
Thermodynamical Derivation of Elastic and1

Plastic Effective Stresses in Unsaturated Soils2

Patrick Danglaa∗, Jean-Michel Pereiraa3

November 6, 20134
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Abstract8

The thermodynamical analysis presented here follows from the work9

of Coussy et al [13] who proposed a thermodynamically consistent model10

for unsaturated soils which is based on a Bishop-like effective stress to11

describe the stress-strain relationship while the water saturation (or the12

capillary pressure) is involved in a saturation-induced hardening in ad-13

dition to the mechanical hardening. We extended this model to include14

the effect of interfaces in the mechanical behaviour and we showed that15

the Bishop-like stresses involved in the elastic and plastic responses re-16

spectively can take different expressions. The Modified Cam-Clay model17

used for saturated soils is extended to unsaturated soils through the use of18
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A thermodynamic approach to effective stresses 
in unsaturated soils incorporating the concept  

of partial pore deformations



these Bishop-like stresses. This model is compared to some experimental19

results reported from the literature.20
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1 Introduction22

The concept of effective stress in unsaturated soils goes back to the work of23

Bishop [4] who extended the concept of Terzaghi’s effective stress by introducing24

a weighted average of gas and liquid pressures [5, 7]. This proposal encountered25

difficulties in explaining collapse behaviour [6, 9, 1, 23]. Then many authors26

have pointed out the need of two independent stress state variables to account27

for experimental observations on the mechanical behavior of unsaturated soils28

[18]. On that basis elastoplastic models were formulated [2, 20]. These models29

can be viewed as an extension of the Cam-Clay model to unsaturated situations.30

This has launched the development of many other models [24, 30, 7, 28, 29, 19,31

36, 34, 15, 33]. All these models are founded on two independent stresses even32

though they vary widely in the choice of the stresses. Some of them [32] chose to33

refer one stress to a Bishop-type stress. But all those models require the suction34

or the capillary pressure as an additional and independent stress. The reader35

can refer to the comprehensive review of effective stresses proposed by Nuth et36

al [31]. In most of these models suction is a hardening variable and thus has a37

status somehow different from the Bishop stress. As noted by Coussy [13, 12]38

the status of the suction or capillary pressure is two fold. Its variations control39

2



the fluid invasion process through the retention curve and they also control the40

mechanical behaviour through the deformation of the pores they induced. This41

can be a source of confusion in the formulation of the constitutive equations42

as pointed out by Alonso et al [3]. A significant breakthrough in the way of43

clarification, was achieved by Coussy [12] who proposed a more appropriate44

definition of the saturation degree, called Lagrangian saturation degree. This45

new definition is only associated to the invasion process, i.e to the creation46

and destruction of fluid-solid interface areas during wetting-drying processes.47

In contrast this saturation degree is not affected by the deformation process of48

the porous network. Thanks to this new concept Coussy et al [13] have given49

a physical background to the coefficient involved in the Bishop effective stress50

and proposed, on this physical basis, an extension of the Cam-Clay model to51

unsaturated conditions which is thermodynamically consistent. Experimental52

data on shear strength suggest that this Bishop coefficient is mostly smaller than53

the saturation degree generally used in the expression of the Bishop effective54

stress [3].55

Following the approach of Coussy, we explore here the effect of the interface56

energy on the mechanical behaviour of unsaturated soils which was neglected57

in the work of Coussy [11, 13]. As opposed to what was done in Coussy, the58

interface energy here depends on the deformation of the material. We also derive59

two Bishop-like effective stresses related to the elastic and plastic responses60

respectively. Finally we propose a simple extension of the Modified Cam-Clay61

model to unsaturated conditions and some comparisons with experimental data62
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are shown.63

