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 who proposed a thermodynamically consistent model for unsaturated soils which is based on a Bishop-like effective stress to describe the stress-strain relationship while the water saturation (or the capillary pressure) is involved in a saturation-induced hardening in addition to the mechanical hardening. We extended this model to include the effect of interfaces in the mechanical behaviour and we showed that the Bishop-like stresses involved in the elastic and plastic responses respectively can take different expressions. The Modified Cam-Clay model used for saturated soils is extended to unsaturated soils through the use of
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A thermodynamic approach to effective stresses in unsaturated soils incorporating the concept of partial pore deformations these Bishop-like stresses. This model is compared to some experimental results reported from the literature.

Introduction

The concept of effective stress in unsaturated soils goes back to the work of Bishop [START_REF] Bishop | The principle of effective stress[END_REF] who extended the concept of Terzaghi's effective stress by introducing a weighted average of gas and liquid pressures [START_REF] Bishop | Some aspects of effective stress in saturated and partly saturated soils[END_REF][START_REF] Bolzon | Elastoplastic soil constitutive laws generalized to partially saturated states[END_REF]. This proposal encountered difficulties in explaining collapse behaviour [START_REF] Blight | A study of effective stress for volume change[END_REF][START_REF] Burland | Some aspects of the mechanical behaviour of partially saturated soils. Moisture Equilibria and Moisture Changes Beneath Covered Areas[END_REF][START_REF] Aitchison | Separate roles of site investigation, quantification of soil properties and selection of operational environment in the determination of foundation design on expansive soils[END_REF][START_REF] Jennings | Limitations to the use of effective stresses in partly saturated soils[END_REF]. Then many authors have pointed out the need of two independent stress state variables to account for experimental observations on the mechanical behavior of unsaturated soils [START_REF] Fredlund | Stress state variables for unsaturated soils[END_REF]. On that basis elastoplastic models were formulated [START_REF] Alonso | A constitutive model for partially saturated soils[END_REF][START_REF] Gens | A framework for the behaviour of unsaturated expansive clays[END_REF]. These models can be viewed as an extension of the Cam-Clay model to unsaturated situations. This has launched the development of many other models [START_REF] Khogo | Theoretical aspects of constitutive modelling for unsaturated soils[END_REF][START_REF] Modaressi | Constitutive model for unsaturated soils: validation on a silty material[END_REF][START_REF] Bolzon | Elastoplastic soil constitutive laws generalized to partially saturated states[END_REF][START_REF] Loret | A three-phase model for unsaturated soils[END_REF][START_REF] Loret | An effective stress elastic-plastic model for unsaturated porous media[END_REF][START_REF] Gallipoli | An elastoplastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour[END_REF][START_REF] Wheeler | Couling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[END_REF][START_REF] Sheng | A constitutive model for unsaturated soils: thermomechanical and computational aspects[END_REF][START_REF] Ehlers | Deformation and localizaton analysis of partially saturated soil[END_REF][START_REF] Santagiuliana | Enhancing the bolzon-schreflerzienkiewicz constitutive model for partially saturated soil[END_REF]. All these models are founded on two independent stresses even though they vary widely in the choice of the stresses. Some of them [START_REF] Pereira | Adaptation of existing behaviour models to unsaturated states: application to cjs model[END_REF] chose to refer one stress to a Bishop-type stress. But all those models require the suction or the capillary pressure as an additional and independent stress. The reader can refer to the comprehensive review of effective stresses proposed by Nuth et al [START_REF] Nuth | Effective stress concept in saturated soils: Clarification and validation of a unified framework[END_REF]. In most of these models suction is a hardening variable and thus has a status somehow different from the Bishop stress. As noted by Coussy [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF][START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF] the status of the suction or capillary pressure is two fold. Its variations control the fluid invasion process through the retention curve and they also control the mechanical behaviour through the deformation of the pores they induced. This can be a source of confusion in the formulation of the constitutive equations as pointed out by Alonso et al [START_REF] Alonso | A microstructurally based effective stress for unsaturated soils[END_REF]. A significant breakthrough in the way of clarification, was achieved by Coussy [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF] who proposed a more appropriate definition of the saturation degree, called Lagrangian saturation degree. This new definition is only associated to the invasion process, i.e to the creation and destruction of fluid-solid interface areas during wetting-drying processes.

