
HAL Id: hal-01157363
https://enpc.hal.science/hal-01157363

Submitted on 18 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Stability analysis of rock slopes subjected to seepage
forces using the modified Hoek-Brown criterion

Zied Saada, Samir Maghous, Denis Garnier

To cite this version:
Zied Saada, Samir Maghous, Denis Garnier. Stability analysis of rock slopes subjected to seepage
forces using the modified Hoek-Brown criterion. International Journal of Rock Mechanics and Mining
Sciences, 2012, 55, pp.45-54. �10.1016/j.ijrmms.2012.06.010�. �hal-01157363�

https://enpc.hal.science/hal-01157363
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Stability analysis of rock slopes subjected to seepage forces using the

modified Hoek–Brown criterion

Z. Saada 
a, S. Maghous 

b,n, D. Garnier c

a Laboratoire de Génie Civil, ENIT, Université de Tunis El Manar, Tunis, Tunisia
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The paper deals with the stability analysis of a water-saturated rock slope by means of the kinematic

approach of limit analysis theory. Particular emphasis is first given to the effects of pore water pressure

on the global stability of geotechnical structures. The rock strength properties being formulated in

terms of effective stresses, it is shown how the effect of seepage flow may be accounted for such an

analysis through driving body forces derived from the gradient of excess pore pressure distribution is

shown. The latter is obtained as the solution to a hydraulic boundary value problem, and then

incorporated as external loading in the subsequent stability analysis. The rock strength properties are

modeled by a modified Hoek–Brown failure criterion, for which closed-form expressions of the support

functions have been derived in a previous paper. The approach is then applied to investigate the

stability of rock slopes. Computational results are given, providing ample evidence of the destablizing

effects induced by the seepage forces. The influence of relevant geometrical, strength and loading

parameters is also discussed.

1. Introduction

Assessment of the bearing capacity of rock structures, such as

dam foundations, tunnels or rock slopes built in rock masses

whose strength properties are described by traditional cohesive-

frictional failure conditions, is a well-known classical problem in

geotechnical engineering. Many works have devoted to this

purpose with relatively satisfactory solutions in the absence of

saturating fluid flow. However, such a problem has received less

attention as soon as one deviates from this reference situation.

This is notably the case when the rock structure is subjected to

seepage forces which are likely to significantly reduce its stability,

as has been early shown by several experimental or theoretical

works. Pioneer works on this topic are reported for instance in

Leca et al. [1].

Many of the theoretical investigations have been based on the

assumption that the rock strength is governed by the linear

Mohr–Coulomb failure criterion. It is however well-known that

the strength envelopes of almost all geomaterials are non-linear,

as it has been emphasized by several experimental works [2–8].

Among the non-linear failure criteria proposed in the literature,

the Hoek–Brown failure criteria are considered to reasonably well

model the strength capacities of isotropic rocks. Nevertheless, few

studies were devoted to the assessment of bearing capacity of

structures in rocks modeled by the latter strength criteria. In this

respect, one should quote the pioneer contributions of Baker and

Frydman [9], Zhang and Chen [10], Drescher and Christopoulos

[11] or Serrano and Olalla [12–14]. These fundamental contribu-

tions have inspired a series of works that were developed

subsequently [15–19].

The problem addressed in this paper is related to the analysis

of slopes stability when the rock materials exhibit non-linear

failure envelope. In this context, several works have been inves-

tigated within the framework of a Hoek–Brown failure criterion:

the problem of rock slopes stability and induced reduction in

bearing capacity of foundations lying near rock slopes [20–22].

Less is known about the problem of reduction in slope stability

due to the presence of seepage forces. More generally, stability

analysis of geotechnical structure in the presence of seepage

forces still remains a key challenge in soil and rock engineering.

Most of the contributions to the field are in fact concerned with

the specific problem of stability analysis of soil slopes. From a

theoretical point of view, the pore water pressures distribution to

be incorporated in the stability analysis is obtained from ground

water conditions. In the context of slope stability, this distribution

is classically simulated by a simplified flow net or a pore water

pressure ratio. Pore water pressure may be considered as internal

n Corresponding author. Tel.: þ55 51 33083588; fax: þ55 51 33083999.

E-mail addresses: samir.maghous@ufrgs.br,

maghous@ppgec.ufrgs.br (S. Maghous).

1



forces in the analysis of slope stability, as used for instance by

Miller and Hamilton [23,24] which assumed the pore water

distribution to be hydrostatic below a free water table. On the

other hand, pore pressure can be included as external forces as

developed in Michalowski [25] in the context of a Mohr–Coulomb

strength criterion. The analysis developed in this work for slope

stability implemented a log-spiral rotation failure mechanism,

where the distribution of pore pressure along the failure surface

was described by a pore pressure coefficient, originally intro-

duced by Bishop and Morgenstern [26]. Later, Yang and Zou [27]

investigated the same problem adopting the same concepts as the

work of Michalowski [25] but the rock strength properties were

modeled by means of a modified Hoek–Brown failure criterion.