An unsaturated soil consists in a solid skeleton composed of solid grains in64

contact, a gas phase and a liquid phase. These three phases interact with each65

other through interfaces which sustain surface stress and possess their own en-66

ergy. These interfaces play a fondamental role in the thermodynamic analysis of67

unsaturated soils. Accordingly the thermodynamics of a representative volume68

element of unsaturated soil can be addressed by considering three different sys-69

tems. The first one is the soil itself, as depicted above, including all the matter70

in all form contained in the RVE. It is an open thermodynamic system exchang-71

ing gas and liquid mass. The second system is obtained by removing the bulk72

fluid masses whatever the fluid form. It is then formed of the solid phase and73

the interfaces only. This system is still subjected to the gas and liquid pressures74

through the interfaces. However these pressure are considered now as external75

forces. Like Coussy [13] we’ll call this system the ”apparent solid skeleton”76

(subscript ”ske”) since it includes interfaces with energy concentrated on those77

surfaces. By removing the interfaces we can obtain a third system consisting78

in only the solid phase. We will call it the ”solid matrix” (subscript ”sol”) in79

the following. This system is now subjected to external forces which differ from80

the gas and liquid pressures since part of these pressures are absorbed by the81

interface surface stresses. We will assume that these forces can be represented82

by two effective pressures exerted on the part of the solid wall in contact with83

the solid-liquid and solid-gas interfaces. We will denote them by πL and πG.84

We must note that such effective pressures have already been derived formally85
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by other authors from a microscopical approach and by making use of averaging86

technics [21, 22].87

2 Effective pore pressures and interface energy88

Consider a volume V0 of soil in its undeformed reference configuration. In the89

current configuration the volume is V , the pore volume is φV0 where φ is the90

Lagrangian porosity [11]. The pore volume occupied by the liquid and gas phase91

are given by φLV0 and φGV0, where the φJ (J = L, G) can be coined as partial92

Lagrangian porosities respectively. Furthermore we have φL + φG = φ.93

The balance free energy of the apparent solid skeleton, at constant temper-94

ature, can be expressed as [13]95

dFske = σijdϵij + pLdφL + pGdφG (1)

The current partial porosity φJ can be written in the form [12]96

φJ = φ0SJ + ϕJ ; SL + SG = 1 (2)

where SJ is the Lagrangian saturation degree and ϕJ is the deformation of the97

porous network occupied by the phase J which can be coined as the partial98

pore deformation. In Eq. (2) φ0SJ is the volume occupied by the fluid J prior99

to any deformation i.e. by the part of the porous volume of the undeformed100

reference configuration which is delimited by the internal solid walls wetted by101

the fluid J [12]. The variations of SJ is therefore associated to the invasion102

process of interfaces i.e. to the displacement of the common line between the103
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three interfaces onto the solid surface. Substituting expression (2) for φJ in (1)104

reads105

dFske = σijdϵij + pLdϕL + pGdϕG − φ0(pG − pL)dSL (3)

The three first terms of the right hand side of Eq. (3) represent the defor-106

mation work undergone by the apparent solid skeleton while the fourth term107

is the energy supply to create new or suppress existing inner interfaces. As a108

consequence the energy of the solid skeleton can be split in two parts:109

Fske = Fsol(ϵij ,ϕL,ϕG, SL) + Fint(ϕL,ϕG, SL) (4)

where Fsol is the free energy stored in the solid matrix and Fint is the free energy110

of interfaces. The free energy of the solid matrix, Fsol, is mainly a function of111

the deformation variables ϵij ,ϕL,ϕG with SL intervening as a coupling term.112

In this sense the derivative ∂Fsol

∂SL
will always be coupled with the deformation113

variables and therefore will be considered as a small term compared to ∂Fint

∂SL
.114

Similarly Fint depends essentially on SL and the partial deformation of pores,115

ϕL and ϕG, as coupling terms. Because interfaces are located in the porosity,116

Fint is assumed as independent of the skeleton strains.117

According to Eq. (3) the force-like vector formed by the stress tensor, the118

fluid pressures and the pressure difference −φ0(pG − pL) is energy conjugate119

to the deformation-like vector formed by the strain tensor, the partial pore120

deformations and the saturation degree. As already noted by Coussy et al121

[13]: ”In the familiar capillary case, although the suction can be defined as122

the difference between the pressures of the non-wetting and wetting phases, the123
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various role of the pressure difference must be well separated from that of the124

suction”. Indeed the status of fluid pressures in the energy change is two fold.125