In contrast this saturation degree is not affected by the deformation process of the porous network. Thanks to this new concept Coussy et al [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF] have given a physical background to the coefficient involved in the Bishop effective stress and proposed, on this physical basis, an extension of the Cam-Clay model to unsaturated conditions which is thermodynamically consistent. Experimental data on shear strength suggest that this Bishop coefficient is mostly smaller than the saturation degree generally used in the expression of the Bishop effective stress [START_REF] Alonso | A microstructurally based effective stress for unsaturated soils[END_REF].

Following the approach of Coussy, we explore here the effect of the interface energy on the mechanical behaviour of unsaturated soils which was neglected in the work of Coussy [11,[START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF]. As opposed to what was done in Coussy, the interface energy here depends on the deformation of the material. We also derive two Bishop-like effective stresses related to the elastic and plastic responses respectively. Finally we propose a simple extension of the Modified Cam-Clay model to unsaturated conditions and some comparisons with experimental data are shown.

An unsaturated soil consists in a solid skeleton composed of solid grains in contact, a gas phase and a liquid phase. These three phases interact with each other through interfaces which sustain surface stress and possess their own energy. These interfaces play a fondamental role in the thermodynamic analysis of unsaturated soils. Accordingly the thermodynamics of a representative volume element of unsaturated soil can be addressed by considering three different systems. The first one is the soil itself, as depicted above, including all the matter in all form contained in the RVE. It is an open thermodynamic system exchanging gas and liquid mass. The second system is obtained by removing the bulk fluid masses whatever the fluid form. It is then formed of the solid phase and the interfaces only. This system is still subjected to the gas and liquid pressures through the interfaces. However these pressure are considered now as external forces. Like Coussy [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF] we'll call this system the "apparent solid skeleton" (subscript "ske") since it includes interfaces with energy concentrated on those surfaces. By removing the interfaces we can obtain a third system consisting in only the solid phase. We will call it the "solid matrix" (subscript "sol") in the following. This system is now subjected to external forces which differ from the gas and liquid pressures since part of these pressures are absorbed by the interface surface stresses. We will assume that these forces can be represented by two effective pressures exerted on the part of the solid wall in contact with the solid-liquid and solid-gas interfaces. We will denote them by π L and π G .

We must note that such effective pressures have already been derived formally by other authors from a microscopical approach and by making use of averaging technics [START_REF] Gray | Thermodynamic approach to effective stress in partially saturated porous media[END_REF][START_REF] Gray | Analysis of the solid phase stress tensor in multiphase porous media[END_REF].

Effective pore pressures and interface energy

Consider a volume V 0 of soil in its undeformed reference configuration. In the current configuration the volume is V , the pore volume is φV 0 where φ is the Lagrangian porosity [11]. The pore volume occupied by the liquid and gas phase are given by φ L V 0 and φ G V 0 , where the φ J (J = L, G) can be coined as partial Lagrangian porosities respectively. Furthermore we have φ L + φ G = φ.

The balance free energy of the apparent solid skeleton, at constant temperature, can be expressed as [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF] 

dF ske = σ ij dϵ ij + p L dφ L + p G dφ G (1) 
The current partial porosity φ J can be written in the form [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF] φ J = φ 0 S J + ϕ J ;

S L + S G = 1 (2)
where S J is the Lagrangian saturation degree and ϕ J is the deformation of the porous network occupied by the phase J which can be coined as the partial pore deformation. In Eq. (2) φ 0 S J is the volume occupied by the fluid J prior to any deformation i.e. by the part of the porous volume of the undeformed reference configuration which is delimited by the internal solid walls wetted by the fluid J [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF]. The variations of S J is therefore associated to the invasion process of interfaces i.e. to the displacement of the common line between the three interfaces onto the solid surface. Substituting expression (2) for φ J in [START_REF] Aitchison | Separate roles of site investigation, quantification of soil properties and selection of operational environment in the determination of foundation design on expansive soils[END_REF] reads

dF ske = σ ij dϵ ij + p L dϕ L + p G dϕ G -φ 0 (p G -p L )dS L (3) 
The three first terms of the right hand side of Eq. ( 3) represent the deformation work undergone by the apparent solid skeleton while the fourth term is the energy supply to create new or suppress existing inner interfaces. As a consequence the energy of the solid skeleton can be split in two parts:

F ske = F sol (ϵ ij , ϕ L , ϕ G , S L ) + F int (ϕ L , ϕ G , S L ) ( 4 ) 
where F sol is the free energy stored in the solid matrix and F int is the free energy of interfaces. The free energy of the solid matrix, F sol , is mainly a function of the deformation variables ϵ ij , ϕ L , ϕ G with S L intervening as a coupling term.