However, the main drawbacks, as clearly underlined in the paper,

is its domain of applicability reduced to rigid-block failure

mechanisms. It cannot thus be applied in the framework of

‘‘punching’’-like failure mechanisms, which prove to be generally

relevant for the problem of bearing capacity, since they involve

deforming zones.

The present contribution is divided into two main sections. It

is shown in Section 2 that, since the rock failure criterion is

classically expressed as a function of the effective stress, the

stability analysis of geotechnical structures subject to water flow

involves a field of body forces derived from the gradient of excess

pore pressure distribution. Provided certain conditions be ful-

filled, the latter may be calculated as the solution to a simplified

hydraulic problem in which a steady-state flow is assumed and

the rock deformations are neglected. In the second part of the

paper, the approach is applied to investigate the stability of rock

slopes in the presence of seepage forces. The distribution of these

seepage forces are numerically evaluated through a finite element

method and incorporated into the stability analysis based on the

implementation of a rotational log-spiral failure mechanisms.

2. Stability analysis in the framework of effective stresses

The objective of this section is to present a general framework,

based on the validity of effective stress concept, for the stability

analysis of geotechnical structures in the presence of seepage forces.

Although the approach is illustrated on the case of a rock slope

stability, the method that is proposed to account for the effect of

seepage flow can be applied to more general situations, such as dam

foundations, tunnels driven under the water table, etc.

2.1. Formulation of limit analysis problem

The plane strains stability analysis considered herein refers to

a homogeneous and isotropic rock slope with angle b and height

H, as shown in Fig. 1. In the sequel, the considered rock domain is

defined by volume O and its boundary @O.

In addition to mechanical loading (gravity forces and boundary

conditions), the material system is also submitted to hydraulic

force originating from pore water (or other saturating fluid)

pressure and associated flow through the slope. It is observed

that the particular hydraulic boundary conditions shown in Fig. 1

are only provided for illustrative purpose, without any loss of

generality of the approach described below.

The starting point is the hydraustatic distribution for pore

pressure pw ¼ gwx1 prevailing along the slope in the absence of

fluid flow, gw referring to the water unit weight. Any water flow

regime will induce through the rock slope a distribution of excess

pore pressure defined as

u¼ p�pw ¼ p�gwx1 ð1Þ

where p is the pore water pressure at the considered point. The

spatial variation of u is a driven force of the hydraulic flow

network defined by the filtration velocity field:

v ¼�k � grad
u

gw
ðDarcy’s lawÞ ð2Þ

where k is the permeability tensor (which has the dimension of a

velocity). Introducing the strength capacity of the saturated rock

material on the form Fðs ,pÞr0, the condition for the rock

structure to remain safe under the prescribed loading can be

formulated as follows:

Stability3(s 9

div sþge
1
¼ 0 on O

s � n ¼ T d on @O ðstress-boundary conditionsÞ

Fðs ,pÞr0 on O

8

>

>

>

<

>

>

>

:

ð3Þ

in which g denotes the rock unit weight. The prescribed stress

boundary T d naturally depends on both the mechanical and the

hydraulic loading conditions.

Let assume from now on that the strength capacities of the fluid

saturated rock are controlled by the effective stress s 0 ¼ sþp1

Fðs ,pÞ ¼ Fðs 0Þr0 ð4Þ

The stability condition (4) is thus conveniently rewritten in

terms of effective stresses as follows:

Stability3(s 09

div s 0þg0e
1
�grad u¼ 0 on O

s 0 � n ¼ T 0d on @O

Fðs 0Þr0 on O

8

>

>

>

<

>

>

>

:

ð5Þ

where g0 ¼ g�gw is the buoyant weight and T 0 represents the

distribution of effective stresses. Eq. (5) expresses in the context

x 2

β

Η

γ
_

x
1

T

Fig. 1. Problem geometry and loading mode.

2



of effective stresses the stability conditions for the rock slope. It

emphasizes that the seepage forces may be regarded as external

body forces equal to �grad u, which is directly proportional to the

filtration velocity �grad u¼ gwk
�1

� v. The stability of the rock

slope should thus be analyzed under its weight minus the buoy-

ancy force, to the distribution of effective stress vectors T 0 on its

boundary, and to the seepage body forces. From the stability

analysis viewpoint, the loading mode associated with the frame-

work of effective stresses can symbolically be represented by the

prescribed set ðg0,T 0d
,�grad uÞ.