On one hand the mechanical pressures that are exerted on complementary parts126

of the solid wall from the liquid and gas, govern the process of deformation of the127

material. The saturation degree which controls the partition of these pressures128

on the solid wall can be considered as an independent parameter of the behaviour129

and therefore decoupled from these mechanical pressures. On the other hand the130

process of invasion, linked to the change of saturation degree, is controlled by131

the suction through the retention curve. Even though the suction is eventually132

given by the difference between the gas and liquid pressures, the status of the133

suction is here well separated from that of the mechanical pressures.134

From a thermodynamical point of view these different status of fluid pres-135

sures form three independant forces which are energy conjugate to the three136

independent thermodynamical variables: ϕL,ϕG, SL.137

2.1 Energy of the solid matrix138

Combining (3) and (4), the free energy of the sole solid matrix satisfies139

(dFsol)SL
= σijdϵij + πLdϕL + πGdϕG (5)

where140

πJ = pJ −

(

∂Fint

∂ϕJ

)

SL,ϕK̸=J

(6)

The interpretation of the effective pressure πJ can be addressed equivalently141

as follows:142
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(i) πJdϕJ is the infinitesimal deformation work given to the solid matrix143

through the partial pore deformation dϕJ.144

(ii) πJ represents, at the macroscopic scale, the modeling of the actual normal145

stress exerted to the solid matrix. Therefore πJ can be coined as an146

effective pore pressure.147

(iii) pJ − πJ = ∂Fint

∂ϕJ
is due to the surface tension sustained by the solid-fluid148

interface and can be compared with the Young-Lapace equation1.149

From the balance energy (5) the state laws read150

σij =

(

∂Fsol

∂ϵij

)

SL,ϕJ

πJ =

(

∂Fsol

∂ϕJ

)

SL,ϵij ,ϕK̸=J

(7)

At constant saturation degree SL, the linearization of the state laws (7) can pro-151

vide a first approach of the constitutive equations of unsaturated soils. However152

the coefficients involved in the linearization process must depend on SL. As a153

general rule the variable SL appearing in the arguments of Fsol should be con-154

sidered as a coupling term only. As a consequence expression for Fsol should155

involve only small terms as strains and partial pore deformations: ϵij , ϕJ.156

On the other way, a general requirement for Fsol can be expressed as follows.157

Along any loading path characterized by πL = πG the solid wall is subjected to158

a uniform pore pressure. In that case, according to Eq. (5), we could expect159

an expression for Fsol which is independent of SL as long as πL = πG. In other160

1In case of a spherical pore of radius r, it is easy to show that ∂Fint

∂ϕJ
= 2γ

r
where γ is the

surface tension
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words the derivative ∂Fsol

∂SL
should vanish for any value πL = πG:161

(

∂Fsol

∂SL

)

ϵij ,ϕK

= 0 ∀ πL = πG (8)

2.2 Energy of interfaces162

The interface free energy can be derived from the surface tension, γIJ, and the163

surface area, ωIJ, of the three interfaces according to164

Fint = γSLωSL + γSGωSG + γGLωGL (9)

Since the previous approach has postulated that, at the macroscopic scale, this165

energy only depends on the 3 thermodynamical variables, (ϕL,ϕG, SL), such an166

expression must be consistent with expression (9) for any deformation process.167

To go further we are going to make some reasonable assumptions for interface168

energy. Surface tensions are assumed constant or only temperature dependent.169

Accordingly since interface energy is spread over surfaces we can assume the170

following property regarding the dependence of Fint upon the partial pore de-171

formations:172

Fint(ϕL + λφ0SL,ϕG + λφ0SG, SL) = (1 +
2

3
λ)Fint(ϕL,ϕG, SL) ∀λ≪ 1 (10)

Statement (10) expresses that the interface energy change, at constant satura-173

tion, is only due to the change of the surface areas of pores in the process of174

deformation. Indeed from the current state any virtual (small) homogeneous175

dilation of coefficient (1 + 1
3λ) would cause an increase of volume by a factor176

(1+λ) (i.e the volume of pore φ0SJ would increase by λφ0SJ) and an increase of177

surface by a factor (1 + 2
3λ). Property (10) implicitly assumes that the surface178
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stresses don’t depend on the solid surface strains and coincide with the surface179

tensions, γIJ, thereby assuming that they are constant. Derivation with respect180

to λ entails181

φ0SL

(

∂Fint

∂ϕL

)