In this sense the derivative ∂F sol ∂SL will always be coupled with the deformation variables and therefore will be considered as a small term compared to ∂Fint ∂SL .

Similarly F int depends essentially on S L and the partial deformation of pores, ϕ L and ϕ G , as coupling terms. Because interfaces are located in the porosity, F int is assumed as independent of the skeleton strains.

According to Eq. (3) the force-like vector formed by the stress tensor, the fluid pressures and the pressure difference -φ 0 (p G -p L ) is energy conjugate to the deformation-like vector formed by the strain tensor, the partial pore deformations and the saturation degree. As already noted by Coussy et al [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF]: "In the familiar capillary case, although the suction can be defined as the difference between the pressures of the non-wetting and wetting phases, the various role of the pressure difference must be well separated from that of the suction". Indeed the status of fluid pressures in the energy change is two fold.

On one hand the mechanical pressures that are exerted on complementary parts of the solid wall from the liquid and gas, govern the process of deformation of the material. The saturation degree which controls the partition of these pressures on the solid wall can be considered as an independent parameter of the behaviour and therefore decoupled from these mechanical pressures. On the other hand the process of invasion, linked to the change of saturation degree, is controlled by the suction through the retention curve. Even though the suction is eventually

given by the difference between the gas and liquid pressures, the status of the suction is here well separated from that of the mechanical pressures.

From a thermodynamical point of view these different status of fluid pressures form three independant forces which are energy conjugate to the three independent thermodynamical variables: ϕ L , ϕ G , S L .

Energy of the solid matrix

Combining (3) and ( 4), the free energy of the sole solid matrix satisfies

(dF sol ) SL = σ ij dϵ ij + π L dϕ L + π G dϕ G (5) 
where

π J = p J - ∂F int ∂ϕ J SL,ϕ K̸ =J (6) 
The interpretation of the effective pressure π J can be addressed equivalently as follows:

(i) π J dϕ J is the infinitesimal deformation work given to the solid matrix through the partial pore deformation dϕ J .

(ii) π J represents, at the macroscopic scale, the modeling of the actual normal stress exerted to the solid matrix. Therefore π J can be coined as an effective pore pressure.

(iii) p J -π J = ∂Fint ∂ϕJ is due to the surface tension sustained by the solid-fluid interface and can be compared with the Young-Lapace equation 1 .

From the balance energy ( 5) the state laws read

σ ij = ∂F sol ∂ϵ ij SL,ϕJ π J = ∂F sol ∂ϕ J SL,ϵij ,ϕ K̸ =J (7) 
At constant saturation degree S L , the linearization of the state laws ( 7) can provide a first approach of the constitutive equations of unsaturated soils. However the coefficients involved in the linearization process must depend on S L . As a general rule the variable S L appearing in the arguments of F sol should be considered as a coupling term only. As a consequence expression for F sol should involve only small terms as strains and partial pore deformations: ϵ ij , ϕ J .

On the other way, a general requirement for F sol can be expressed as follows.

Along any loading path characterized by π L = π G the solid wall is subjected to a uniform pore pressure. In that case, according to Eq. ( 5), we could expect an expression for F sol which is independent of S L as long as π L = π G . In other 1 In case of a spherical pore of radius r, it is easy to show that ∂F int ∂ϕ J = 2γ r where γ is the surface tension words the derivative ∂F sol ∂SL should vanish for any value π L = π G :

∂F sol ∂S L ϵij ,ϕK = 0 ∀ π L = π G (8)

Energy of interfaces

The interface free energy can be derived from the surface tension, γ IJ , and the surface area, ω IJ , of the three interfaces according to

F int = γ SL ω SL + γ SG ω SG + γ GL ω GL (9) 
Since the previous approach has postulated that, at the macroscopic scale, this energy only depends on the 3 thermodynamical variables, (ϕ L , ϕ G , S L ), such an expression must be consistent with expression [START_REF] Burland | Some aspects of the mechanical behaviour of partially saturated soils. Moisture Equilibria and Moisture Changes Beneath Covered Areas[END_REF] for any deformation process.