The dual form of the stability problem (5) is expressed by

means of the kinematic approach of limit analysis. It is based

upon the upper bound theorem [28,29] which implementation

relies on the fundamental inequality

PeðU ÞrPmrðU Þ 8U ð6Þ

expressing a necessary condition for the structure to remain

stable under the external loading. In the above inequality (6), U

is any virtual kinematically admissible velocity field (referred to

as failure mechanism in the sequel), PeðU Þ denotes the work done

by the external forces

PeðU Þ ¼

Z

O

g0e
1
� U dOþ

Z

@O

T 0 � U dSþ

Z

O

�grad u � U dO ð7Þ

accounted for through the concept of pore pressure coefficient,

which is shown to be a convenient way to include pore pressure

effects in the context of rigid-block failure mechanism. The

general expression of the maximum resisting work PmrðU Þ devel-

oped in the failure mechanism U is

PmrðU Þ ¼

Z

O

P½d ðxÞ� dOþ

Z

S

P½nðxÞ; ½U ðxÞ�� dS ð8Þ

where d is the strain rate field associated with U , ½U � is the jump

of U at a point x when crossing a possible velocity discontinuity

surface S following its normal nðxÞ. The P-functions are the

support functions and are defined by duality from the strength

condition Fðs 0Þr0:

P½d � ¼ sup
s 0

fs 0 : d 9Fðs 0Þr0g ð9Þ

P½n; ½U �� ¼ sup
s 0

f½U � � s 0 � n9Fðs 0Þr0g ð10Þ

We shall now specify the strength capacities of the constitu-

tive rock through the definition accounted for through the

concept of pore pressure coefficient, which is shown to be a

convenient way to include pore pressure effects in the context of

rigid-block failure mechanism of the yield condition Fðs 0Þr0.

2.2. Modified Hoek–Brown failure condition

One of the main characteristics of rock masses is the existence

at different scales of discontinuities of various sizes and orienta-

tions, usually referred to as joints. At a macroscopic scale, the rock

material may be regarded as a homogeneous medium with

anisotropic properties, whose strength capacities may be assessed

experimentally or using upscaling approaches [30–33].

In the present analysis, the strength properties of the consti-

tutive material are assumed to be isotropic. At the macroscopic

scale, this assumption seems reasonable when the rock is intact

or heavily jointed.

In the present contribution, the strength capacities of the rock

material are modeled by a modified Hoek–Brown failure condi-

tion [34]

Fðs 0Þ ¼ s0
1�s

0
3�sc �m

s0
1

sc
þs

� �n

r0 ð11Þ

s0
1 and s0

3 are respectively the major and minor effective principal

stresses (stresses are counted positive in tensile), and scZ0 is the

uniaxial compressive strength of rock. Parameters m, s and n

depend on the geological strength index (GSI) [34] and take the

following form:

m

mi

¼ exp
GSI�100

28�14D0

� �

ð12Þ

s¼ exp
GSI�100

9�3D0

� �

ð13Þ

n¼
1

2
þ

1

6
exp �

GSI

15

� �

�exp �
20

3

� �� �

ð14Þ

where D0 is a disturbance coefficient that varies from 0 for

undisturbed in situ rock masses to 1 for very disturbed rock

masses. The value of mi is obtained from compression tests on

intact specimen of intact rock. Approximate values of this para-

meter are provided in Hoek [35] for some typical rocks.

The implementation of the kinematic approach requires the

computation of the support functions defined by (9) and (10) for

the modified Hoek–Brown criterion. These functions have been

derived in [14]

P½d � ¼
ssc

m
tr dþscðn

n=ð1�nÞ�n1=ð1�nÞÞ
mMðd Þ

tr d

!n=ð1�nÞ

if tr d40 ð15Þ

where functionMðd Þ is defined by the relation

Mðd Þ ¼ ½maxð0,�d1Þþmaxð0,�d2Þþmaxð0,�d3Þ�
1=n ð16Þ

in which d1, d2 and d3 represent the eigenvalues of d .

As regards the P-function relative to a velocity jump defined

by (10), it has been found that

P½n; ½U �� ¼
ssc

m
½U � � nþsc nn=ð1�nÞ�n1=ð1�nÞ

� � mMðn; ½U �Þ

½U � � n

� �n=ð1�nÞ

if ½U � � n40 ð17Þ

with

Mðn; ½U �Þ ¼
1

21=n
ð9½U �9�½U � � nÞ1=n ð18Þ

Conditions tr d40 in (15) and ½U � � n40 in (17) respectively

express thatP½d �oþ1 andP½n; ½U ��oþ1. These conditions are

necessary for the kinematic approach (6) results in non-trivial

upper bound solutions.