ϵij ,ϕG

+ φ0SG

(

∂Fint

∂ϕG

)

ϵij ,ϕL

=
2

3
Fint (11)

Finally linearizing Fint with respect to the partial pore deformations ϕJ gives182

Fint =
2

3
UL(SL)ϕL +

2

3
UG(SL)ϕG + φ0U(SL) (12)

where U is the interface energy per unit of porous space prior to any deformation183

process. Combining (11) and (12) shows that U is expressed as184

U = SLUL + SGUG (13)

where UL and UG are two interface energies associated to the liquid and gas185

phases. From (6) we have186

πJ = pJ −
2

3
UJ (14)

With the help of the equations derived above the interface energy balance writes187

dFint = (pL − πL)dϕL + (pG − πG)dϕG −

(

φ0(pG − pL) +
∂Fsol

∂SL

)

dSL (15)

Neglecting ∂Fsol

∂SL
compared to ∂Fint

∂SL
, the state laws of interface now read at the188

first order189

pG − pL = −
dU

dSL
; pL − πL =

2

3
UL ; pG − πG =

2

3
UG (16)

These 3 state laws can be compared, in some way, with a kind of macroscopic190

Young-Laplace law. The first law (16a) is the well known capillary or retention191
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cure. The two other laws (16b,16c) are unusual and difficult to apply because it192

is not possible to measure energies UJ separately. One possible way to overcome193

this difficulty comes from an exploitation of the microscopic definition of the194

interface energy (9) which can be written, in the undeformed state and using195

the Young equation, as196

φ0U = γSL
(

ωSL −
ωGL

cos θ

)

+ γSG
(

ωSG +
ωGL

cos θ

)

(17)

where θ is the contact angle of the liquid assumed as the wetting phase. Then197

we assume that each term of the rhs of Eq. (17) can be identified to that of198

the rhs of Eq. (13). Using the property that the sum ωSL + ωSG is the total199

surface of the solid wall (and therefore is constant), we can derive an expression200

of SJUJ in the form201

SLUL = U(1)−
γSL

γSG − γSL
(U(SL)− U(1)) (18)

SGUG =
γSG

γSG − γSL
(U(SL)− U(1)) (19)

where U(1) can be set to 0 by considering the saturated state as a reference state.202

Since liquid is the wetting phase the fraction γSL

γSG−γSL
is a positive number that203

we will denote by a, in the following, so that204

SLUL = −aU(SL) ; SGUG = (1 + a)U(SL) (20)

We have to point out that the identification (20) relies on the assumption, albeit205

natural, that the rhs of (17) and (13) can be identified term by term. Moreover206

because the surface tensions γSJ are generally not known, the coefficient a should207

be calibrated directly at the macroscopic scale.208
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3 The Equivalent Pore Pressure model209

To derive this model, we will assume that along any loading path defined by a210

constant saturation degree, dSL = 0, and constant effective pressures, dπJ = 0,211

the partial pore deformation increment, dϕJ is a saturation dependent fraction212

of the total pore deformation:213

(dϕL)SL,πJ
= χdϕ ; (dϕG)SL,πJ

= (1− χ)dϕ (21)

where χ is a saturation dependent factor that varies between 1, under saturated214

state, and 0 under dried state. The choice χ = SL corresponds to the iso-215

deformation assumption of the two partial pore volumes: dϕL

φ0SL
= dϕG

φ0SG
which216

has to be satisfied whatever the saturation. Accordingly, when χ = SL, the217

porous network is assumed to deform homogeneously whenever no pressure is218

applied on the solid wall. This assumption is often used for convenient reasons219

[11, 27, 10].220

Integration of (21) gives221

ϕL = χϕ+ δ ; ϕG = (1− χ)ϕ− δ (22)

where δ is a function of (SL,πL,πG) that must vanish under saturated and dried222

states:223

δ(0,πL,πG) = δ(1,πL,πG) = 0 (23)

Incorporating expression (22) for ϕJ in (5) gives224

(dFsol)SL
= σijdϵij + πdϕ +∆dδ (24)
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where we defined π and ∆ as follows225

π = χπL + (1− χ)πG (25)

∆ = πL − πG (26)