To go further we are going to make some reasonable assumptions for interface energy. Surface tensions are assumed constant or only temperature dependent.

Accordingly since interface energy is spread over surfaces we can assume the following property regarding the dependence of F int upon the partial pore deformations:

F int (ϕ L + λφ 0 S L , ϕ G + λφ 0 S G , S L ) = (1 + 2 3 λ)F int (ϕ L , ϕ G , S L ) ∀λ ≪ 1 (10)
Statement [START_REF] Chateau | Micromechanics of saturated and un saturated porous media[END_REF] expresses that the interface energy change, at constant saturation, is only due to the change of the surface areas of pores in the process of deformation. Indeed from the current state any virtual (small) homogeneous dilation of coefficient (1 + 1 3 λ) would cause an increase of volume by a factor

(1 + λ) (i.e the volume of pore φ 0 S J would increase by λφ 0 S J ) and an increase of surface by a factor (1 + 2 3 λ). Property [START_REF] Chateau | Micromechanics of saturated and un saturated porous media[END_REF] implicitly assumes that the surface stresses don't depend on the solid surface strains and coincide with the surface tensions, γ IJ , thereby assuming that they are constant. Derivation with respect to λ entails

φ 0 S L ∂F int ∂ϕ L ϵij ,ϕG + φ 0 S G ∂F int ∂ϕ G ϵij ,ϕL = 2 3 F int (11) 
Finally linearizing F int with respect to the partial pore deformations ϕ J gives

F int = 2 3 U L (S L )ϕ L + 2 3 U G (S L )ϕ G + φ 0 U (S L ) ( 1 2 ) 
where U is the interface energy per unit of porous space prior to any deformation process. Combining (11) and [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF] shows that U is expressed as

U = S L U L + S G U G (13) 
where U L and U G are two interface energies associated to the liquid and gas phases. From (6) we have

π J = p J - 2 3 U J ( 14 
)
With the help of the equations derived above the interface energy balance writes

dF int = (p L -π L )dϕ L + (p G -π G )dϕ G -φ 0 (p G -p L ) + ∂F sol ∂S L dS L (15)
Neglecting ∂F sol ∂SL compared to ∂Fint ∂SL , the state laws of interface now read at the first order

p G -p L = - dU dS L ; p L -π L = 2 3 U L ; p G -π G = 2 3 U G ( 16 
)
These 3 state laws can be compared, in some way, with a kind of macroscopic Young-Laplace law. The first law (16a) is the well known capillary or retention cure. The two other laws (16b,16c) are unusual and difficult to apply because it is not possible to measure energies U J separately. One possible way to overcome this difficulty comes from an exploitation of the microscopic definition of the interface energy (9) which can be written, in the undeformed state and using the Young equation, as

φ 0 U = γ SL ω SL - ω GL cos θ + γ SG ω SG + ω GL cos θ ( 17 
)
where θ is the contact angle of the liquid assumed as the wetting phase. Then we assume that each term of the rhs of Eq. ( 17) can be identified to that of the rhs of Eq. ( 13). Using the property that the sum ω SL + ω SG is the total surface of the solid wall (and therefore is constant), we can derive an expression of S J U J in the form

S L U L = U (1) - γ SL γ SG -γ SL (U (S L ) -U (1)) (18) 
S G U G = γ SG γ SG -γ SL (U (S L ) -U (1)) ( 19 
)
where U (1) can be set to 0 by considering the saturated state as a reference state.

Since liquid is the wetting phase the fraction γSL γSG-γSL is a positive number that we will denote by a, in the following, so that

S L U L = -aU (S L ) ; S G U G = (1 + a)U (S L ) ( 2 0 ) 
We have to point out that the identification (20) relies on the assumption, albeit natural, that the rhs of ( 17) and ( 13) can be identified term by term. Moreover because the surface tensions γ SJ are generally not known, the coefficient a should be calibrated directly at the macroscopic scale.

