). 282 

 283 

III. Experimental results and analyses 284 

We have measured the driving torque and the gap as a function of shear strain for various 285 

imposed normal force NF  (between 1 and and 5N) and applied shear rate    (between 0.01 286 

and 77 s-1) for a given gap dh 60  .  287 

In Figure 3 (a, b), we show those measurements for NFN 3 and various  . At low shear 288 

rate, the driving torque increases slowly before reaching a steady plateau within strain of 289 

order of unity. Meanwhile, the gap fluctuates around its initial value (we show the gap size 290 

rescaled by its initial value before shearing 0/ hh  called the rescaled gap in the following.). 291 
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 292 

Figure 3: Evolution as a function of the strain at 3N imposed normal force under different 293 

applied shear rates of: (a) the driving torque and (b) the rescaled gap size (only 2 curves are 294 

shown for clarity). Evolution as a function of the strain at 77 s-1 imposed shear rate under 295 

different applied normal forces of: (c) the driving torque and (d) the gap size rescaled by its 296 

initial value before shearing.  297 

 298 

Upon increasing the imposed shear rate, an overshoot occurs: its amplitude increases with 299 

increasing the shear rate. In steady state, a rate dependence of the torque is observed (Figure 300 

3a). Moreover, increasing the imposed shear rate causes an increase of the gap size (Figure 301 

3b) allowing to quantify the dynamic dilatancy of the granular material. Notice that, with 302 
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increasing the applied shear rate, large fluctuations of the driving torque and also of the gap 303 

size evolution occur in steady state flows.  304 

Similarly, in experiments in which different normal forces are imposed at a given shear rate 305 

(Figure 3c, d), the steady torque is observed to increase while the steady solid fraction (steady 306 

gap) decreases when the normal force is increased. 307 

Once the above described experiments are combined, we can obtain the constitutive laws of 308 

the dry granular material i.e. the dependence of the steady solid fraction   and the ratio 309 

between shear and normal stresses  /  variation on shear rate. Indeed, from macroscopic 310 

quantities T ,  , NF  and h , the shear stress  , the normal stress  , shear rate  , and the 311 

solid fraction   can be computed.  312 

 313 

In the annular plate-cup shear geometry, the driving torque is converted into shear stress using 314 

the equation: 315 


oR

iR
drrT 2..2                                             (4) 316 

where   is the shear stress, and iR  and oR  are inner and outer radii of the annular trough.  317 

If one neglects the radial velocity gradient (Cleaver et al. 2000; Coste 2004) into the annular 318 

trough, the shear stress is quasi-independent of the radial position r and thus, integrating Eq. 319 

(4) yields the shear stress as: 320 

)(2/3 33
io RRT                                           (5) 321 

Eq. (5) holds because the lateral contribution of wall frictions on the stress distribution within 322 

the granular media can be neglected. Indeed, for dh 30 , this relative contribution can be 323 

estimated to be of the order of  /w  and we will see below that 1/ w . 324 

    325 

The normal stress can be also calculated from the normal force as follow:  326 

)(/ 22

ioN RRF                                            (6) 327 

Notice that for dh 10 , the imposed normal stress is larger than the hydrostatic pressure 328 

gh once NF  is larger than 0.25N, meaning that gravity may be neglected for the range of 329 

imposed normal forces. 330 

 331 
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Besides, assuming that the velocity gradient is approximately uniform over the depth and 332 

width of the annular trough and a no-slip condition exists at the rough upper and lower 333 

shearing walls, one can estimate the mean shear rate as: 334 

hRR io 2/)(                                                       (7) 335 

And the mean shear strain is given by: 336 

hRR io 2/)(                                 (8) 337 

where   is the angular displacement.   338 

With this analysis, one can plot the shear stress in the steady state as a function of the normal 339 

stress as in Figure 4a. The first observation is that a linear relationship between the shear and 340 

normal stresses is seen for all imposed shear rates, with a slope that increases from 0.265 to 341 