3. Application to slope stability analysis

The purpose of the following section is to apply the kinematic

approach of limit analysis described in the previous section to

assess the stability of a rock slope (see Fig. 1) under loading of

gravity and seepage forces. As a matter of fact, the latter ones

appear as a component of the external loading of the rock

structure.

In order to derive quantitative stability conditions in a given

practical situation, the field �grad u representing the seepage

forces must be first evaluated.

3.1. The hydraulic problem

Adopting the classical framework in which the coupling

between the skeleton strains and pore pressure (hydromechanical

3



coupling) is disregarded, the fluid balance reads

div v ¼ 0 ð19Þ

which can be rewritten by virtue of Darcy’s law

div �k � grad
u

gw

� �

¼ 0 ð20Þ

The equations of the differential problem to be satisfied by

the field of excess pore pressure u are defined by (20) and

the appropriate hydraulic boundary conditions, which naturally

depend on the problem under consideration. The solution u of the

above mentioned problem may be sought numerically using

commercial or ad hoc softwares specifically devised for this

purpose [36].

For illustrative purposes, let us examine the particular seepage

problem defined in Fig. 2. This case will be reconsidered for the

rock slope stability analysis of Section 3.2. The pore water

pressure is equal to zero (i.e., p¼0) along the boundary surfaces

TT0, TS and SS0. The corresponding boundary conditions expressed

in terms of excess pore pressure u¼ p�pw ¼ p�gwx1 are

u¼ 0 along TT0 ðtop surface of the slopeÞ

u¼�gwx1 along TS

u¼�gwH along SS0 ðbottom surface of the slopeÞ

8

>

<

>

:

ð21Þ

Due to the difference in hydraulic head between the water

tables respectively located at the top and the toe of slope, a

ground water flow occurs through the slope. If the rock medium is

homogeneous with principal values of permeability equals

to kh ¼ k22¼ k33 and kv ¼ k11, the solution u to the above

hydraulic problem depends solely on the ratio kh=kv between

the horizontal and vertical permeabilities, and not on their

individual magnitudes.

This above elliptic problem formed by Eqs. (20) and (21) is

well-defined, and its solution can be sought numerically.

Fig. 3 shows an example of FE analysis of the problem: FE

mesh used for the hydraulic problem (Fig. 3a), contours of

excess pore pressure u (Fig. 3b) and associated distribution of

seepage forces �grad u (Fig. 3c). These results have been obtained

numerically using a FE freeware assuming isotropic permeability

(i.e., k ¼ k1) for the rock.

An alternative way to evaluate the effects of pore water

pressure is provided within the approximate framework

described by Bishop and Morgenstern [26]. In the latter approach,

the pore water pressure is conveniently given by expression

p¼ rpgh ð22Þ

where h is the (vertical) depth of the point located on the failure

surface below the rock surface, g denotes the unit weight of rock/

soil and rp is usually referred to as the pore pressure coefficient.

Most of the stability analyses involving pore water pressure

effects are based on the concept of pore pressure coefficient

[25–27]. Besides, the majority of these analyses assume a con-

stant pore pressure coefficient rp throughout the cross-section,

2x

β
x

1

T’

S S’

T
u=0

γ

Fig. 2. Hydraulic problem and associated boundary conditions.

59 37 1

Fig. 3. The hydraulic problem: example of finite element simulation. (a) FE mesh, (b) contours of pore pressure, (c) seepage forces.
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with values generally below 0.3. As one could naturally expect

and as was originally emphasized by Bishop and Morgenstern

[26], rp varies over the whole cross section involved within the

failure mechanism of rock slope. These authors stated that, in

most slope stability problems, an average value of rp can readily

be calculated and used in the stability analysis with little loss in

accuracy at the global level. Based on this idea, most of the

traditional approaches to rock slope stability adopt the concept of

pore pressure coefficient in the analysis. This simplified kind of

approach is however not suitable in practice since the value of rp
to be used for a particular problem is not known.

The whole stability analysis presented in the sequel is based

on the rigorous approach of considering the pore water pressure

distribution derived from a finite element code.

3.2. Rotational failure mechanism

Once the hydraulic problem is solved, the field of seepage

forces is known and the stability analysis can be undertaken.

Simple dimensional analysis arguments show that the stability of

the rock slope is characterized by means of the following non-

dimensional parameters: b, gH=sc , mi, GSI, D0, kh=kv. They are

related to slope inclination, gravity level, rock strength para-

meters and permeability anisotropy.

We apply herein the kinematic approach to address the

classical problem of rock slope stability submitted to a loading

mode defined by gravity forces and seepage forces. The kinematic

approach is based on the rotational failure mechanism, shown in

Fig. 4, which is usually employed for homogeneous Mohr–

Coulomb soil or rock slope. In such a mechanism a volume of

rock mass is rotating about a point O with an angular velocity o.