The Equivalent Pore Pressure model

To derive this model, we will assume that along any loading path defined by a constant saturation degree, dS L = 0, and constant effective pressures, dπ J = 0, the partial pore deformation increment, dϕ J is a saturation dependent fraction of the total pore deformation:

(dϕ L ) SL,πJ = χdϕ ; (dϕ G ) SL,πJ = (1 -χ)dϕ ( 21 
)
where χ is a saturation dependent factor that varies between 1, under saturated state, and 0 under dried state. The choice χ = S L corresponds to the isodeformation assumption of the two partial pore volumes: dϕL φ0SL = dϕG φ0SG which has to be satisfied whatever the saturation. Accordingly, when χ = S L , the porous network is assumed to deform homogeneously whenever no pressure is applied on the solid wall. This assumption is often used for convenient reasons [11,[START_REF] Lewis | The finite element method in static and dynamic deformation and consolidation of porous media[END_REF][START_REF] Chateau | Micromechanics of saturated and un saturated porous media[END_REF].

Integration of [START_REF] Gray | Thermodynamic approach to effective stress in partially saturated porous media[END_REF] gives

ϕ L = χϕ + δ ; ϕ G = (1 -χ)ϕ -δ (22) 
where δ is a function of (S L , π L , π G ) that must vanish under saturated and dried states:

δ(0, π L , π G ) = δ(1, π L , π G ) = 0 (23) 
Incorporating expression [START_REF] Gray | Analysis of the solid phase stress tensor in multiphase porous media[END_REF] for ϕ J in [START_REF] Bishop | Some aspects of effective stress in saturated and partly saturated soils[END_REF] gives

(dF sol ) SL = σ ij dϵ ij + πdϕ + ∆dδ (24) 
where we defined π and ∆ as follows

π = χπ L + (1 -χ)π G (25) 
∆ = π L -π G (26) 
Defining the Legendre-Fenchel transform

F * sol = F sol -σ ij ϵ ij -πϕ -∆δ entails (dF * sol ) SL = -ϵ ij dσ ij -ϕdπ -δd∆ ( 2 7 ) 
Since δ only depends on (S L , π, ∆), the integration of the state equation

δ(S L , π, ∆) = - ∂F * sol ∂∆ SL,σij ,π (28) 
shows that F * sol can be split as follows

F * sol = F * 1 sol (σ ij , π, S L ) - ∆ 0 δ(S L , π, u)du (29) 
Eq. ( 29) suggests that F * 1 sol can depend on S L . Actually it cannot because of the general requirement (8) 2 . Indeed injecting equality ∆ = 0 in (29) and using the property [START_REF] Brooks | Hydraulic properties of porous media[END_REF] show that S L is decoupled from the stresses σ ij and π. Thus F * 1 sol only depends on (σ ij , π) with

dF * 1 sol = -ϵ ij dσ ij -ϕ * dπ (30) 
where we defined

ϕ * = ϕ - ∆ 0 ∂δ ∂π (S L , π, u)du (31) 
Expression [START_REF] Nuth | Effective stress concept in saturated soils: Clarification and validation of a unified framework[END_REF] for ϕ * can be transformed by using the Maxwell symmetry relation derived from ( 27)

∂δ ∂π SL,∆ = ∂ϕ ∂∆ SL,σij ,π (32) 
2 where we can notice that ∂F sol

∂S L ϵ ij ,ϕ,δ = ∂F * sol ∂S L σ ij ,π,∆ 13 
We obtained

ϕ * = ϕ| ∆=0 (33) 
Hence ϕ * turns out to be the total pore deformation that would have resulted from ∆ = 0, i.e. π L = π G , while keeping the other variables as constant.

Therefore expression F * 1 sol (σ ij , π) which is independent of S L , must have the same expression as that found under saturated state. The state equations

ϵ ij = - ∂F * 1 sol ∂σ ij π ϕ * = - ∂F * 1 sol ∂π σij (34) 
show that π play the role of an equivalent pore pressure in the sense that it would be the pressure to apply to the liquid phase of the porous material under saturated state, to get the same strains as those obtained under unsaturated state, at the given stress state σ ij . Note however that the total pore deformation that would be obtained under saturated state is ϕ * and not that of the unsaturated state, ϕ.

