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Abstract. Convex analysis is very useful to prove that a material model ful-

fills the second law of thermodynamics. Dissipation must remains non-negative
and an elegant way to ensure this property is to construct an appropriate

pseudo-potential of dissipation. In such a case, the corresponding material is

said to be a Standard Generalized Material and the flow rules fulfill a nor-
mality rule (i.e. the dissipative thermodynamic forces are assumed to belong

to an admissible domain and the flow of the corresponding state variables is

orthogonal to the boundary of this domain). The sum of the pseudo-potential
with its Legendre-Fenchel conjugate fulfills the Fenchel’s inequality and as the

actual value of the dual pair forces-flows minimizes this inequality, this can be

used as a convergence criterium for numerical applications. Actually, some very
commonly used and effective models do not fit into that family of Standard

Generalized Materials. A procedure is here proposed which permits to retrieve

the normality assumption and to construct a pair of dual pseudo-potentials also
for these non-standard material models. This procedure was first presented by

the authors for non-associated plasticity. Now it is extended to a large range
of mechanical problems.

Why such a subject in a book in memory of Professor Seiji Ukäı ?
A long time ago, as he was invited in Paris for one year, he gave a course in

French on Boltzman equation. My friend Hamid Ghidouche and myself attended
his course. We had the chance to work and to publish our first article with Professor
Ukäı. Then, even if we get more interested in mechanical problems, since that time
we always kept in touch. He was a great mathematician and a very kind person. It
is a great honor to participate to this book in his memory.

1. Introduction. Convex analysis is very useful to prove that a rate-independent
material model fulfills the second law of thermodynamics. Dissipation must remains
non-negative and an elegant way to obtain this is to construct a suitable convex
pseudo-potential of dissipation [1]. In such a case, the corresponding material is
said to be a Standard Generalized Material [2] and the constitutive law fulfills a
normality rule (i.e. the dissipative thermodynamic forces are assumed to belong
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to an admissible domain and the flow of the corresponding state variables must
be orthogonal to the boundary of this domain). In this case, the flow rule for the
state variables is called ’associated’. Moreover, the sum of the pseudo-potential of
dissipation with its Legendre-Fenchel conjugate, fulfills the Fenchel’s inequality and
the physical or actual values of the dual pair forces-flows minimizes the inequality.
This minimization property can be used as a convergence criterium for numerical
applications.

Actually, some very commonly used and effective models are characterized by
non-associated flow rules. Hence, they do not fit into the family of Standard Gen-
eralized Materials. However, we have already shown that in some particular cases
it is possible to find suitable pseudo-potentials of dissipation allowing the normality
property to be retrieved, provided that these potentials have a parametric depen-
dence on the material state [3], [4], [5]. A procedure is here proposed which permits
to construct a pair of such convex dissipation potentials for a very large class of
mechanical problems and to retrieve the normality assumption.

This procedure was first presented for non-associated plasticity during a congress
in 2010. Then, it was generalized to the case of unilateral contact with friction [6].
Now it is extended to a large range of constitutive laws. By the authors’ knowledge,
very few other mathematical analyses exist for non-standard materials, e.g. [7], [8].

This presentation is structured as follows. In the first part, useful and classical
tools of convex analysis are recalled. Then, in the second part, thermodynamics
and its link with convex analysis is presented as well as the concept of Standard
Generalized Materials and its relationship with the convex functions called dissi-
pation potentials and with the normality rule. In the third part, a constructive
procedure is proposed to define state-dependent pseudo-potentials for constitutive
laws traditionally considered as ’non-associated’. The main idea is to accept to
consider a state-dependent admissible domain for the dissipative thermodynamic
forces, in order to retrieve the normality rule for the flow of the state variables.

2. Convex analysis. In this section, some classical but essential notions involving
duality and the Legendre-Fenchel transform are recalled. They can be found in the
fundamental work of Rockafellar [9].