The curve I1I2 separating this volume from the rest of the

structure which is kept motionless is an arc of log-spiral of angle

j and focus O. It follows necessary that the velocity jump at any

point of this line is inclined at angle j with respect to the tangent

at the same point.

Two classes of failure mechanisms are considered in the

analysis. Fig. 4a displays the situation of log-spiral surfaces

emerging above the slope toe (i.e., I2 is located on the slope wall),

whereas Fig. 4b shows the situation where the failure surface is

extending below the slope toe (i.e., I2 lies on the plane x1 ¼H).

The velocity field within the volume in motion is orthoradial

with expression on the form U ¼ore
y
. The distance r0 ¼OI1

defines the radius of the log-spiral curve for y¼ y1. Accordingly,

this curve can be defined in polar coordinates ðO,r,yÞ by equation

r¼ r0e
ðy�y1Þ tan j. Such a failure mechanism involves four para-

meters: (i) three angles ðy1, y2, jÞ and distance r0 ¼OI1 in the

case of log-spirales passing above the slope toe, or (ii) four angles

ðy1, y2, j, b
0
Þ in the case of log-spirales passing below the

slope toe.

In order to avoid heavy mathematical developments and

for sake of clarity, the details of the approach will be presented

in the sequel restricting ourself to the situation of log-spirales

passing above the slope toe. The numerical results given in

Section 4 are however obtained by considering both classes of

log-spirales.

We shall recall that the loading is the conjunction of gravity

(minus buoyancy) and seepage forces. Accordingly, the work done

by the external forces in such failure mechanism is the sum of

two contributions

PeðU Þ ¼ Pg0 ðU ÞþPuðU Þ ð23Þ

with

Pg0 ðU Þ ¼

Z

O

g0e
1
� U dO and PuðU Þ ¼

Z

O

�grad u � U dO ð24Þ

It should be recalled that the seepage forces are in the limit

analysis problem considered as given. As previously mentioned,

the field of u (or grad u) can be obtained either by solving the

hydraulic problem via a finite element procedure or adopting the

simplified formula (22) p¼ rpgh.
The first contribution Pg0 to external work may be written as

Pg0 ¼ r30g
0oðf 1þ f 2þ f 3Þ ð25Þ

in which the coefficients f1, f2 and f3 are non-dimensional

functions of parameters y1, y2, j and r0. The corresponding

Fig. 4. Rotational failure mechanism for rock slope. (a) Log-spiral emerging on the slope wall, (b) log-spiral extending below the slope toe.
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expressions are provided below:

f 1 ¼
e3 tan jðy2�y1Þð3 tan j cos y2þsin y2Þ�ð3 tan j cos y1þsin y1Þ

3ð9 tan2jþ1Þ

ð26Þ

f 2 ¼�
1

6
sin y1 2

TI1
r0

� �

cos y1�
TI1
r0

� �2
" #

ð27Þ

f 3 ¼�
1

3

rT
r0

� �3

sin3 yTþbð Þ

�
cos b

2

1

sin2
ðyTþbÞ

�
1

sin2
ðy2þbÞ

!"

þsin b
cosðyT þbÞ

sinðyTþbÞ
�
cosðy2þbÞ

sinðy2þbÞ

� ��

ð28Þ

where distance TI1 is given by

TI1 ¼ r0
sinðy1þbÞ�etanðjÞðy2�y1Þsinðy2þbÞ

sin b
ð29Þ

and polar coordinates ðrT ,yT Þ of point T are

rT ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�2
TI1
r0

cos y1þ
TI1
r0

� �2
s

yT ¼ arctan
sin y1

cos y1�TI1=r0

� �

ð30Þ

yC is the angle defining point C. It is the single solution within

interval ½y1,y2� of the following equation:

cos yCe
yC tan jþ

TI1
r0

�cos y1

� �

ey1 tan j ¼ 0 ð31Þ

which is solved numerically.

As regards the contribution of seepage forces Pu to external

work, it is first recalled that the distribution pore pressure p as

well as the density vector of seepage forces are computed at each

point of the discretized domain of rock medium by means of the

hydraulic software. The volume integral PuðU Þ defining the work

of seepage forces is then computed by integrating over all

elements or sub-elements of the mesh that are included within

the zone in motion.

If the simplified form (22) for pore water pressure is adopted,

i.e., p¼ rpgh (with the assumption that rp is constant), the

contribution Pu can be evaluated analytically

Pu ¼ r30gwoðf 1þ f 2þ f 3Þþrpr
3
0gof 4 ð32Þ

leading to the following expression for the work of external

forces:

Pe ¼ r30goðf 1þ f 2þ f 3þrpf 4Þ ð33Þ

The expression of the non-dimensional parameter f4 as a

function of the geometrical parameters defining the failure

mechanism is not given herein in order to avoid introducing

additional heavy mathematical expressions.