Defining the Legendre-Fenchel transform F ∗

sol = Fsol − σijϵij − πϕ−∆δ entails226

(dF ∗

sol)SL
= −ϵijdσij − ϕdπ − δd∆ (27)

Since δ only depends on (SL,π,∆), the integration of the state equation227

δ(SL,π,∆) = −

(

∂F ∗

sol

∂∆

)

SL,σij ,π

(28)

shows that F ∗

sol can be split as follows228

F ∗

sol = F ∗1
sol(σij ,π, SL)−

∫ ∆

0
δ(SL,π, u)du (29)

Eq. (29) suggests that F ∗1
sol can depend on SL. Actually it cannot because of229

the general requirement (8)2. Indeed injecting equality ∆ = 0 in (29) and using230

the property (8) show that SL is decoupled from the stresses σij and π. Thus231

F ∗1
sol only depends on (σij ,π) with232

dF ∗1
sol = −ϵijdσij − ϕ∗dπ (30)

where we defined233

ϕ∗ = ϕ−

∫ ∆

0

∂δ

∂π
(SL,π, u)du (31)

Expression (31) for ϕ∗ can be transformed by using the Maxwell symmetry234

relation derived from (27)235

(

∂δ

∂π

)

SL,∆

=

(

∂ϕ

∂∆

)

SL,σij ,π

(32)

2where we can notice that
(

∂Fsol

∂SL

)

ϵij ,ϕ,δ
=

(

∂F∗
sol

∂SL

)

σij ,π,∆
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We obtained236

ϕ∗ = ϕ|∆=0 (33)

Hence ϕ∗ turns out to be the total pore deformation that would have resulted237

from ∆ = 0, i.e. πL = πG, while keeping the other variables as constant.238

Therefore expression F ∗1
sol(σij ,π) which is independent of SL, must have the239

same expression as that found under saturated state. The state equations240

ϵij = −

(

∂F ∗1
sol

∂σij

)

π

ϕ∗ = −

(

∂F ∗1
sol

∂π

)

σij

(34)

show that π play the role of an equivalent pore pressure in the sense that it241

would be the pressure to apply to the liquid phase of the porous material under242

saturated state, to get the same strains as those obtained under unsaturated243

state, at the given stress state σij . Note however that the total pore deforma-244

tion that would be obtained under saturated state is ϕ∗ and not that of the245

unsaturated state, ϕ.246

Assuming that, at the microscopic scale, the solid matrix is isotropic and247

behaves elastically, with a compressibility constant ks, an incremental loading248

defined, at constant saturation degree, by dσ = −dπL = −dπG = −dπ, will load249

the solid grains by a uniform increment of pressure leading to a response given250

by dϵii = dϕ/φ0 = dϕJ/(φ0SJ) = −dπ/ks. Incorporating these last equations251

into the general equation (22) leads to252

(

∂δ

∂π

)

SL,∆

=

(

∂ϕ

∂∆

)

SL,σij ,π

=
φ0(χ− SL)

ks
(35)

showing that δ and ϕ vary linearly with π and ∆, respectively. Accordingly we253
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obtain for ϕ254

ϕ = ϕ∗ +
φ0(χ− SL)

ks
∆ (36)

showing that ϕ∗ = ϕ in the iso-deformation assumption, χ = SL.255

Furthermore the δ-∆ relationship is expected to involve the elastic shear256

property of the solid matrix. If we assume the linearity of such behavior we end257

up with258

δ =
φ0(χ− SL)

ks
π +

∆

g(SL)
(37)

where g(SL) stands for an elastic modulus characterizing the elastic shear prop-259

erty of the solid matrix.260

When the solid grains are incompressible, ks can be set to ∞ in the previous261

equations. The volumetric deformation of the soil is then equal to the total pore262

deformation, ϵv = ϕ = ϕ∗, and the balance (30) turns into263

dF ∗1
sol = −ϵvd(σ + π)− ϵqdq (38)

where q and ϵq are the deviatoric stress and strain respectively. From (38)264

ϵv = −

(

∂F ∗1
sol

∂(σ + π)

)

q

(39)

4 Elastic behavior265

Under isotropic loading, the mechanical response of saturated soils is well de-266

scribed by a constant compressibility coefficient, κ, in the form267

de = −κ
d(σ + p)