2.1. Legendre-Fenchel conjugates and Fenchel inequality. Let V and V
∗ be

two dual vector spaces associated through a bilinear form (denoted by a dot):

x,x∗ → x∗ · x

V× V
∗ → R

with R the set of real numbers. Moreover, let φ(x) be a proper convex function
from V to ]−∞,+∞]. By definition, the effective domain of φ reads

dom φ = {x ∈ V / φ(x) < +∞}

If φ is convex and differentiable on V, then the gradient of φ in x ∈ dom φ, i.e.
∇φ(x) ∈ V

∗, fulfills the following condition:

∀y ∈ dom φ , φ(y)− φ(x) ≥ ∇φ(x) · (y − x)

If φ is convex and not differentiable, this notion has to be generalized: x∗ be-
longing to V

∗ is called a subgradient of φ in x ∈ dom φ if

∀y ∈ dom φ , φ(y)− φ(x) ≥ x∗ · (y − x) (1)
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The subdifferential in x, ∂φ(x), is the set of all the x∗ fulfilling (1). When ∂φ(x) is
non-empty, φ is said subdifferentiable in x.

The relationship in (1) can be rewritten as follows:

∀y ∈ dom φ , φ(x) + x∗.y−φ(y) ≤ x∗ · x

Hence, it is natural to introduce the Legendre-Fenchel conjugate of φ defined by:

φ∗(x∗) =sup
y∈V

(x∗ · y−φ(y)) (2)

This function φ∗ is always convex and when φ is convex, one also has φ∗∗ = φ. If φ
is not convex, it is possible to define φ∗ and φ∗∗, but in this case φ∗∗ is the closure
of the convexified function φ, i.e. φ∗∗ = cl (conv φ).

Due to the definition of φ∗ in (2), the following inequality, called Fenchel inequal-
ity, is always verified:

∀(x,x∗) ∈ V× V
∗ φ(x) + φ∗(x∗) ≥ x∗ · x (3)

The following proposition is very useful for applications in mechanics.

Proposition 1. For a function φ, convex, proper, lower semi-continuous from V to
]−∞,+∞] and for a couple (x̃, x̃∗) the following three relationships are equivalent:

1. φ(x̃) + φ∗(x̃∗) = x̃∗ · x̃
2. x̃ ∈ ∂φ∗(x̃∗)
3. x̃∗ ∈ ∂φ(x̃)

The lemma hereafter will be used later.
Lemma 1. For a function φ : V → ]−∞,∞] convex, proper, non-negative and such
that φ(0) = 0, if x∗belongs to the subdifferential of φ in x, then x∗·x is positif:

x∗ ∈ ∂φ(x) =⇒ x∗·x ≥ 0 (4)

2.2. Indicator function. The indicator function of a domain E ⊂ V
∗ is defined as

follows:

IE(x
∗) :=

{

0 for x∗∈E
+∞ for x∗ /∈E

(5)

The function IE(x
∗) is convex, proper, lower semi-continuous non-negative and such

that IE(0) = 0 if the domain E is convex closed and contains 0. In this case, the
Lemma 1 applies and x ∈ ∂IE(x

∗) implies x∗ · x ≥ 0.
The Legendre-Fenchel conjugate function I

∗
E
(x) is defined by:

I
∗
E
(x) := sup

x∗∈E

(x∗ · x) (6)

and is positively homogeneous of degree one. If the function I
∗
E
(x) is denoted by

φ(x), the Legendre-Fenchel conjugate φ∗(x∗) is equal to I
∗∗
E
(x∗) = IE(x

∗), since E

is closed and convex.
For a couple (x,x∗) realizing the minimum of the sum φ(x)+φ∗(x∗), Proposition

1 and the given definitions of φ(x) and φ∗(x∗) imply the following equivalences:

{x∗∈E and φ(x) = x∗ · x} ⇐⇒ x∗ ∈ ∂φ(x) ⇐⇒ x ∈ ∂φ∗(x∗) (7)
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If the domain E is defined by a function f such that:

E := {x∗ ∈ V/ f (x∗) ≤ 0 with f (0) = 0} (8)

and if f is convex and differentiable, then for IE(x
∗), since the domain E is not

empty, the following equivalence holds true:

x ∈ ∂IE(x
∗) ⇐⇒

{

x = λ∇f(x∗)
f(x∗) ≤ 0, λ ≥ 0, λf(x∗) = 0

(9)

This implies that, on the boundary of E , the elements of the subgradient of IE are
normal to this boundary. By the Proposition 1, this is equivalent to x∗∈∂I∗

E
(x) and

is generally referred to as the normality rule. It implies x∗ · x ≥ 0 .