0.6 with increasing the shear rate. If an internal friction coefficient   is defined as the ratio 342 

between shear and normal stresses, we evidence here that   is rate dependent: it increases 343 

with  . 344 

 345 

Figure 4: Plot of the shear stress (a) and of the solid fraction rescaled by its initial value 346 

before shearing (b) as a function of the normal stress. The stress and the gap are measured in 347 

the steady state, for different imposed shear rate. The error bars come from three experiment 348 

runs.  349 

 350 

The second observation is that, for all imposed shear rates, the steady value of the solid 351 

fraction decreases when one decreases the normal stress (Figure 4b). Indeed, since the grains 352 
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cannot escape from the cell, one can measure unambiguously the solid fraction from the gap 353 

variation as:  354 

)(/ 22

io RRhm                                           (9) 355 

in which m represents the mass of grains. Thus 00 // hh  will simply reflect the impact of 356 

shear and confinement on dilatancy.  357 

In order to analyse the results in term of  I rheology, one has to define an inertial number 358 

such as: 359 

 //dI                              (10) 360 

in which   is the normal stress in the steady state regime. It varies between 710 and 0.1 in 361 

the range of applied normal force and shear rate. This corresponds to the usual range of quasi-362 

static to dense flow regimes. It should be noted that our annular shear geometry does not 363 

allow higher values of I to be studied. 364 

 365 

 366 

Figure 5: Constitutive law for different sets of mean shear rates and imposed normal forces 367 

(a) ‘friction law’ i.e. effective internal friction coefficient as a function of inertial number; (b) 368 

‘dynamic dilatancy law’ i.e. solid fraction as a function of inertial number. The error bars 369 

come from three experiment runs. 370 

 371 

Figure 5a shows how   vary throughout the flow regimes since I  characterizes the local 372 

‘‘rapidity’’ of the flow. All the data obtained for different sets of shear rate and normal force 373 

collapse on a single curve  /  vs. I . For low inertial number, the internal friction 374 
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coefficient tends to a finite value 265.0s  and increases with increasing I . At the same 375 

time, the solid fraction variation 0/  with the inertial number I  is shown in Figure 5b. Once 376 

again, all the data collapse on a single curve. At low I , 0/  is quasi-constant: this is the 377 

quasi-static regime. When I  increases, the inertia starts influencing the flow and the system 378 

becomes rate dependent: the ratio 0/  decreases; this regime corresponds to the dense flow 379 

in which the granular material dilates. 380 

 381 

Moreover, in order to check the robustness of our results, we have varied the initial size of the 382 

gap. Here, with our annular shear geometry, the same experiments discussed above are made 383 

with different gap sizes from 6d to 22d and different sets of imposed shear rate and normal 384 

force (Table 1).  385 

Shear rate (s-1) Normal force FN (N) Gap (h0/d) 

0.01 1-2-3-4-5 6-8-15 

0.1 1-2-3-4-5 6-8-10 

1 1-2-3-4-5 6-10-15 

10 1-2-3 6-15 

30 1-2-3 6-15-22 

77 1-2-3 6-15-22 

Table 1: Values of the imposed shear rate and normal force for each gap size. 386 

 387 

It is shown in Figure 6 that changing the gap does not significantly affect these results. This 388 

suggests a total absence of shear localization at high inertial number. However, at small 389 

inertial number, the resolution of our measurements is not sufficient to dismiss the possibility 390 

that shear localization arises. It was indeed shown that in confined annular flow at small shear 391 

velocities and high confining pressures – small  I  –, the shear may be not homogeneous and 392 

solid and fluid phases coexist (Aharonov & Sparks 2002; Jalali et al. 2002). 393 

 394 

We now compare these experimental results with existing models such as those of Jop et al. 395 

Eq. (1) and Hatano Eq. (3) on dry granular flows in terms of quasi-static and dense flow 396 

behaviours. Concerning the ‘friction law’, our experimental data include points in range of I  397 

from 710 to 0.1 which covers quasi-static and dense flow regimes. Our measurements then 398 

show that, in this range of I , both models can describe our data. Using a classical least 399 

squares method, the fit of the data gives: 003.0032.00 I , 002.0271.0 s  and 400 
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02.068.02   for the ‘Jop et al. model’; 002.0259.0 s , 05.012.1 a and 401 