Assuming that, at the microscopic scale, the solid matrix is isotropic and behaves elastically, with a compressibility constant k s , an incremental loading defined, at constant saturation degree, by dσ = -dπ L = -dπ G = -dπ, will load the solid grains by a uniform increment of pressure leading to a response given by dϵ ii = dϕ/φ 0 = dϕ J /(φ 0 S J ) = -dπ/k s . Incorporating these last equations into the general equation ( 22) leads to

∂δ ∂π SL,∆ = ∂ϕ ∂∆ SL,σij ,π = φ 0 (χ -S L ) k s (35) 
showing that δ and ϕ vary linearly with π and ∆, respectively. Accordingly we obtain for ϕ

ϕ = ϕ * + φ 0 (χ -S L ) k s ∆ ( 3 6 ) 
showing that ϕ * = ϕ in the iso-deformation assumption, χ = S L .

Furthermore the δ-∆ relationship is expected to involve the elastic shear property of the solid matrix. If we assume the linearity of such behavior we end up with

δ = φ 0 (χ -S L ) k s π + ∆ g(S L ) ( 37 
)
where g(S L ) stands for an elastic modulus characterizing the elastic shear property of the solid matrix.

When the solid grains are incompressible, k s can be set to ∞ in the previous equations. The volumetric deformation of the soil is then equal to the total pore deformation, ϵ v = ϕ = ϕ * , and the balance (30) turns into

dF * 1 sol = -ϵ v d(σ + π) -ϵ q dq (38)
where q and ϵ q are the deviatoric stress and strain respectively. From (38)

ϵ v = - ∂F * 1 sol ∂(σ + π) q (39)

Elastic behavior

Under isotropic loading, the mechanical response of saturated soils is well described by a constant compressibility coefficient, κ, in the form

de = -κ d(σ + p) σ + p (40) 
where e stands for the void ratio. This coefficient has been measured on FoCa clay used for engineered barrier [START_REF] Dangla | Non linear thermomechanical couplings in unsaturated clay barriers[END_REF]. The compression test is shown in the figure [START_REF] Aitchison | Separate roles of site investigation, quantification of soil properties and selection of operational environment in the determination of foundation design on expansive soils[END_REF] where only the BC lines are associated with the elastic response. The compressibility coefficient is κ = 0.0977.

Since energy F 1 sol has been found to be independent of the saturation degree, a comparison of ( 40) and (39) implies the general constitutive relationship

de = -κ d(σ + π) σ + π (41)
which should be valid for unsaturated situations and along any loading paths and with the same constant compressibility coefficient as that involved in (40).

However to be able to apply the previous relation, the equivalent pore pressure, π, has to be computed from [START_REF] Leclercq | Considérations relatives à la mécanique des sols non saturés et à son intérêt en agronomie[END_REF]. This can be done from the water retention curve of the material. This curve has been measured, at 20 and 80 o C, on the same FoCa clay using the saturated salt solution technique upon imbibition path [START_REF] Dangla | Non linear thermomechanical couplings in unsaturated clay barriers[END_REF]. This curve is shown in the figure (2a). During these tests no stress was applied thereby, neglecting the atmospheric pressure, σ = 0. In these conditions

Eq. ( 41) turns into

de = -κ dπ π (42) 
The free swelling of these samples was measured and reported in figure (2b) in terms of π calculated with the help of the measured retention curves, the gas pressure being neglecting. We assume here the iso-deformation of pores, i.e.

χ = S L . The reported measured points are found to be accurately lined up with a slope κ = 0.0978, namely very close to that found in the previous experiment.

Plastic Modeling

We will assume in the following that irreversibility only affects the mechanical behavior. Hysteresis of the retention curve will not be addressed here. As a consequence, in non reversible transformation, the two first laws of thermodynamics applied to the system composed of the solid matrix, gives the Clausius-Duhem inequality in the form [11] 

σ ij dϵ ij + π L dϕ L + π G dϕ G -(dF sol ) SL ≥ 0 ( 4 3 ) 
where now the free energy of the solid matrix, F sol , must be argumented by the elastic part of the deformation variables and by hardening variables. Following [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF] this energy is split into two parts: (i) the elastic energy, W , stored in the solid matrix which is the energy recoverable by a reversible mechanical process and (ii) the locked energy, Z, which is the additional (not recoverable) part of the elastic energy locked when irreversible mechanical processes have taken place. For the sake of simplicity, the locked energy is assumed to depend on a unique hardening variable, α. Denoting with superscripts e and p the elastic and plastic part of the deformation variables, respectively, we write