3. Thermodynamics. In this section, we assume small deformations and isother-
mal transformations and, for the sake of simplicity, we will assume that the state
of the material can be defined by the strain tensor ε and a vector α containing all
the internal variables (i.e. the plastic strain tensor, the damage, etc). In this case,
the associated thermodynamic forces are respectively σ, the stress tensor, and A,
the thermodynamic forces associated with the internal variables.

3.1. Dissipative and non-dissipative forces. In the case of isothermal pro-
cesses, the second principle of thermodynamics, together with the first principle,
entails that a potential ψ(ε, α) must exist such that the quantity

D := σ : ε̇− ψ̇(ε, α) (10)

is non-negative. D ≥ 0 is the energy dissipation rate per unit volume; : indi-
cates the double-dot product (double contraction) of two second order tensors; the
function ψ(ε, α) is named Helmoltz free energy; the superposed dot indicates the
time-differentiation.

The non-dissipative thermodynamic forces (or reversible forces [10], or quasi-
conservative forces [11]) are defined as the gradient of the free energy density
ψ(ε, α) :

σnd = ∂ψ
∂ε

And = ∂ψ
∂α

(11)

Thus, the dissipation can be written as:

D = σ : ε̇− σnd : ε̇−And · α̇ (12)

On the other hand, starting from the observation that the dissipation D is asso-
ciated with the evolution of the internal variables and/or the strain ε, it is natural
to postulate the following expression, alternative to Eq. (12):

D := σd : ε̇+Ad · α̇ (13)

where (σd, Ad) := fd are the so-called dissipative thermodynamics forces, σd being
associated with ε and Ad with the internal variables α. An effective method for
defining the forces fd, in such a way that the non-negativity of D is guaranteed, is
based on the use of the dissipation potential, also called pseudo-potential; see the
next sections.

Eqs. (12) and (13) represent the same physical quantity. Hence, they must be
equal for any flow (ε̇, α̇). This implies

σ = σnd + σd

A := And +Ad = 0
(14)
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In a more compact form, one can write

f := (σ,A) = (σnd + σd, 0) = (σnd, And) + (σd, Ad) := fnd + fd (15)

Hence, all the thermodynamic forces are decomposed into a non-dissipative and a
dissipative part [12]. The sum A of the forces associated with the internal variables
is always equal to 0.

If it is assumed that there is no viscous dissipation (i.e. no term depending on ε̇
in the dissipation D), then the term σd should remain equal to zero. Hence, in this
special case relationships (14) become:

σ = σnd

0 = And +Ad
(16)

and the dissipation reads:

D = Ad · α̇ = −And · α̇ (17)

It is interesting to remark that in classical treatises on continuum mechanics, e.g.
[13], the distinction between non-dissipative and dissipative forces is not introduced
and the relation (13) is written as follows:

D := −A · α̇

where A, here stands for the non-dissipative forces associated to the internal vari-
ables. Nonetheless, this distinction will be of great importance in the construction
of state-dependent pseudo-potentials as it will appear later (see Section 5, in par-
ticular the definition of the state-dependent loading domain for non-associated flow
rules given by Eq. (24)).

In the following subsection, the concepts of dissipation potentials (or pseudo-
potentials), proposed and used in [1] and [2], are introduced. They lead to an
effective framework to study the dissipation in mechanics.

