Match Selection and Refinement for Highly Accurate Two-View Structure from Motion Supplementary Material

Zhe Liu, Pascal Monasse, Renaud Marlet
ECCV 2014
This supplementary material further supports and illustrates some of the points mentioned in paper "Match Selection and Refinement for Highly Accurate Two-View Structure from Motion", published at ECCV 2014. It is organized as follows.

- Section 1 discusses possible biases for match selection. It first explains the reason for putting the RANSAC stage as the last step of match selection and not earlier. Second, it shows the impact of using different ranking functions in match selection. In particular, it shows that the distance to the epipolar line is not suitable.
- Section 2 displays statistics on the proportion of matches that are selected byour algorithm. On our test dataset, it selects on average 61% of the matches(MS), or 78% if match refinement is applied first (MR+MS).
- Section 3 provides some visual illustrations that the improvement of calibration accuracy with our algorithm leads to a reduction of the reconstruction error of 3D points.

Please also note the following missing definition at line 182 of the paper: $e_{3 D}(M)=$ $e_{3 D}\left(M, R_{M}, t_{M}\right)$.

1 Bad alternative choices for match selection due to bias

1.1 Cleaning up matches with RANSAC before selection is biased

A preliminary step, before actual match selection, consists in eliminating likely outliers (cf. paper, Section 3, "Cleaning up input matches"). It is crucial not to introduce any bias at this stage.

As mentioned in the paper, there would be a bias if we were to filter the matches using RANSAC and an estimated epipolar geometry. This is illustrated on Figure 1 ("ORSA before MS"), on the 6 scenes of Strecha et al.'s dataset [1]: an increase in both rotation and translation errors can be observed if match selection (MS) is preceded by ORSA [2] to first clean up input matches.

1.2 Distance to the epipolar line is biased for ranking matches

Match selection relies on a ranking function ϕ to order the matches (cf. paper, Section 3, "Ranking matches"). However, using geometrical information in function ϕ introduces a bias. In particular, it is not appropriate to use the distance to

Fig. 1. Possible bias with inappropriate match selection. Left: rotation error e_{R} on Strecha et al.'s dataset. Right: translation error e_{t}. Lines are defined as follows:
-*-: ordinary ORSA alone (an a-contrario variant of RANSAC),
$-\times$-: MS preceded by ORSA to first clean up input matches,
-o-: MS using distance to epipolar line as ranking function ϕ,
$-+-:$ MS using iterated distance to epipolar line and $r_{\text {min }}=0.4$,
$-\triangleleft-$: our MS method.
Scenes are ordered by increasing rotation error for ORSA alone.
estimated epipolar line to rank the matches, e.g., to define $\phi(m)=e_{F}(M, m)$ This is illustrated on Figure 1 ("MS with $\phi=e_{F}$ "), also on the 6 scenes of Strecha et al.'s dataset: results are not as good as with our unbiased ranking function.

This estimate can be slightly improved, although still with a bias. After estimating a fundamental matrix $F_{M^{\prime}}$ for a given subset of matches $M^{\prime} \subset M$, and considering another subset of matches $M_{s u b} \subset M$, we can compute $e_{F}\left(M^{\prime}, M_{s u b}\right)$, the root mean square error of the distance of matches in $M_{s u b}$ to the $F_{M^{\prime}}$-epipolar lines. The matches $m \in M$ can then be ordered by increasing distance $e_{F}\left(M^{\prime}, m\right)$ as a sequence $\left(m_{i}\right)_{1 \leq i \leq|M|}$ such that $i<j \Rightarrow e_{F}\left(M^{\prime}, m_{i}\right) \leq e_{F}\left(M^{\prime}, m_{j}\right)$. Noting $M_{\mid n}^{\prime}=\left\{m_{i} \mid 1 \leq n\right\}$ the first n matches in M^{\prime} and setting a minimum number of matches $N_{\min }$ to retain, we can easily find the exact optimal subset $M^{* *} \subset M$ with respect to $F_{M^{\prime}}$:

$$
\begin{aligned}
M^{\prime *} & =\underset{\substack{M_{\text {sub }} \subset M \\
N_{\min } \leq\left|M_{\text {sub }}\right|}}{\arg \min } \frac{e_{F}\left(M^{\prime}, M_{\text {sub }}\right)^{2}}{\left|M_{\text {sub }}\right|} \\
= & \underset{\substack{M_{\text {sub }}=M_{n}^{\prime} \\
N_{\min } \leq n \leq|M|}}{\arg \min } \frac{e_{F}\left(M^{\prime}, M_{\text {sub }}\right)^{2}}{\left|M_{\text {sub }}\right|} \\
& =M_{\mid n^{*}}^{\prime}, \text { with } n^{*}=\underset{N_{\min } \leq n \leq|M|}{\arg \min } \frac{e_{F}\left(M^{\prime}, M_{\mid n}^{\prime}\right)^{2}}{n}
\end{aligned}
$$

A linear exploration of n in $\left\{N_{\min }, \ldots,|M|\right\}$ is enough to compute n^{*}, and then
point. As a result, it does not make sense with respect to match refinement. The

Fig. 3. An image pair in Strecha et al.'s dataset.

Fig. 4. View from above of the 3D points reconstructed from the image pair in Figure 3.
The colors are as follows:

- black: pseudo ground truth,
- red: using ORSA alone,
- blue: using match selection (MS) before ORSA,
- green: our method, i.e., match refinement followed by match selection (MR+MS).221

Fig. 5. Another image pair in Strecha et al.'s dataset.

Fig. 6. Front view of the 3D point cloud reconstructed from the image pair in Figure 5.
The colors are as follows:

- black: pseudo ground truth,
- red: using ORSA alone,
- blue: using match selection (MS) before ORSA,
- green: our method, i.e., match refinement followed by match selection (MR+MS).