F sol = W (ϵ e ij , ϕ e L , ϕ e G , S L ) + Z(S L , α) ( 4 4 ) 
The state equations ( 7) being always valid provided that each deformation variable be replaced by its elastic part, the use of expression (44) for F sol in (43) allows to write the Clausius-Duhem inequality as

σ ij dϵ p ij + π L dϕ p L + π G dϕ p G + βdα ≥ 0 ( 4 5 ) 
where β is defined by

β = - ∂Z ∂α SL (46) 
The variable β is the hardening force as energy conjugate to the hardening variable α. It will be associated to the current limit of the elastic domain defined by

f (σ, π L , π G , β) ≤ 0 ( 4 7 ) 
Following the work of Coussy [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF], to go further towards an effective stress, we will assume that part of the flow rule is given by

(dϕ p L ) SL = χ p dϕ p ; (dϕ p G ) SL = (1 -χ p )dϕ p (48) 
where χ p is a weighting factor ranging from 0 to 1. This factor is, a priori, different from χ which was introduced previously to describe the elastic response.

Similarly to what was done for χ, we will assume that this factor depends on the saturation degree: χ p (S L ). The plastic incompressibility of the solid grains is now introduced leading to ϵ p v = ϕ p . From the plastic incompressibility assumption and (48) the dissipation (45) turns into

σ B dϵ p v + qdϵ p q + βdα ≥ 0 ( 4 9 ) 
where σ B is a Bishop-like stress defined by

σ B = σ + χ p π L + (1 -χ p )π G (50) 
According to (50) and (49) the current elastic domain can be defined by

f (σ B , q, β) ≤ 0 ( 5 1 ) 
The flow rule is then expressed in the form

dϵ p v = dλ ∂f ∂σ B q,β dϵ p q = dλ ∂f ∂q σ B ,β (52) 
One of the simplest plastic model used for saturated clay is the Modified Cam-Clay model:

f Cam (σ, q, p 0 ) = σ(σ + p 0 ) + q 2 /M 2 (53) 
where p 0 is the preconsolidation pressure at the saturated state which is governed by the plastic void ratio:

p 0 = p r exp - e p λ(0) -κ (54) 
where λ(0) is the slope of the saturated virgin consolidation line while κ is the slope of the unloading/reloading line as introduced in section 4. A simple extension of the yield function (53) to the unsaturated state can then be formulated as

f = f Cam (σ B , q, p 0 ) ( 5 5 ) 
where the preconsolidation pressure p 0 should be extended to unsaturated situations. Following the work of Coussy [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF], we set

p 0 = p r h(e p , S L ) ( 5 6 ) 
where h should satisfy h(e p , 1) = exp -e p λ(0)-κ .

In the following we will assume that

h(e p , S L ) = h m (e p )h s (S L ) ( 5 7 ) 
where h m = exp -e p λ(0)-κ expresses the mechanical hardening due to irreversible deformations and h s represents a saturation-induced hardening (which may be a function of capillary pressure through the retention curve). Note that h s (1) = 1, leading to p 0 = p r at the initial (undeformed) reference saturated state.

Shear strength

Substitution of the Bishop effective stress (50) in the classical Mohr-Coulomb criterion gives

τ = C -(σ n + χ p π L + (1 -χ p )π G ) tan ψ ( 58 
)
where C is the cohesion and ψ is the friction angle which is assumed constant, consistently with the Cam-Clay model: sin ψ = 3M/(6 + M ). Alonso et al [START_REF] Alonso | A microstructurally based effective stress for unsaturated soils[END_REF] have shown that the coefficient χ p to consider in the shear strength of unsaturated soils is actually smaller than the saturation degree. They proposed a generic formula of the form

χ p = S L -S m L 1 -S m L ( 59 
)
where < x >= (x + |x|)/2 is the positive part operator. Alonso et al related this coefficient (called effective degree of saturation in their paper) to the freely available water filling the macroporosity of the soil. Here we will rather use this formula as a parametric form of the coefficient χ p . From ( 20) and ( 14), a development of Eq. ( 58) in terms of the capillary pressure, p c = p G -p L , and interface energy, U , gives

τ = C -σ n + p G -χ p p c - 2 3 - χ p S L a + 1 -χ p 1 -S L (1 + a) U tan ψ (60) 20 
Numerous experiments have been performed on shear strength of unsaturated soils. We present in the figure (3) those performed on Guadalix de la Sierra red clay [START_REF] Escario | Formulaciones para la difinicion de la resistancia a esfuerzo cortante de los suelos parcialmente saturados[END_REF] for which C = 0 and ψ = 33 o . In the same figure we have plotted the model as predicted by Eq. ( 60) under different hypotheses: χ p = S L or χ p given by Eq. ( 59). The model of Brooks and Corey [START_REF] Brooks | Hydraulic properties of porous media[END_REF] was used to fit the retention curve with an air entry pressure of 30 kPa and an exponent equal to 3.