On the other hand, the maximum resisting work results from

the velocity jump along the log-spiral line I1I2

Pmr ¼ scor20f 5 ð34Þ

where expression of the non-dimensional function f5 reads

f 5 ¼
1

2

s

m
þ nn=ð1�nÞ�n1=ð1�nÞ
� �

mn=ð1�nÞ 1�sinðjÞ

2 sinðjÞ

� �1=ð1�nÞ
" #

ðe2 tanðjÞðy2�y1Þ�1Þ

ð35Þ

The fundamental kinematic inequality (6) implies that the stabi-

lity of the rock structure can be characterized by the safety factor

G¼
Pmr

Pe
¼

Pmr

Pg0 þPu
ð36Þ

which should comply with the necessary condition

GZ1 ð37Þ

The above necessary condition of stability implicitly requires

that the work done by the external forces is positive PeðU Þ40,

otherwise the approach would be trivial.

The critical value of the safety factor is obtained by minimiza-

tion with respect to the set of variables ðy1,y2,j,r0Þ

Gr min
y1 ,y2 ,j,r0

Pmr

Pe
ð38Þ

The minimization parameters are subjected to the following

constraints:

0ojo
p

2
, 0oy1oy2op�b

0osin ðy1þbÞ�eðy2�y1Þtan j sinðy2þbÞ

0oeðy2�y1Þ tan j sin y2�sin y1r
H

r0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð39Þ

3.3. Comments on the kinematic approach

Before the numerical implementation of the kinematic

approach described previously, some comments deserve to be

given:

(i) Actually, the kinematic approach presented in the previous

section investigates a particular failure mechanism. It is

based on the assumption that the inclination of velocity field

with respect to the failure surface remains unchanged, equal

to an arbitrary angle value j, which obviously implies that

the failure surface is in fact a log-spiral. Angle value j is

therefore a purely geometric parameter that arises from the

assumption made on the shape of the failure surface. In

particular, it holds no connection with the concept of

tangential friction angle of the rock material. Unlike the

approaches based on the concept of tangential Mohr–Cou-

lomb failure condition (see for instance [37]), one main

specificity of the present approach is its ability to preserve

the original modified Hoek–Brown failure criterion. This is

made possible because closed-form expressions for the sup-

port functions p have been derived, allowing the explicit

calculation of the maximum resist in work in any virtual

velocity field. Clearly enough, the kinematic approach can

theoretically be improved by optimization with respect to

the shape of failure surface, and not restrict to log-spiral

curves. However, this would be a sophisticated task that lies

beyond the scope of the present analysis.

(ii) The safety factor G defined by (36) and characterizing the

stability of the rock slope is a function of non-dimensional

parameters introduced at the beginning of Section 3.2

G¼ ~Gðb,gH=sc ,mi,GSI,D0,kh=kvÞ ð40Þ

(iii) For specific needs in soil mechanics applications, the safety

factor is traditionally defined as the ratio between maximal

and mobilized shear stresses. However, it should be empha-

sized that both the safety factor defined in such way and that

introduced in the present approach by (36) can equivalently

be used for the characterization of failure or stability of a

given structure (see for instance [38,39]).

4. Computational results

This section provides numerical results for the safety factor of

the rock slope under gravity and seepage forces derived from the

6



rotational failure mechanisms sketched in Fig. 4. For each selected

model data, the numerical value of the upper bound solution has

been obtained through constrained minimization procedures

based on the non-linear sequential quadratic programming algo-

rithm. As mentioned before, the seepage forces are computed by

means of a finite element procedure, and then incorporated in the

stability analysis as known external forces. The numerical analy-

sis undertaken herein consists in selected examples of rocks and

focuses on the effects of the strength, loading and geometry

parameters on the safety factor. In particular, the effects of slope

height H, slope inclination b, rock unit weight g and parameters

(GSI, mi, sc) defining the generalized Hoek–Brown criterion are

analyzed in the sequel.

4.1. First example: finite element approach versus simplified

approach

The aim of this section is to compare the two modes of

evaluating the contribution Pu of seepage forces to the work done

by external forces: the finite element computations and the

simplified method based on the concept of pore pressure coeffi-

cient rp. For this purpose, we consider a particular problem of rock

slope stability for which the kinematic method is implemented to

evaluate the safety factor using both finite element and simplified

approaches to compute the pore water pressures and seepage

forces. The objective is two-fold: (1) to illustrate the crucial

impact of seepage forces on the safety factor, and (2) to compare

the two methods of computing the effects of pore water pres-

sures. The model data for considered problem are b¼ 601,

GSI¼30, mi ¼ 17, sc ¼ 10 MPa, g¼ 20 kN=m3 and D0 ¼ 0. The

numerical analysis is undertaken for several values of the rock

slope height H. The results are displayed in Fig. 5.