3.2. Associative plasticity. A plasticity model is said associative (or associated)
when the thermodynamic force Ad belongs to an elastic domain E defined by:

E := {Ad ∈ V
∗/ f

(

Ad
)

≤ 0 with f(0) = 0} (18)

with f convex, differentiable, and if the flow of the internal variable α̇ is such that:
{

α̇ = λ∇f(Ad)
f(Ad) ≤ 0, λ ≥ 0, λf(Ad) = 0

(19)

Eq. (19) can be rewritten as follows, using Eq. (9):

α̇ ∈ ∂IE(A
d)

This normality assumption permits to define a pseudo-potential IE(A
d) as the indi-

cator function of the elastic domain and to deduce that the conjugate function:

I
∗
E
(α̇) := sup

Ad′∈E

(Ad
′

· α̇)

is positively homogeneous of degree one. Here, as usually in mechanics, the prime
stands for the generic variable and Ad without a prime for the actual (physical)

value. Introducing φ(α̇′) := I
∗
E
(α̇′), then φ∗(Ad

′

) := IE(A
d′) and Fenchel’s inequality

is written as:

φ(α̇′) + φ∗(Ad′) ≥ Ad′ · α̇′
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The Proposition 1 implies that equality is reached for the actual couple Ad and α̇.
Using (7), the pseudo-potential of dissipation is such that:

φ(α̇) := Ad · α̇

which is non-negative, as it has been proven by Lemma 1 in the previous section.
Hence, the second law is fulfilled. Moreover the dissipative forces are defined by:

Ad ∈ ∂φ(α̇)

In this case, the constitutive law is said to be associated, since the direction of
the flow defined by (19) depends on the function f , which also defines the elastic
domain and which is called the yield function.

3.3. Non-associative plasticity. Some well-known plasticity models do not enter
in the framework of associative plasticity, because the direction of the flow α̇ is not
defined by ∇f as in (19). Then, another function g, called the plastic potential,
must be introduced to define the direction of the flow α̇ :

α̇ = λ∇g(Ad)

with f defining the elastic domain. In this case, the flow is not normal to the
boundary of the elastic domain. Such models of plasticity are said non-associated.

4. More general associated and non-associated models. The concepts intro-
duced in plasticity have been generalized and applied to other type of mechanical
problems like unilateral contact with friction, damage, adhesion, etc. The observ-
able variables are not restricted to be the strain tensor ε. For instance, they are
the normal and tangential displacements in the case of unilateral contact with fric-
tion. The internal variable α can include irreversible displacements (e.g. sliding) in
the case of unilateral contact with friction or the damage, the adhesion, etc. The
same ideas as in the case of associative plasticity lead to the concept of Standard
Generalized Materials [2], which is briefly recalled hereafter.

Let v ∈V be the vector of all the state variables (observable and internal). The
corresponding vector of flows is v̇ . The dual space V∗ contains the so-called thermo-
dynamic forces and the dissipative ones fd . If there exists a pseudo-potential φ(v̇)
convex, proper, and non-negative and such that φ(0) = 0, then using the Lemma
1, the normality condition fd∈ ∂φ(v̇) entails the positivity of the dissipation:

D = fd·v̇ ≥ 0 (20)

and conversely the flow fulfills v̇ ∈ ∂φ∗(fd).
The constitutive law is said associated and the material of standard generalized

type. However, a lot of materials need to be modelled with non-associated con-
stitutive laws as, for instance, soils, rock, concrete, etc. Actually, in the case of
a non-associated flow rule, it is not possible to construct pseudo-potentials of the
form φ(v̇) and φ∗(fd) (or φ(v̇;v) and φ∗(fd;v)). Nonetheless, it is possible to con-

struct state-dependent conjugated pseudo-potentials of the form φ(v̇; f − fnd(v))

and φ∗(fd; f − fnd(v)) (or φ(v̇; f − fnd(v);v) and φ∗(fd; f − fnd(v);v)). In order to
simplify the notation, and only for this reason, the possible direct dependence of φ
and φ∗ on the state variables v will not be explicity indicated hereinafter.