σ + p
(40)
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where e stands for the void ratio. This coefficient has been measured on FoCa268

clay used for engineered barrier [14]. The compression test is shown in the269

figure (1) where only the BC lines are associated with the elastic response. The270

compressibility coefficient is κ = 0.0977.271

Since energy F 1
sol has been found to be independent of the saturation degree,272

a comparison of (40) and (39) implies the general constitutive relationship273

de = −κ
d(σ + π)

σ + π
(41)

which should be valid for unsaturated situations and along any loading paths274

and with the same constant compressibility coefficient as that involved in (40).275

However to be able to apply the previous relation, the equivalent pore pressure,276

π, has to be computed from (25). This can be done from the water retention277

curve of the material. This curve has been measured, at 20 and 80 oC, on the278

same FoCa clay using the saturated salt solution technique upon imbibition path279

[14]. This curve is shown in the figure (2a). During these tests no stress was280

applied thereby, neglecting the atmospheric pressure, σ = 0. In these conditions281

Eq. (41) turns into282

de = −κ
dπ

π
(42)

The free swelling of these samples was measured and reported in figure (2b) in283

terms of π calculated with the help of the measured retention curves, the gas284

pressure being neglecting. We assume here the iso-deformation of pores, i.e.285

χ = SL. The reported measured points are found to be accurately lined up with286

a slope κ = 0.0978, namely very close to that found in the previous experiment.287
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5 Plastic Modeling288

We will assume in the following that irreversibility only affects the mechanical289

behavior. Hysteresis of the retention curve will not be addressed here. As a con-290

sequence, in non reversible transformation, the two first laws of thermodynamics291

applied to the system composed of the solid matrix, gives the Clausius-Duhem292

inequality in the form [11]293

σijdϵij + πLdϕL + πGdϕG − (dFsol)SL
≥ 0 (43)

where now the free energy of the solid matrix, Fsol, must be argumented by the294

elastic part of the deformation variables and by hardening variables. Following295

[13] this energy is split into two parts: (i) the elastic energy, W , stored in the296

solid matrix which is the energy recoverable by a reversible mechanical process297

and (ii) the locked energy, Z, which is the additional (not recoverable) part298

of the elastic energy locked when irreversible mechanical processes have taken299

place. For the sake of simplicity, the locked energy is assumed to depend on a300

unique hardening variable, α. Denoting with superscripts e and p the elastic301

and plastic part of the deformation variables, respectively, we write302

Fsol = W (ϵeij ,ϕ
e
L,ϕ

e
G, SL) + Z(SL,α) (44)

The state equations (7) being always valid provided that each deformation vari-303

able be replaced by its elastic part, the use of expression (44) for Fsol in (43)304

allows to write the Clausius-Duhem inequality as305

σijdϵ
p
ij + πLdϕ

p
L + πGdϕ

p
G + βdα ≥ 0 (45)
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where β is defined by306

β = −

(

∂Z

∂α

)

SL

(46)

The variable β is the hardening force as energy conjugate to the hardening307

variable α. It will be associated to the current limit of the elastic domain308

defined by309

f(σ,πL,πG,β) ≤ 0 (47)

Following the work of Coussy [13], to go further towards an effective stress, we310

will assume that part of the flow rule is given by311

(dϕp
L)SL

= χpdϕp ; (dϕp
G)SL

= (1− χp)dϕp (48)

where χp is a weighting factor ranging from 0 to 1. This factor is, a priori,312

different from χ which was introduced previously to describe the elastic response.313

Similarly to what was done for χ, we will assume that this factor depends314

on the saturation degree: χp(SL). The plastic incompressibility of the solid315

grains is now introduced leading to ϵpv = ϕp. From the plastic incompressibility316

assumption and (48) the dissipation (45) turns into317

σBdϵpv + qdϵpq + βdα ≥ 0 (49)

where σB is a Bishop-like stress defined by318

σB = σ + χpπL + (1 − χp)πG (50)

According to (50) and (49) the current elastic domain can be defined by319

f(σB, q,β) ≤ 0 (51)
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The flow rule is then expressed in the form320

dϵpv = dλ

(

∂f

∂σB

)

q,β

dϵpq = dλ

(

∂f

∂q

)