As expected, G is a decreasing function of H. It could be

observed that a mean value of 0.1 for the pore pressure coefficient

rp leads to results similar to those obtained by finite element

evaluation of seepage forces. This is consistent with the statement

of Bishop and Morgenstern [26] that an average value of rp can

readily be calculated and used in the stability analysis with little

loss in accuracy at the global level.

Increasing the value of rp from 0.1 to 0.2, which expresses a

higher intensity of water flow, results in a significant decrease of

the safety factor for any value of the slope height. This provides

clear evidence of the crucial role played by seepage forces in the

rock stability.

However, the main limitation of the simplified method lies on

the fact that the value of rp to be considered for a given problem is

not a priori known.

Remark. In all what follows, only the contribution of seepage

forces resulting from finite element calculations is used to

evaluate the safety factor of rock slope.

4.2. Further illustrative examples

A series of numerical simulations are performed and corre-

sponding results are presented in the situation of undisturbed

in situ rock medium, that is D0 ¼ 0, and exhibiting isotropic

permeability, that is kh=kv ¼ 1. These assumptions on strength

and hydraulic condition properties are not the limitations for the

applicability of the approach. Hence, the non-dimensional form of

the safety factor will read under these assumptions

G¼ ~Gðb,gH=sc ,mi,GSIÞ ð41Þ

It should be emphasized that the objective of the present study

is not to provide charts for practical use in rock engineering, but

only to illustrate the capabilities of the proposed method to deal

with stability analysis problems involving seepage forces.

Still, the parametric simulations presented in the sequel are

intended to give, in a particular configuration, some preliminary

insights on the individual impact of slope inclination and strength

properties on the safety factor of the rock slope.

More precisely, we consider the particular configuration

defined by the fixed value of a dimensional parameter gH=sc ¼

1:2� 10�2. Fig. 6 shows the variations of the ratio G=G0 as a

function of the rock slope inclination b. For each value of b and

strength parameters ðmi,GSIÞ, G0 refers to the safety factor

of the rock slope in the absence of interstitial fluid (dry case).

The whole calculations consisted in 120 evaluations of the rock

slope safety factor, namely 60 configurations with seepage forces

and 60 configurations under dry conditions. The results show

that, even though G and G0 strongly decrease as the inclination b

increases, the variations of ratio G=G0 with respect to b remain

moderate. This may be a useful indication for future studies

aiming at capturing quantitative effects of forces in rock slopes

stability.

4.2.1. Comments

The parametric simulations undertaken and presented in the

previous subsections should be completed by the following

observations:

� Clearly enough, the comments related to the effects of any of

the considered parameters on the safety factor correspond to

preliminary results and should thus be considered with

caution. They are only upper bound estimates of the safety

factor, based on a particular failure mechanism, and must thus

be interpreted as such. Further investigations regarding the

dependence of the safety factor with respect to the geometry,

loading and strength parameters are still to be made.

� Even it is achieved using an indirect procedure, comparisons

have been performed between results derived from the pre-

sent approach and upper bound solutions for the critical

height of the rock slope obtained by Yang and Zou [27]. The

latter approach consisted first in replacing the original Hoek–

Brown strength criterion by an ‘‘optimal’’ tangential Mohr–

Coulomb domain. Secondly, the kinematic method of limit

analysis is implemented making use of a rotational log-spiral

failure mechanism quite similar to that displayed in Fig. 4.

Lastly, the generalized tangential technique is then used to

evaluate the optimal tangential Mohr–Coulomb domain and

the corresponding upper bound rock slope height. It should

be, however, underlined that these authors modeled the

hydraulic loading by means of prescribed values of the water

25
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Fig. 5. Safety factor as a function of rock slope height: FE method versus

simplified approach for seepage forces evaluation.
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pressure coefficient rp. For a given set of problem data,

including the value of rp, the estimated value for critical rock

slope height obtained in [27] is adopted as input for the

present approach, and thus the upper bound estimate for the

safety factor as defined by (38) is evaluated. In all considered

configurations, it was found that GC1, which shows that the

two approaches lead to similar results and consistent with the

fact they are both based on a similar failure mechanism.