We have already succeeded to find such state-dependent pseudo-potentials in
some particular cases [3], [4], [5], but without following a structured method. Then,
we have proposed a constructive procedure in the case of plasticity and now we are
able to extend it to more general cases. The assumptions are:
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• There exists a convex domain E for the admissible dissipative thermodynamic
forces fd

• The flow rules are defined by a potential g(fd) (eventually, ∇g non-normal to
the boundary of the admissible domain E)

The main idea is to relax the constraints on the domain of the admissible dissi-
pative thermodynamic forces fd and to make it state-dependent, in order that the
normality rule holds true. The procedure is presented hereinafter.

5. Construction of state-dependent pseudo-potentials. As it has been said
before, the non-dissipative thermodynamic forces fnd are defined as the gradient of
the Helmholtz free density of energy. The sum fd + fnd is equal to f . For instance,
in the case of plasticity, one has f = (σ,A), while in the case of unilateral contact
f = (R, A) with R the reaction reaction force. In both cases, A defined in Eq. (14)
as the sum of the dissipative and non dissipative thermodynamic forces associated
to the internal variables is equal to 0. At any time, f is supposed known: we recall
that σ and R must fulfil the dynamic or static equilibrium equation. The state
variables v are also supposed known at any time. Hence, the value of the non-
dissipative thermodynamic forces fnd can be calculated knowing the free energy
ψ = ψ(v) and the values of the state variables.

In the next subsections, assuming that at any time the evolution of the system
depends on the values of the total forces f and on the state variables v, we intend to
show how to construct a couple of dual pseudo-potentials φ and φ∗ parametrically
depending on f and v (more precisely, on the difference f − fnd(v)), starting from
the knowledge of the elastic domain and the flow rule.

5.1. Non-associated flow rules. From now on, we assume to know the functions
f and g that permit to define the constitutive law of the material. The dissipative
forces are assumed to remain in a domain E defined by f :

E := {fd
′

∈ V
∗/ f

(

fd
′

)

≤ 0} (21)

The function f is differentiable and such that f(0) = 0.
The flow v̇ is assumed to be defined on the boundary of E by the gradient of a

differentiable function g:

v̇ = λ∇g
(

fd
)

f
(

fd
)

≤ 0 λ ≥ 0, λf
(

fd
)

= 0,
(22)

If ∇g = ∇f , the law is associated, a normality condition of the type of (19) is
fulfilled. Here, we are interested in the case where ∇g 6= ∇f. We want to construct
a function F depending on f and g, permitting to retrieve the normality condition.

5.2. Construction of a state-dependent loading domain. We propose to de-
fine a state-dependent loading domain Ey as follows

Ey := {fd
′

∈ V
∗/ F

(

fd
′

,y
)

≤ 0} (23)

The loading function F
(

fd
′

,y
)

is defined as the sum of the yield function f
(

fd
′

)

and of a term, affine with respect to the variable fd
′

, equal to zero when fd
′

= y,
and depending on the gradient of the difference g − f in y :

F
(

fd
′

,y
)

:= f
(

fd
′

)

+∇ (g − f) (y) ·
(

fd
′

− y
)

(24)
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It can be noticed that for associated models, the gradient ∇ (g − f) is null and one
has:

F
(

fd
′

,y
)

:= f
(

fd
′

)

In this case, the loading function does not depend on y and is equal to f , i.e.
Ey = E.

Proposition 2. Let f and g be two convex and differentiable functions defined on
V

∗. Then for any parameter y ∈E (i.e. y ∈V∗ and f(y) ≤ 0) the domain Ey defined

by (23) with F defined by (24) is non-empty, convex and the gradient of F
(

fd
′

,y
)

with respect to fd
′

is
∂F

∂fd′

(

fd
′

,y
)

= ∇g (y)

Actually Ey contains at least y since F (y,y) = f(y) . And F
(

fd
′

,y
)

is a

convex function of fd
′

, as it is the sum of the convex function f
(

fd
′

)

and of a

linear function of fd
′

.

Corollary 1. Since the actual values of the thermodynamic forces fulfil f = fnd+fd,
then for y = f − fnd = fd, the following relationships are obtained:







F
(

fd, f − fnd
)

= f
(

fd
)

∂F

∂fd′

(

fd, f − fnd
)

= ∇g
(

fd
)

(25)

Eq. (25) shows that if the domain Ey varies in the space of dissipative forces V∗

according to the variations of the parameter

y = f − fnd = f − fnd(v)

then a normality condition with respect to the convex set Ey is retrieved.