σB,β

(52)

One of the simplest plastic model used for saturated clay is the Modified Cam-321

Clay model:322

fCam(σ, q, p0) = σ(σ + p0) + q2/M2 (53)

where p0 is the preconsolidation pressure at the saturated state which is gov-323

erned by the plastic void ratio:324

p0 = pr exp

(

−
ep

λ(0)− κ

)

(54)

where λ(0) is the slope of the saturated virgin consolidation line while κ is the325

slope of the unloading/reloading line as introduced in section 4. A simple exten-326

sion of the yield function (53) to the unsaturated state can then be formulated327

as328

f = fCam(σ
B, q, p0) (55)

where the preconsolidation pressure p0 should be extended to unsaturated sit-329

uations. Following the work of Coussy [13], we set330

p0 = prh(e
p, SL) (56)

where h should satisfy h(ep, 1) = exp
(

− ep

λ(0)−κ

)

.331

In the following we will assume that332

h(ep, SL) = hm(ep)hs(SL) (57)

where hm = exp
(

− ep

λ(0)−κ

)

expresses the mechanical hardening due to irre-333

versible deformations and hs represents a saturation-induced hardening (which334
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may be a function of capillary pressure through the retention curve). Note that335

hs(1) = 1, leading to p0 = pr at the initial (undeformed) reference saturated336

state.337

5.1 Shear strength338

Substitution of the Bishop effective stress (50) in the classical Mohr-Coulomb339

criterion gives340

τ = C − (σn + χpπL + (1− χp)πG) tanψ (58)

where C is the cohesion and ψ is the friction angle which is assumed constant,341

consistently with the Cam-Clay model: sinψ = 3M/(6 +M). Alonso et al [3]342

have shown that the coefficient χp to consider in the shear strength of unsat-343

urated soils is actually smaller than the saturation degree. They proposed a344

generic formula of the form345

χp =

〈

SL − Sm
L

1− Sm
L

〉

(59)

where < x >= (x + |x|)/2 is the positive part operator. Alonso et al related346

this coefficient (called effective degree of saturation in their paper) to the freely347

available water filling the macroporosity of the soil. Here we will rather use348

this formula as a parametric form of the coefficient χp. From (20) and (14), a349

development of Eq. (58) in terms of the capillary pressure, pc = pG − pL, and350

interface energy, U , gives351

τ = C −

(

σn + pG − χppc −
2

3

(

−
χp

SL
a+

1− χp

1− SL
(1 + a)

)

U

)

tanψ (60)
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Numerous experiments have been performed on shear strength of unsaturated352

soils. We present in the figure (3) those performed on Guadalix de la Sierra red353

clay [16] for which C = 0 and ψ = 33o. In the same figure we have plotted the354

model as predicted by Eq. (60) under different hypotheses: χp = SL or χp given355

by Eq. (59). The model of Brooks and Corey [8] was used to fit the retention356

curve with an air entry pressure of 30 kPa and an exponent equal to 3.357

5.2 Isotropic stress path at constant capillary pressure358

The compression index of a normally consolidated saturated soil is defined by359

de = −λ(0)
d(σ + p)

σ + p
(61)

For an unsaturated soil at constant capillary pressure, an isotropic plastic load-360

ing on the virgin compression line, i.e −σB = p0, results in361

dep = −(λ(0)− κ)
dσB

σB
(62)

Assuming that χ = χp entails362

de = −λ(0)
dσB

σB
(63)

which is the simplest extension of (61) for unsaturated situations. We assume363

moreover, hereafter, that χ = χp = SL. We have applied this simple model to364

a silty clay [25, 26, 35]. The figure (4b) reports the variation of the void ratio365

during a compression oedometric test from 1 to 256 kPa obtained at different366

capillary pressures: pc = 0, 20, 40, 80, 160 kPa. The figure (4a) shows the predic-367

tion obtained by the model. The elastic limit, given by −σ = π + p0, has been368

21



identified to 18, 22, 24, 28, 50 kPa respectively. From these results we have iden-369

tified the following parameters associated to the saturated state: λ(0) = 0.037,370