Isotropic stress path at constant capillary pressure

The compression index of a normally consolidated saturated soil is defined by

de = -λ(0) d(σ + p) σ + p (61) 
For an unsaturated soil at constant capillary pressure, an isotropic plastic loading on the virgin compression line, i.e -σ B = p 0 , results in

de p = -(λ(0) -κ) dσ B σ B (62) 
Assuming that χ = χ p entails de = -λ(0)

dσ B σ B (63) 
which is the simplest extension of (61) for unsaturated situations. We assume moreover, hereafter, that χ = χ p = S L . We have applied this simple model to a silty clay [START_REF] Leclercq | Considérations relatives à la mécanique des sols non saturés et à son intérêt en agronomie[END_REF][START_REF] Leclercq | Propriétés géomécaniques des sols non saturés[END_REF][START_REF] Taibi | Comportement mécanique et hydraulique des sols partiellement saturés[END_REF]. The figure (4b) reports the variation of the void ratio during a compression oedometric test from 1 to 256 kPa obtained at different capillary pressures: p c = 0, 20, 40, 80, 160 kPa. The figure (4a) shows the prediction obtained by the model. The elastic limit, given by -σ = π + p 0 , has been identified to 18, 22, 24, 28, 50 kPa respectively. From these results we have identified the following parameters associated to the saturated state: λ(0) = 0.037, κ = 0, 004 and p r = 18 kPa. To assess the value of the interface energy, U , we use a retention curve fitted by using the model of Brooks and Corey with the parameters associated to the silty clay (air entry pressure p e = 10 kPa and exponent α = 2.5).

Imbibition drainage paths

The same silty clay as that used in the previous section was loaded at different isotropic compression stresses: -σ = 8, 16, 32, 64, 128, 256 kPa. After each compression test, the capillary pressure is increased from 0 to 160 kPa then the specimen is unloaded to its initial compression, i.e 1 kPa. The same parameters as those defined in the last section are used. Let's consider now a soil sample initially and normally saturated. The initial capillary pressure is equal to zero. Let's submit the specimen to increasing capillary pressure from 1 to 256 kPa. The capillary pressure is then decreased to 1 kPa. We use the following parameters λ(0) = 0.19, κ = 0.031, p r = 10 kPa, and an initial stress -σ 0 = 1.5 10 -6 kPa. The parameters of the retention curve (Brook and Corey) are given by p e = 1.8 MPa and α = 1. These parameters corrrespond to a white clay used in [START_REF] Fleureau | Behavior of clayey soils on drying-wetting paths[END_REF]. The experiments are shown in the figure (7b) and can be compared to the predictions shown in the figure (7a). In the experiment the sample is not mechanically loaded. So we found the initial stress in order to fit one point of the curve. We found the very small value -σ 0 = 1.5 10 -6 kPa. During the loading path from 1 to 1.8 kPa the capillary pressure is lower than the air entry pressure and the soil is actually saturated. The slope of the curve is the compression index. For capillary pressure greater than 1.8 kPa the sample behaves elastically because we assumed that the saturation-induced hardening h s (S L ) > 1 + χ p pc-pe prhm(e p ) , resulting in a strictly negative yield function:

f < 0.

Conclusion

The model proposed by Coussy [START_REF] Coussy | Revisiting the thermodynamics of hardening plasticity for unsaturated soils[END_REF] has been extended to account for interface energies in the mechanical behaviour of unsaturated soils. This extension relies on the assumption that the interface energy depends on the partial pore deformations in addition to the saturation degree. As a consequence, effective pore pressures should be considered in the mechanical behaviour in place of the liquid and gas pressures. These effective pore pressures differ from the pore pressures by terms involving the interface energy. Following the approach developped in 

  figures (5b) and (6b).
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 1235346357 Figure 1: Isotropic compression test performed on saturated FoCa clay [14].