5.3. Pseudo-potentials and bipotentials. For any y ∈ E, the indicator function
IEy

(fd
′

) of the state-dependent domain Ey is a proper convex function for any f
proper and convex. As a result, its Legendre-Fenchel conjugate I

∗
Ey
(v̇′) is a convex

function of v̇′. The pseudo potential φ(v̇′;y) can be defined as:














φ(v̇′;y) = sup
∀fd

′

(

fd
′

· v̇′ − IEy
(fd

′

)
)

= sup
∀fd

′
∈Ey

(

fd
′

· v̇′
) (26)

and the conjugated pseudo-potential φ∗
(

fd
′

;y
)

reads:

φ∗
(

fd
′

;y
)

= IEy
(fd

′

) (27)

For any y ∈ E , the function φ(v̇′,y) is convex and positively homogenous of degree
one with respect to v̇′ :

φ(v̇′;y) := φ∗∗(v̇′;y) (28)

By (26), for any y ∈ E and for all fd
′

∈ V∗ and all v̇′ ∈ V , the Fenchel’s inequality
holds true:

φ∗
(

fd
′

;y
)

+ φ(v̇′;y) ≥ fd
′

· v̇′ (29)
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For any y ∈ E, the function B(fd
′

, v̇′;y) defined as the sum:

B(fd
′

, v̇′;y) = φ∗
(

fd
′

;y
)

+ φ(v̇′;y)

is convex with respect to fd
′

and to v̇′ and fulfils:

B(fd
′

, v̇′;y) ≥ fd
′

· v̇′ (30)

Hence B(fd
′

, v̇′;y) is a bipotential [7]. Equality in (29) or in (30) is obtained for

v̇y and for fdy which are defined by:

v̇y∈ ∂fd′φ
∗(fdy ;y), fy

d∈ ∂v̇′φ(v̇y;y) (31)

If, in addition, we assume that, for any y ∈ E , the origin belongs to Ey , so that
φ∗(0;y) = 0, and since φ∗ is non-negative, then its conjugate is also non-negative
so that we have φ∗∗(v̇′,y) ≥ 0 .

In summary, the resolution of the given mechanical problem can be obtained
as follows. Starting from a known state of the material defined by v, the non-
dissipative forces fnd are calculated using the Helmoltz density of energy. Moreover,
the forces f are known.

It follows that the quantity f − fnd is also known at each instant of the system
evolution. Hence, if the parameter y is assumed to be equal to f − fnd at any instant,
the admissible set Ey (Eq. (23)) evolves during the system evolution. Then, using
the normality property with respect to this set, the actual flow is defined using the
first relationship in Eq. (31) and choosing y = f − fnd:

v̇ ∈ ∂fd′φ
∗(fd;y)

with y = f − fnd . This implies:

fd∈ ∂v̇′φ(v̇;y)

Such definitions ensure that the condition given in Eq. (20) is fulfilled.

6. Conclusion. In some previous works, the authors have proposed state-
dependent pseudo-potentials for material models which do no belong to the fam-
ily of Standard Generalized Materials: the endochronic theory [4], the Non-Linear
Kinematic Hardening model [4] and the non-associated Drucker-Prager model [3].
Here, we give a general procedure to construct a pair of conjugate state-dependent
pseudo-potentials. It can be applied not only to plasticity models, associated or
not, but also to a large number of mechanical problems where the constitutive law
implies that the dissipative thermodynamic forces remain in a given domain and
with the flow of all the state variables not orthogonal to the boundary of this admis-
sible domain. The introduction of a state-dependent loading function, and hence
of a state-dependent admissible domain, in such a way that a normality property
is recovered, permits then to construct a pair of pseudo-potentials which ensures
that the second law of thermodynamics is fulfilled. The sum of these conjugated
functions automatically defines a bipotential.
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