κ = 0, 004 and pr = 18 kPa. To assess the value of the interface energy, U ,371

we use a retention curve fitted by using the model of Brooks and Corey with372

the parameters associated to the silty clay (air entry pressure pe = 10 kPa and373

exponent α = 2.5).374

5.3 Imbibition drainage paths375

The same silty clay as that used in the previous section was loaded at differ-376

ent isotropic compression stresses: −σ = 8, 16, 32, 64, 128, 256 kPa. After each377

compression test, the capillary pressure is increased from 0 to 160 kPa then the378

specimen is unloaded to its initial compression, i.e 1 kPa. The same parameters379

as those defined in the last section are used. Figure (5a) shows the void ratio380

variations during the different loading paths. The vertical lines correspond to381

the capillary pressure load. The corresponding evolution of the void ratio is382

represented in the figure (6a). The experimental results are represented in the383

figures (5b) and (6b).384

Let’s consider now a soil sample initially and normally saturated. The initial385

capillary pressure is equal to zero. Let’s submit the specimen to increasing386

capillary pressure from 1 to 256 kPa. The capillary pressure is then decreased387

to 1 kPa. We use the following parameters λ(0) = 0.19, κ = 0.031, pr = 10 kPa,388

and an initial stress −σ0 = 1.5 10−6 kPa. The parameters of the retention curve389

(Brook and Corey) are given by pe = 1.8 MPa and α = 1. These parameters390
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corrrespond to a white clay used in [17]. The experiments are shown in the391

figure (7b) and can be compared to the predictions shown in the figure (7a). In392

the experiment the sample is not mechanically loaded. So we found the initial393

stress in order to fit one point of the curve. We found the very small value −σ0 =394

1.5 10−6 kPa. During the loading path from 1 to 1.8 kPa the capillary pressure is395

lower than the air entry pressure and the soil is actually saturated. The slope of396

the curve is the compression index. For capillary pressure greater than 1.8 kPa397

the sample behaves elastically because we assumed that the saturation-induced398

hardening hs(SL) > 1 + χppc−pe

prhm(ep) , resulting in a strictly negative yield function:399

f < 0.400

6 Conclusion401

The model proposed by Coussy [13] has been extended to account for interface402

energies in the mechanical behaviour of unsaturated soils. This extension relies403

on the assumption that the interface energy depends on the partial pore defor-404

mations in addition to the saturation degree. As a consequence, effective pore405

pressures should be considered in the mechanical behaviour in place of the liquid406

and gas pressures. These effective pore pressures differ from the pore pressures407

by terms involving the interface energy. Following the approach developped in408

Coussy et al, a Bishop-like effective stress, expressed in terms of these effective409

pore pressures, is found to control the mechanical behaviour of unsaturated soils410

providing an assumption concerning the partial pore deformations, i.e the de-411

23



formation of the partial volume occupied by the fluids. The Bishop’s coefficient,412

χ, turns out to be a saturation dependent fraction of the partial pore deforma-413

tion and the total pore deformation. Actually two Bishop-like effective stresses,414

associated to the elastic and plastic behaviour, can be introduced. This results415

in a model relying on two effective stresses which can be used to extend the416

elastic and plastic behaviour of saturated soils to unsaturated conditions. We417

propose a very simple model based on the extension of the Cam-Clay model.418

This model is applied to predict the response of a soil sample to compression419

stress at constant capillary pressure and to wetting drying paths at constant420

stress. These responses are compared with some experimental results reported421

from the literature.422
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Figure 1: Isotropic compression test performed on saturated FoCa clay [14].
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Figure 2: (a) Retention curve of a FoCa clay obtained by saturated salt solution

technique [14]. (b) Void ratio reported against log(−π) in a free swelling during

imbibition test.
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Figure 3: Shear strength vs capillary pressure obtained at different normal

stress: (a) 0.12 MPa (b) 0.6 MPa. The experimental results are reported from

Escario et al [16].
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Figure 4: Isotropic compression curves at constant capillary pressure obtained

on a silty clay: (a) Model (b) Experiment reported from [25, 26].
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Figure 5: Compression, drainage and unloading on a silty clay: (a) model (b)

experiments [25, 26].
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Figure 6: Drainage phase on a silty clay: (a) model (b) experiments [25, 26].
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Figure 7: Drainage on a white clay: (a) model (b) experiments [17].
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