02.049.0 n  for the ‘Hatano model’. In Figure 6b, we show the ‘dynamic dilatancy law’, 402 

i.e., the variation of the solid fraction   as a function of the inertial number I. We observe 403 

that   decreases linearly with I, starting from a maximum value c  in the quasi-static regime 404 

where the granular material is very dense, close to the maximum solid fraction. The ‘dynamic 405 

dilatancy law’ is thus given as: Icmc )/1(1/    with 625.00  c  and 406 

002.0495.0 m  in agreement with (Pouliquen et al. 2006; Jop et al. 2005).  407 

 408 

Figure 6: Constitutive law for different sets of mean shear rates and imposed normal forces, 409 

and different gap sizes (Table 1): (a) ‘friction law’ i.e. internal friction coefficient as a 410 

function of inertial number; (b) ‘dynamic dilatancy law’ i.e. solid fraction as a function of 411 

inertial number; inset: the same data in linear scale. The solid line is Icmc )/1(1/    412 
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with 625.00 c  and 495.0m ; (c) Internal friction coefficient vs. the reduced solid 413 

fraction (   c ); (d) Reduced internal friction coefficient as a function of the reduced 414 

inertial number. The line is 0/ II . For each gap, the imposed shear rate varies from 0.01 415 

to 77 s-1 depending of the imposed normal force in order to obtain either a low I  (small   416 

and/or large NF ) or a high I (large   and/or small NF ). The error bars come from three 417 

experiment runs. 418 

 419 

Combining the ‘dynamic dilatancy’ and the ‘friction’ laws, these data show that the internal 420 

friction coefficient   strongly depends on the solid fraction: it decreases towards s  when   421 

tends to the maximum solid fraction (as shown on Figure 6c in which   0  is the 422 

reduced solid fraction). Moreover, following Staron and co-workers (Staron et al. 2010), we 423 

defined a reduced internal friction coefficient   as: 424 

 )/()( 2  
s                             (11) 425 

We plot in the main panel of Figure 6d the resulting   vs. 0/ II  data points. It holds 426 

remarkably well with a prefactor of unity. Satisfying the ‘Jop et al. model’ implies indeed that 427 

0/ II  which is almost the case for our data except for small values of I  ( 03.00  II ) 428 

wherein deviations seem to take place. The relationship between   and the reduced inertial 429 

number is not clear. These deviations, observed in the quasi-static regime, were also 430 

mentioned in recent studies which indicate that this rheology (the ‘Jop et al. model’) may be 431 

not sufficient to describe the complex phenomena occurring at the flow threshold such as 432 

intermittent flows (Mills et al. 2008), and is maybe strictly valid only for relatively large 433 

inertial numbers (e.g., 02.0I  as noted by Staron et al. 2010 and 005.0I  by Gaume et al. 434 

2011). The reason for that is not clear yet but one possible explanation is shear localization 435 

that arises most often in confined annular flow at small imposed shear and high pressure 436 

(small inertial number I) (Aharonov & Sparks 2002; Jalali et al. 2002; Koval 2009). Such 437 

behavior of granular materials has not yet been fully understood and no consistent and general 438 

formalism can predict it successfully (Kamrin 2012). In contrast to discrete numerical 439 

simulations (Wang et al. 2012) and theoretical studies (Jenkins & Richman 1985; Richman & 440 

Chou 1988; Jenkins 1992), the study of shear localization structure with experimental 441 

methods is rather difficult. The visualization of the granular interface is usually limited to the 442 

free surface or bottom layers (Fenistein and van Hecke 2003). Recently, MRI has been used 443 
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to study the granular rheology (velocity and solid fraction profiles) inside the granular system 444 

(Moucheront et al. 2010); this tool may thus be a great help in understanding the behaviour at 445 

low I. A change in the roughness of a boundary bottom might be used to modify the flow 446 

properties such as the wall slip velocity (Shojaaee et al. 2012). 447 

 448 

IV. Conclusion 449 

We have developed a rheometrical method in order to study dense granular flows with a 450 

rheometer under imposed confining normal stress and applied shear rate. From the steady 451 

state measurement of the torque and the gap, the internal friction coefficient, the solid fraction 452 

and the inertial number I are measured. For low I , the flow goes to the quasi-static limit  and 453 

the internal friction coefficient and the solid fraction profiles are independent of I . Upon 454 

increasing I , dilation occurs and the solid fraction decreases linearly when I  increases while 455 

the friction coefficient increases. The observed variations are in good agreement with 456 

previous observations of the literature. As a consequence, we bring evidence that rheometric 457 

measurements can be relevant to describe dry granular flows. However, additional 458 

experimental work should be carried out in order to measure the dependence of the boundary 459 

layer constitutive law on the state of the bulk material, so as to be able to describe properly 460 

the rheology when approaching the quasi-static limit.  461 
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