� In most general cases of hydraulic flow through rock slopes,

the field of pore water pressure can theoretically be highly

heterogeneous, and cannot thus be represented by a simple

linear function of the vertical distance from the point on the

failure surface to the slope surface p¼ rpgh. The distribution of

pore pressure along the ground near the rock slope should

therefore be properly evaluated, using for instance numerical

procedures. However, following in this respect the pioneering

work due to Bishop and Morgenstern [26], and as confirmed

by the preliminary analysis presented in Fig. 5, one could

reasonably assume that for each hydraulic configuration of the

problem, there always exists a constant (average) value of rp
which can accurately represent the effect of seepage forces in

the stability problem handled in the context of rotational

failure mechanisms.

� A fundamental limitation of the stability analysis based on the

concept of pore pressure coefficient lies on the fact that its

applicability is reduced to piecewise rigid-block failure mechan-

isms (i.e., piecewise rigid body motion of elementary rock blocs),

since in such approach the pore pressure is only prescribed along

the failure surface. If a failure mechanism involving rock zone

undergoing deformation, i.e., where the strain rate field associated

with the considered velocity is not equal to zero, the pore

pressure distribution should be necessarily known in order to
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compute the term PuðU Þ ¼
R

O�grad u � U dO. This issue can be

readily understood as follows.

Observing that along any continually deforming rock sub-

domain: grad u � U ¼ divðu U Þ�u div U , and using the Gauss

theorem, the work of seepage forces for the saturated rock

domain can be written as

PuðU Þ ¼

Z

O

u div U dOþ

Z

S

u½U � � n dS ð42Þ

where ½U � is the jump of U and n is the unit normal vector

to discontinuity surfaces S.

The above expression of Pu emphasizes that if the considered

velocity field complies everywhere with condition div U ¼ 0,

which is in particular the case for rigid body motions, the

knowledge of the pore pressure field is required only along

the failure surfaces. In this situation, the approach based on the

concept of pore pressure coefficient seems appropriate and can be

conveniently used in the stability analysis. In contrast, if the

considered failure mechanism involve rock zones where

div Ua0, which is the case for any velocity field with expansion

zones (i.e., where tr da0), the pore pressure distribution is

required in such zones. The approach based on the concept of

pore pressure coefficient cannot therefore be used, and finite

element solutions for u are more appropriate.

5. Conclusion

The kinematic approach of limit analysis theory has been

implemented to investigate the stability of rock slope subjected

to pore water pressure. For this purpose, a comprehensive frame-

work has been first set up for analyzing the stability of geotechni-

cal structures in the presence of seepage force. The rock strength

properties being formulated in terms of effective stress, how the

effect of seepage flow may be accounted for by means of driving

body forces derived from the gradient of excess pore pressure

distribution is shown. The stability analysis requires being able to

evaluate the latter. In the specific situation of steady state flow and

the rock deformability can be neglected, the seepage forces

distribution is obtained as the solution to a classical hydraulic

problem with appropriate boundary conditions.

As regards the rock strength properties, a modified Hoek–

Brown failure criterion is adopted. From a practical viewpoint, the

availability of closed-form expressions of the P-functions for

such a criterion makes it possible to derive rigorous upper bound

solutions for the stability problem of any structure involving such

a failure criterion: rock slope stability, tunnel wall or face

stability, bearing capacity of foundations, etc.

The method has been applied to analyze the stability of a rock

slope subjected to gravity and seepage forces. The preliminary

step consisted in evaluating the seepage forces distribution using

a finite element approach to solve the hydraulic problem. These

forces thus computed have been therefore incorporated as com-

ponents of the external loading in the subsequent stability

analysis. The latter is based on the block rotational log-spiral

failure mechanism. A parametric study have been performed with

the objective to give insight on the influence of relevant geome-

trical, strength or load parameters. The predicted upper bound

estimates of the rock slope safety factor have been compared to

those derived from the simplified approach in which the effects of

seepage flow are accounted for through a pore pressure coeffi-

cient. Additionally, the limitations inherent to the classical

approach that is based on the concept of pore pressure have been

highlighted. The applicability of the latter is actually reduced to

stability analyses based on rigid-block failure mechanisms.

The natural extensions of this work should undoubtedly

consist in evaluating the bearing capacity of foundations located

at the vicinity of rock slopes by implementation of both rotational

and punching-like failure mechanisms, derived from the general-

ization of Prandtl or multi-wedge failure mechanisms. It is

expected from this implementation an effective improvement of

the upper bound estimate of the bearing capacity. However, as

explained previously, the seepage forces distribution should be

evaluated by means of a numerical procedure in the case of

Prandtl mechanism.

Provided that the concept of effective stress is valid, the

framework formulated for handling the stability analysis of

geotechnical structures in the presence of seepage forces is rather

general. The possible extension of the approach to other kind of

structure in which water flow should be accounted for in the

safety analysis may be considered.
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